U.S. EPA INSIGHTS ON RISK-BASED APPROACHES TO WATER REUSE

PRESENTED BY: WATEREUSE OHIO

SEPTEMBER 11, 2025 10:00 AM ET | 7:00 AM PT

WATEREUSE ASSOCIATION WEBCAST SERIES

A Few Notes Before We Start...

- Today's webcast is scheduled for 60 minutes.
- A PDF of this presentation will be shared afterwards via email
- Please type questions for the presenters into the Q&A box located at the bottom of your screen.
- There is one (1) Professional Development Hour (PDH) available for this webcast. Please email the PDH form to webcasts@watereuse.org

LA InterContinental Downtown | March 8-11

watereuse.org/symposium

Keynote Speaker: Philippe Cousteau Jr., Voyacy Regen

Nominate a WateReuse Award for Excellence

Deadline: October 10

Save the Date: Registration Opens Soon

- Super Saver (members only): Oct 6 27
- Early Bird: Oct 28 Dec 16

Moderator:

Jessica Langdon
Asst. Policy Director
Ohio EPA

Today's Presenters

Jay Garland
U.S. EPA
Office of Research
and Development

Michael Jahne
U.S. EPA
Office of Research
and Development

A Risk-Based Approach to Water Reuse

Michael Jahne, Ph.D., Environmental Engineer Jay Garland, Ph.D., Associate Director for Research

Challenge

- Existing Federal regulatory frameworks for water use are narrowly defined
 - Ground and surface water sources treated to drinking water quality
 - States regulate planned water reuse for other applications
- Increasing water demands drive the need for alternative water supplies
 - Potable reuse of municipal wastewater
 - Onsite water systems
 - Industrial reuse
- How do we expand these opportunities while protecting human health?
 - States and industry are seeking scientifically-defensible technical assistance on appropriate levels of treatment

Approach

- Developing <u>risk-based</u> treatment targets
 - Fit-for-purpose assessments considering specific sources of water and end uses
- Treatment levels tailored to different contaminants and types of exposure
 - Pathogens drive treatment requirements for municipal and domestic wastewaters
 - Chemical risks important for potable use and industrial sources
- "Risk-based" targets attempt to achieve a specific level of health protection
 - Pathogen log-reduction targets (LRTs): Calculated 10-fold removal needed by treatment
 - Maximum contaminant level goals (MCLGs), effects-based assays

Microbial Risk Management

Onsite and Municipal Reuse

Risk Metrics for Pathogen Exposure

Infection-Based Risk Framework

Goal: ensure probability of infection does not exceed 1 in 10,000 infections per person per year

DALY = Disability-Adjusted Life Year = 1 year of healthy life lost

DALY-Based Risk Framework

Goal: ensure the burden of disease does not exceed in 1 in 1,000,000 DALYs per person per year

NBRC (2023) "Health Risk-based Benchmarks for Onsite Treatment of Water"

Quantitative Microbial Risk Assessment

Quantitative Microbial Risk Assessment

Onsite Water Systems

- Previous ORD work focused on onsite reuse
 - Quality of alternative source waters?
 - Scaling effects for decentralized systems?
 - Fit-for-purpose water?
- Stakeholder-endorsed LRTs
 - Expert Panel report
 - National Blue Ribbon Commission
 - State/local adoption
 - Building code integration
- Updated in 2023 to incorporate latest science

Potable Reuse Harmonization

- Previous OW work focused on potable reuse
- Same math, different numbers
 - End use is drinking water
 - Source of water is municipal wastewater

- Direct and indirect potable reuse (DPR/IPR) addressed collectively
 - Environmental buffer could be credited to meet total LRTs
- Harmonization completes "the matrix" of fit-for purpose treatment targets
 - Potable uses of onsite waters
 - Non-potable use of municipal wastewater (purple pipe systems)
- Includes both infection and DALY benchmarks
- Focus on enteric pathogen treatment, not opportunistic pathogen control

Risk-Based Framework Report

- Scientific resource for states adopting reuse
 - Collaboration between ORD and OW Water Reuse Program
- Describes QMRA framework and current parameter assumptions
 - Reference pathogens to consider
 - Pathogen density characterizations (municipal and onsite)
 - Exposure estimates for potable and non-potable uses
 - Pathogen dose-response models
 - Risk characterization approaches
- Includes computed log-reduction targets and information needed for new calculations
- Summarizes related policy decisions and future research needs

