DEFINING, MONITORING, AND ASSESSING DIFFERENT WATER REUSE APPROACHES: A RESEARCH AND DEVELOPMENT PERSPECTIVE

PRESENTED BY: WATEREUSE OHIO

JULY 17, 2025 10:00 AM ET | 7:00 AM PT

WATEREUSE ASSOCIATION WEBCAST SERIES

A Few Notes Before We Start...

- Today's webcast is scheduled for 60 minutes.
- A PDF of this presentation will be shared afterwards via email
- Please type questions for the presenters into the Q&A box located at the bottom of your screen.
- There is one (1) Professional Development Hour (PDH) available for this webcast. Please email the PDH form to <u>webcasts@watereuse.org</u>

Upcoming Webinar:

Risk-Based Approach to Water Reuse U.S. EPA Office of Research and Development

> Thursday, September 11, 2025 10 a.m.

* WATEREUSE **2026 SYMPOSIUM** LA InterContinental Downtown | March 8-11

watereuse.org/symposium

Call for Presentations

- Deadline August 11, 2025
- Posters, Presentations, and Panels
- New: Interactive Workshops

Moderator:

Jessica Langdon Asst. Policy Director Ohio EPA

Today's Presenters

Jay Garland U.S. EPA Office of Research and Development

Michael Jahne U.S. EPA Office of Research and Development

Defining, Monitoring, and Assessing Different Water Reuse Approaches: A Research & Development Perspective

Jay Garland US EPA Office of Research and Development

WateReuse Ohio Webinar July 17, 2025

Ohio Roots

We Tap into the Existing Water Cycle

Trenbeth et al. 2011, 24, 4907-4924

Sometimes, We Tap into Our Own Water Cycles

De facto reuse: occurs when a community draws water from a river or reservoir that includes wastewater from upstream communities

Rice J₁ and P. Westerhoff. 2015. Spatial and temporal variation in de facto Wastewater reuse in drinking water systems across the USA ES&T 49, 982⁹

How Do we Plan Water Cycles?

"The main factors that resulted in the development of the current urban water management system no longer exist."

"General availability of water and other materials, relative to demand, and the general lack of treatment technologies and monitoring/autonomous control capabilities"

G.T. Daigger, S. Sharvelle, M. Arabi, and N.G. Love. 2019. Progress and Promise Transitioning to the One Water/Resource Recover Integrated Urban Water Management Systems J. Environ. Eng. 145(10):04019061

Transitions in the Water Sector

	Historic	Future
Relationship to Economy	Provide cost-effective water services	Part of circular economy
Functional Objective	Comply with regulations	Produce useful products
Optimization Functions	Infrastructure Cost	Water, energy, materials
Water Supply	Remote	Local
Systems Components	Separate drinking, storm, waste	Integrated, multipurpose
System Configuration	Centralized	Hybrid (C & Distributed)
Financing	Volume Based	Service Based
Institutions	Single-purpose utilities	Water cycle utilities
System Planning	"Plumb up" the planned city	Linked to city planning

G.T. Daigger, S. Sharvelle, M. Arabi, and N.G. Love. 2019. Progress and Promise Transitioning to the One Water/Resource Recovery Integrated Urban Water Management Systems J. Environ. Eng. 145(10):04019061

- Expand (and sustain) available water by using alternative waters based on risk-based fit-for-purpose treatment
 - Define necessary treatment for safe use (defining)
 - Verify treatment performance (monitoring)
 - Examine life cycle costs/impacts of different strategies (assessing)
- ORD has applied the same scientific framework to various alternative waters
 - Building-scale reuse of domestic "wastewater" done initially, most developed
 - Combined wastewater, source separated graywater, roof collected rainwater, stormwater
 - More recently involved with food processing wastewater, produced water

\$EPA

Onsite Non-Potable Water Systems

Increasing Building Scale Reuse across US

The Solaire apartment building, Battery Park, NYC

SEPA

60,000 gpd wastewater Treatment includes landscaping Toilet flushing, cooling, irrigation 181 Fremont mixed-use skyscraper, San Francisco, CA