Harmonized LRT Table

End Use	Source of Water	Norovirus			Adenovirus Cryptosporidium spp.			Giardia spp.	Campylobacter spp.		Salmonella spp.		
End Use	Source of water	LRT _{INF}	LRT _{DALY}	LRT _{INF}	LRT _{DALY}	LRT _{INF}	LRT _{DALY}	LRT _{INF}	LRT _{DALY}	LRT _{INF}	LRT _{DALY}	LRT _{INF}	LRT _{DALY}
Potable use	Untreated municipal wastewater	14.5	12.5	NSD	NSD	10.5	10.0	9.5	8.5	11.0	7.5	9.5	9.5
	Untreated onsite wastewater	14.5	12.5	NSD	NSD	11.5	11.0	10.0	9.0	12.0	9.5	8.0	8.0
	Graywater	13.0	11.0	NSD	NSD	9.0	8.5	8.0	7.0	9.5	7.5	5.5	5.5
	Stormwater (10% wastewater)	13.5	11.5	NSD	NSD	9.5	9.0	8.5	7.5	10.0	6.5	8.5	8.5
	Roof runoff	n/a	n/a	NSD	NSD	NSD	NSD	5.5	4.5	9.0	6.5	8.0	8.0
Unrestricted access landscape irrigation	Untreated municipal wastewater	10.0	8.5	NSD	NSD	6.5	6.0	5.5	4.5	6.5	4.0	5.5	5.5
	Untreated onsite wastewater	10.5	8.5	NSD	NSD	7.0	6.5	6.0	5.0	7.5	5.5	3.5	3.5
	Graywater	8.5	6.5	NSD	NSD	4.5	4.0	3.5	2.5	5.5	3.0	1.5	1.5
	Stormwater (10% wastewater)	9.0	7.5	NSD	NSD	5.5	5.0	4.5	3.5	5.5	3.0	4.5	4.5
	Roof runoff	n/a	n/a	NSD	NSD	NSD	NSD	1.5	0.5	5.0	2.5	3.5	3.5
Indoor non- potable use	Untreated municipal wastewater	10.5	9.0	NSD	NSD	7.5	7.0	6.5	5.5	7.5	5.5	6.5	6.5
	Untreated onsite wastewater	11.5	10.0	NSD	NSD	7.0	6.5	6.5	5.5	7.5	5.5	4.0	4.0
	Graywater	9.0	7.5	NSD	NSD	4.5	4.0	4.0	3.0	5.5	3.5	2.0	1.5
	Stormwater (10% wastewater)	9.5	8.0	NSD	NSD	6.5	6.0	5.5	4.5	6.5	5.0	5.5	5.5
	Roof runoff	n/a	n/a	NSD	NSD	NSD	NSD	2.0	1.0	5.0	3.0	3.5	3.5

Risk-Based Treatment: Putting it Together

Example Treatment Trains for Indoor Use of Onsite Wastewater/Blackwater

Sum of reduction values must meet LRTs

MBR = Membrane bioreactor (compact biological treatment)

UV = Ultraviolet disinfection

LRV = Log reduction target (pathogen removal required)

LRV = Log reduction value (pathogen removal achieved by process)

Unit Process Log Reduction Values

Risk-Based Management

Traditional Monitoring Approach

Alternative Water Sources

Treatment System

Daily Effluent Quality Testing (e.g., fecal indicator bacteria)

Slow, expensive Not predictive of risks

Risk-Based Monitoring Approach

Risk Analysis Defines Treatment Targets

Treatment System

Sensors Monitoring Critical Control Points

Lower cost
Directly relating
performance to risk

Continuous Process Monitoring

Example Treatment Process	Available Pathogen Reduction Credits Virus / Protozoa / Bacteria	Example Information Included in an Engineering Report	Example Continuous Monitoring Methods
Microfiltration or Ultrafiltration	0/4/0	Description and calculation of how the system defines an acceptable pressure decay test value per the US EPA's Membrane Filtration Guidance Manual to detect 3.0 µm breach	Daily pressure decay testEffluent turbidity
Membrane Biological Reactor	1.5 / 2 / 4	Operation within the Tier 1 operating envelope as defined in the AWRCE Membrane bio-reactor, WaterVal validation protocol	Effluent turbidity
Reverse Osmosis	Up to 2 / 2 / 2	Demonstration of ability to meet salt rejection criteria and a description of surrogate parameter used to calculate pathogen reduction credits	 Influent and effluent total organic carbon (TOC) Influent and effluent electrical conductivity
Ultraviolet Light Disinfection	Up to 6 / 6 / 6	UV reactor's validation report following US EPA UV Disinfection Guidance Manual or NSF/ANSI 55 Class A validation and demonstration of ability of system to meet criteria to achieve specified UV dose	UV intensity Flow rate
Chlorine Disinfection	Up to 5 / 0 / 5	Demonstration of ability to achieve a target CT¹ including description of chlorine contactor, contact time provided, and monitoring of chlorine residual	Chlorine residual Flow rate
Ozone Disinfection	Up to 4 / 3 / 4	Demonstration of ability to achieve a target CT ¹ including description of ozone contactor, contact time provided, and monitoring of ozone residual	Ozone residualFlow rate

Future Research Needs

- Pathogen Dose-Response
 - Dose-dependent probabilities of illness?
 - Ingestion exposure to enteric adenoviruses
- Pathogen Characterization
 - Additional high-sensitivity measurements
 - Updated modeling inputs and approaches
 - Norovirus culture methods
- Log-reduction crediting and monitoring
 - LRTs are only the first step in risk-based reuse
 - Treatment trains must be credited to meet them
 - Unit processes must be monitored for ongoing performance
 - Key priorities for advancement by states!

A Structured Framework

Transparent Underlying Assumptions

Flexible and Adaptable

Contributors

Coauthors

- Sharon Nappier, U.S. EPA Office of Water
- Jay Garland, U.S. EPA Office of Research and Development
- Mary Schoen, Soller Environmental
- Jeff Soller, Soller Environmental

Reviewers

- Charles Haas, Drexel University
- Charles Gerba, The Arizona State University
- Justin Mattingly, formerly U.S. EPA Office of Water
- Ashley Harper, U.S. EPA Office of Water

Technical Support

- Kate Helmick, ICF International
- Kaedra Jones, ICF International
- Alicia Myers, ICF International

Chemical Risk Management

Industrial and Produced Water Reuse

Case-Study Applications

Protein Processing Wastewater

- Animal slaughtering, meat and poultry product production, rendering of byproducts
- Water reuse permitted provided it has been treated by "onsite advanced wastewater treatment facility" and meets National Primary Drinking Water Standards
- Similar challenge to municipal DPR potable regulations tied to source water

Oil and Gas Produced Water

- Byproduct of oil and gas extraction containing formation fluid and chemical additives
- Growing interest in off-field reuse as disposal options reach capacity
- Complex and variable mixture what is "good enough quality" for different uses?

How do you define effective treatment?

Tyson Project Objectives

Task 1: Source Characterization

- Focus on microbial contaminants likely to drive treatment train
- Include conventional contaminants (biochemical oxygen demand, solids, oil & grease, nitrogen)
- Secondary assessment of industry-specific chemicals (antibiotics, hormones, cleaning compounds)

Task 2: Treatment Target Development

 Based on microbial contaminants: quantitative microbial risk assessment (QMRA) to develop pathogen log reduction targets (LRTs)

Task 3: Treatment Train Configurations

- Identify unit processes to meet LRTs
- Additional consideration of conventional contaminants and chemicals; does treatment train for microbials manage these or need additional unit process(es)
- Will not provide actual engineering design

Study Design

Facilities:

- 3 beef sites
- 3 pork sites
- 4 poultry sites

Sampling:

- Post-DAF (dissolved air flotation)
- 2 sites rotating weekly
- Separate microbial and chemical phases

Samples:

- 8-12 each for microbial
- 3 each for chemical screening

Microbial Targets

Fecal Indicator Bacteria (culture):

- Enterococci
- Escherichia coli

Pathogens (molecular):

- Listeria
- Salmonella
- Campylobacter
- Pathogenic *E. coli*
- Cryptosporidium
- Giardia

LRT Results for Potable Use

	Salmonella	Campylobacter	Pathogenic <i>E. coli</i>	Listeria	Giardia	Cryptosporidium	Norovirus
Beef	8.2	11.4	6.8	8.9	6.5	7.7	n/a
Pork	10.7	13.3	7.1	8.7	7.3	7.7	n/a
Poultry	8.7	15.8	2.8	9.2	0	0	n/a
Combined	10.3	14.7	7.2	9.3	7.1	7.5	n/a
WW-DPR	9.5	11	n/a	n/a	9.5	10.5	14.5