5,000 gpd greywater Membrane bioreactor Toilet flushing

16

25,000 gpd (gallons per day) of wastewater Membrane Bioreactor Toilet flushing, cooling, irrigation

Problem Formulation

- Stakeholder (utilities & public health agencies) meeting in 2014
- Local management programs are needed

SEPA

 Water quality parameters and monitoring are needed to protect public health

National Blue Ribbon Commission for Onsite Water Systems

The Need for Standardization:Variation in Graywater Guidance

	BOD ₅ (mg L ⁻¹)	TSS (mg L ⁻¹)			<i>E. Coli</i> (cfu/ 100ml)	Disinfection	
California	10	10	2	2.2	2.2	0.5 – 2.5 mg/L residual chlorine	
New Mexico	30	30	-	-	200	-	
Oregon	10	10	-	-	2.2	-	
Georgia	-	-	10	500	100	-	
Texas	-	-	-	-	20	-	
Massachusetts	10	5	2	-	14	-	
Wisconsin	200	5 -		-	-	0.1 – 4 mg L ⁻¹ residual chlorine	
Colorado	10	10	2	2 - 2.2		0.5 – 2.5 mg/L residual chlorine	
Typical Graywater	80 - 380	54 -280	28-1340	10 ^{7.2} –10 ^{8.8}	10 ^{5.4} -10 ^{7.2}	N/A	

SEPA

National Sanitation Foundation 350 Water Quality for Graywater Use for Toilet Flushing

	(Class R ^a	Class C ^b				
Parameter	Test Average	Single Sample Maximum	Test Average	Single Sample Maximum			
CBOD ₅ (mg/l)	10	25	10	25			
TSS (mg/l)	10	30	10	30			
Turbidity (NTU)	5	10	2	5			
<i>E. coli</i> (MPN/100 ml)	14	240	2.2	200			
pH (SU)	6.0-9.0		6.0-9.0				
Storage vessel residual chlorine (mg/l)	≥ 0.5 - ≥ 2.5		\geq 0.5 - \geq 2.5				

^a Class R: Flows through graywater system are less than 400gpd ^b Class C: Flows through graywater system are less than 1500gpd

Useful approach to standardization.....but not risk-based

What is the Risk-Base Approach?

A risk-based approach to water reuse focuses on identifying, assessing, and managing potential hazards associated with using reclaimed water for various purposes. This involves evaluating the likelihood and severity of risks related to human health and the environment, then implementing appropriate treatment and monitoring strategies to minimize those risks. It moves beyond simply meeting pre-defined water quality standards and tailors treatment to the specific intended use and potential exposure pathways. Google AI, July 2025

Treatment guidance needs to address the difference in susceptibility between bacteria and other microbial pathogens of concern (i.e., virus, protozoan)

Quantitative Microbial Risk Assessment (QMRA)

EPA

Approach: Developing <u>Risk-Based</u> Pathogen Reduction Targets

- "Risk-based" targets attempt to achieve a specific level of protection (aka tolerable or acceptable risk)
 - 1:10,000 infections per person per year (ppy)
 - 1:100 illnesses ppy
 - 1:1,000,000 disability adjusted life years (DALY) ppy
- Pathogen log reduction targets (LRTs)
 - 10-fold removal needed by treatment to meet selected health benchmark

Set EPA

Final **Report**

Risk-Based Framework for the Development of Public Health Guidance for Decentralized Non-Potable Water Systems

Sharvelle et al. (2017) Risk-Based Framework for the Development of Public Health Guidance for Decentralized Non-Potable Water Systems

	Log10 Reduction Targets for 10 ⁻⁴ (10 ⁻²) Per Person Per Year Benchmarks ^{b,i}								
Water Use Scenario	Enteric Viruses ^c	Parasitic Protozoa ^d	Enteric Bacteria ^e						
Domestic Wastewater or Blackwater			•						
Unrestricted irrigation	8.0 (6.0)	7.0 (5.0)	6.0 (4.0)						
Indoor use ^f	8.5 (6.5)	7.0 (5.0)	6.0 (4.0)						
Graywater									
Unrestricted irrigation	5.5 (3.5)	4.5 (2.5)	3.5 (1.5)						
Indoor use ⁸	6.0 (4.0)	4.5 (2.5)	3.5 (1.5)						
Stormwater (10 ⁻¹ Dilution)									
Unrestricted irrigation	5.0 (3.0)	4.5 (2.5)	4.0 (2.0)						
Indoor use	5.5 (3.5)	5.5 (3.5)	5.0 (3.0)						
Stormwater (10 ⁻³ Dilution)									
Unrestricted irrigation	3.0 (1.0)	2.5 (0.5)	2.0 (0.0)						
Indoor use	3.5 (1.5)	3.5 (1.5)	3.0 (1.0)						
Roof Runoff Water ^h									
Unrestricted irrigation	Not applicable	No data	3.5 (1.5)						
Indoor use	Not applicable	No data	3.5 (1.5)						

Final Report

Risk-Based Framework for the Development of Public Health Guidance for Decentralized Non-Potable Water Systems

	Log10 Reduction Targ	Log10 Reduction Targets for 10 ⁻⁴ (10 ⁻²) Per Person Per Year Benchmarks ^{b,i}								
Water Use Scenario	Enteric Viruses ^c	Parasitic Protozoa ^d	Enteric Bacteria®							
Domestic Wastewater or		·								

Risk-based approach increasingly adopted California, Colorado, Washington State Austin (TX), San Francisco CA)

Or actively considered *Arizona, Hawaii, Oregon*

Potential integration with building codes International Code Council (ICC) International Association of Plumbing & Mechanical Officials (IAPMO) National Sanitation Foundation (NSF)

State of the Science Report

- New scientific resource for states adopting risk-based reuse
 - Joint product of ORD and OW Water Reuse Program
- Describes QMRA framework for water reuse and current parameter assumptions
 - Reference pathogens to consider

EPA

- Pathogen density characterizations in reuse sources of water (municipal and onsite)
- Exposure estimates for potable and non-potable uses
- Pathogen dose-response models
- Risk characterization approaches
- Includes computed log-reduction targets, and information needed for new calculations
- Summarizes related policy decisions and future research needs

Risk-Based Framework for Developing Microbial Treatment Targets for Water Reuse

Water Reuse in Protein Processing

- Broad water reuse for most purposes, including in processes that involve product contact (but not in product formulation), is also allowed provided:
 - "Reconditioned water that has never contained human waste and that has been treated by an onsite advanced wastewater treatment facility"
 - "complies with National Primary Drinking Water Standards" i.e., that the reconditioned water is **potable**
 - and that contacted products and surfaces undergo a final rinse with nonreconditioned water
- However, treatment requirements for potable reuse of this unique source of water have not been clearly defined
 - Microbial regulations tied to source water e.g., Surface Water Treatment Rule
 - Similar challenges to direct potable reuse of municipal wastewater (DPR)

SFPA

SEPA Tyson Project Objectives

• Task 1: Source Characterization

- Focus on microbial contaminants likely to drive treatment train
- Include conventional contaminants (biochemical oxygen demand, solids, oil & grease, nitrogen)
- Since moving towards potable use, secondary assessment of industry-specific chemicals (antibiotics, hormones, cleaning compounds

Task 2: Treatment Target Development

 Based on microbial contaminants: quantitative microbial risk assessment (QMRA) to develop pathogen log reduction targets (LRTs)

Task 3: Treatment Train Configurations

- Identify unit processes to meet LRTs
- Additional consideration of conventional contaminants and chemicals; does treatment train for microbials manage these or need additional unit process(es)
- Will not provide actual engineering design

Study Design

- Facilities:
 - 3 beef sites
 - 3 pork sites
 - 4 poultry sites

• Sampling:

- Post-DAF (dissolved air flotation)
- 2 sites rotating weekly
- Separate microbial and chemical phases
- Samples:
 - 8-12 each for microbial
 - 3 each for chemical screening

Microbial Targets

- Fecal Indicator Bacteria (culture):
 - Enterococci
 - E. coli

Pathogens (molecular):

- Listeria
- Salmonella
- Campylobacter
- Pathogenic *E. coli*
- Cryptosporidium
- Giardia