^{*}italics indicate greater uncertainty for rare pathogens

Chemical Detections

Antibiotics

- Tylosin
- Lincomycin
- Sulfadimethoxine
- Trimethoprim
- Ampicillin
- Sulfamethazine
- Sulfanilamide
- Monensin sodium
- Erythromycin
- Virginiamycin
- Dicyclohexylcarbodiimide
- Clarithromycin
- Tiamulin
- Thiabendazole
- Penicillin G
- Novobiocin
- Azithromycin
- Oxolinic acid

Hormones

- Progesterone
- Testosterone
- Equilin
- Equilenin
- Medroxyprogesterone
- Levonorgestrel
- Estrone
- Genistein
- Norethindrone
- Estriol
- Hydrocortisone
- Drospirenone
- Gestodene
- Triclocarban
- Formononetin
- Prednisone
- Diethylstilbestrol
- Coumestrol

- 4-Androstene-3,17-dione
- 17beta-Estradiol
- 7,4'-Dihydroxyisoflavone
- Nomegestrol acetate
- 17beta-Estradiol
- 5alpha-Dihydrotestosterone
- 17alpha-Ethinylestradiol

Plant use chemicals

- Cyclohexylamine
- (S)-Lactic acid
- Didecyldimethylammonium

Typically trace concentrations (ng – μg/L)

Variable occurrence

Hazard Comparison

	VH - Very High H - High		M - Medium L		L-1	Low	w I - Inconclusive		No Data			Authoritative		Screening		QSAR Model			
	Human Health Effects													Ecotoxicity		Fate			
	Acute Mammalian Toxicity				ţ				Neurotoxicity		Systemic Toxicity						>		
Name	Oral	Inhalation	Dermal	Carcinogenicity	Genotoxicity Mutagenicity	Endocrine Disruption	Reproductive	Developmental	Repeat Exposure	Single Exposure	Repeat Exposure	Single Exposure	Skin Sensitization	Skin Irritation	Eye Irritation	Acute Aquatic Toxicity	Chronic Aquatic Toxicity	Persistence	Bioaccumulation
Norethindrone	L			VH	VH	Н	Н	Н								L	VH		L
Didecyldimethylammonium	Н	I	I	ı	L	L	1	L	I	- 1	I	I	T.	1	I	1		М	Н
7,4'-Dihydroxyisoflavone	М				L	Н		Н	М							Н	VH		L
Estrone	L	I	L	VH	VH	Н	Н	Н	Н	1	Н	I	1	I	1	Н	VH	М	М
(S)-Lactic acid	М	L	L	ı	L	L	1	Н	L	1	L	I	1	VH	VH	L	L	L	L
17beta-Estradiol	L			VH	VH		Н				Н					VH	VH		L
Estriol	L				L	Н	Н	Н								Н	VH		L
Levonorgestrel	L				L	Н	Н	Н								VH			1
Medroxyprogesterone	М				L	L	М	Н								Н	M		L
17alpha-Ethinylestradiol	М			VH	VH		Н				Н					Н	VH	Н	Н
Diethylstilbestrol	M	1	I	VH	VH	Н	Н	Н			H	М	Н	I	ı	Н	Н		М

U.S. EPA CompTox Cheminformatics Modules https://www.epa.gov/comptox-tools/cheminformatics

Next step: Assess removal needs by comparing observed concentrations to reported toxicity thresholds

Bioassays

Analytical Space

Bioassays

Estrogen Receptor Assay

Sample Site ID

Bioassays

Androgen Receptor Assay

Next Step: Demonstration Projects

Tyson Foods developing potable reuse pilot project at Kansas facility

- Demonstrating "potability" of water to state and federal regulators
- Seeking waiver for product contact use in final rinse
- Treatment design based on study results

Proof of concept for further expansion

- Water scarcity is critical driver, despite treatment costs
- Need to establish both technical and regulatory processes

Beyond Tyson: Ohio turkey plant

- Local water and wastewater constraints
- Similar microbial evaluation by ORD
- Working with Ohio EPA and local municipality on potential reuse

Collaborators

- Jay Garland (EPA/ORD/CESER)
- Nichole Brinkman (EPA/ORD/CESER)
- Scott Keely (EPA/ORD/CEMM)
- Emily Wheaton (EPA/ORD/CESER)
- Maitreyi Nagarkar (EPA/ORD/CESER)
- Silver Homa (EPA/ORD/CESER)
- Elizabeth MedlockKakaley (EPA/ORD/CPHEA)
- Nicki Evans (EPA/ORD/CPHEA)
- Sean Thimons (ORISE)
- Raghu Venkatapathy (Pegasus)
- Nick Sylvest (Pegasus)
- Kim Dirks (Tyson Foods)
- Daniel Snow (UNL)
- Clinton Williams (USDA-ARS)

Risk-Based Treatment of Produced Water

Opportunities

Challenges

Produced Water Research: Objectives

Integrated risk assessment to inform treatment guidance

- Holistic characterization of produced water using analytical, computational, and effects-based methods
- Development of risk-based, fit-for-purpose treatment targets
- Test case for R&D of risk frameworks extendible to other complex waters

Linking bulk toxicity to constituent organics

- Biological endpoints (in vivo, in vitro)
- Gene expression (high-throughput transcriptomics)
- Non-targeted analysis
- Computational prediction

Produced Water Research: Applications

Assessing treatment processes for water reuse

- Characterization and monitoring of treatment performance
- Collaborations with Colorado School of Mines (CSM), New Mexico State University (NMSU), and research partners on treatment train testing

Evaluation of produced water discharges

- Understanding effects on receiving streams
- Data generation supports reuse risk assessments

CSM Treatment Pilot

- Coagulation + membrane bioreactor (MBR) + granular activated carbon (GAC) + ion exchange (IX) + membrane distillation (MD)
- Cell-line assays for aryl hydrocarbon [dioxin] receptor (AhR) and cytotoxicity
- Toxicity dependent on AhR pathway and reduced during treatment

CSM Treatment Pilot

- New study in progress: Field-scale including crop irrigation
- Industry and academic partners
 - PWR, NGL, Exxon, CSM, Colorado State
- Adding new effects-based methods for endocrine disruption and aquatic toxicity

NMSU Treatment Pilot

- Cartridge filtration + membrane distillation (MD)
 - Comparing vacuum (VMD) and photocatalytic (PMD)
- Non-targeted analysis (NTA) and toxicity prediction

NMSU Treatment Pilot

Classification of suspect compounds shifts following treatment

NMSU Treatment Pilot

CompTox tools predict toxicity of suspect compounds across treatment

Produced Water Discharges

- Ongoing study: evaluating downstream effects from existing discharges
- In vitro and in vivo toxicity, high-throughput transcriptomics (HTTr), NTA

Hydraulic Fracturing Data Curation

- Computational analysis of <u>FracFocus</u> database for chemical use disclosures
- Data cleaning and organization
 - Provided "as is" and requires preprocessing
- Chemical-functional usage relationships
 - Understanding the purposes for which chemicals used
 - Identifying different chemicals used for similar functions
- Toxicity screening
 - Linking reported chemicals to potential human and ecological health effects
 - Proprietary information presents limitations

EPA Research Team

Office of Research and Development

Sean Thimons

Tao Li

Jay Garland

Michael Jahne

Elizabeth Medlock-Kakaley

Nicki Evans

Mike Narotsky

Chris Lau

Kaberi Das

Mark Strynar

Jim Lazorchak

Chris Corton

Tony Williams

Kristin Isaacs

Adam Biales

Josh Harrill

Dave Bencic

Meagan Bell

Bob Flick

MJ See

Jessie Hanson

Jerry Liu

Cameron Alexander

Katherine Phillips

Region 3

Amy Bergdale

Connor Radtke

Region 6

Taim Shaikh

Region 8

Tricia Pfeiffer

Treasure Bailley

Amy Maybach

Region 9

David Albright

Office of Water

Jesse Pritts

Sean Dempsey

Julia Monsarrat

Office of Air & Radiation

Shane Knockemus

Produced Water Partnerships

- New Mexico Produced Water Research Consortium (NMPWRC)
- New Mexico State University (NMSU)
- Colorado School of Mines (CSM)
- DOE National Energy Technology Laboratory (NETL)
- Special thanks to:
 - Pei Xu (NMSU)
 - Himali Delanka-Pedige (NMSU)
 - James Rosenblum (CSM)
 - Brett Van Houghton (CSM)
 - Elliese Wright (CSM)
 - Nick Seifert (NETL)

Thank You Questions?

Jahne.Michael@epa.gov