LRT Results

	Salmonella	Campylobacter	Pathogenic <i>E. coli</i>	Listeria	Giardia	Cryptosporidium	Norovirus
Beef	8.2	11.4	6.8	8.9	6.5	7.7	n/a
Pork	10.7	13.3	7.1	8.7	7.3	7.7	n/a
Poultry	8.7	15.8	2.8	9.2	0	0	n/a
Combined	10.3	14.7	7.2	9.3	7.1	7.5	n/a
WW-DPR	9.5	11	n/a	n/a	9.5	10.5	14.5

Chemical Detections

• Antibiotics

Sepa

- Tylosin
- Lincomycin
- Sulfadimethoxine
- Trimethoprim
- Ampicillin
- Sulfamethazine
- Sulfanilamide
- Monensin sodium
- Erythromycin
- Virginiamycin
- Dicyclohexylcarbodiimide
- Clarithromycin
- Tiamulin
- Thiabendazole
- Penicillin G
- Novobiocin
- Azithromycin
- Oxolinic acid

• Hormones

- Progesterone
- Testosterone
- Equilin
- Equilenin
- Medroxyprogesterone
- Levonorgestrel
- Estrone
- Genistein
- Norethindrone
- Estriol
- Hydrocortisone
- Drospirenone
- Gestodene
- Triclocarban
- Formononetin
- Prednisone
- Diethylstilbestrol
- Coumestrol

- 4-Androstene-3,17-dione
- 17beta-Estradiol
- 7,4'-Dihydroxyisoflavone
- Nomegestrol acetate
- 17beta-Estradiol
- 5alpha-Dihydrotestosterone
- 17alpha-Ethinylestradiol

• Plant use chemicals

- Cyclohexylamine
- (S)-Lactic acid
- Didecyldimethylammonium

Typically trace concentrations (ng – μg/L)

Variable occurrence

Hazard Comparison

	VH - Ve	ery High	H -	High	M - M	edium	L-	Low	I - Inco	nclusive	No	Data		Authorita	tive	Screening		QSAR Mod	del
	Human Health Effects											Ecotoxicity		Fate					
	Acute N	Acute Mammalian Toxicity			ť				Neuro	toxicity	Systemic	c Toxicity					~		
Name	Oral	Inhalation	Dermal	Carcinogenicity	Genotoxicity Mutagenicity	Endocrine Disruption	Reproductive	Developmental	Repeat Exposure	Single Exposure	Repeat Exposure	Single Exposure	Skin Sensitization	Skin Irritation	Eye Irritation	Acute Aquatic Toxicity	Chronic Aquatic Toxicity	Persistence	Bioaccumulation
Norethindrone	L			VH	VH	Н	Н	Н								L	VH		L
Didecyldimethylammonium	Н	I	I	I	L	L	I	L	I	I	1	1	I	I	I	1		М	Н
7,4'-Dihydroxyisoflavone	М				L	Н		Н	М							Н	VH		L
Estrone	L	I	L	VH	VH	Н	Н	Н	Н	I	Н	I	I	I	I	Н	VH	М	М
(S)-Lactic acid	М	L	L	I	L	L	I	Н	L	I	L	I	I	VH	VH	L	L	L	L
17beta-Estradiol	L			VH	VH		Н				Н					VH	VH		L
Estriol	L				L	Н	Н	Н								Н	VH		L
Levonorgestrel	L				L	Н	Н	Н								VH			1
Medroxyprogesterone	М				L	L	М	Н								Н	м		L
17alpha-Ethinylestradiol	М			VH	VH		Н				Н					н	VH	Н	Н
Diethylstilbestrol	М	I	I	VH	VH	Н	н	н			Н	М	Н	I	I	н	н		М

U.S. EPA CompTox Cheminformatics Modules <u>https://www.epa.gov/comptox-tools/cheminformatics</u> **Next step**: Assess removal needs by comparing observed concentrations to reported toxicity thresholds

Estrogen Receptor Assay

Sample Site ID

Risk-Based Treatment: Putting it Together

Example Treatment Trains for Indoor Use of Onsite Wastewater/Blackwater

MBR UV	Free	Pathogens	LRV Achieved by Treatment Process			Total LRV	LRV Required for	
	Chlorine		MBR	UV	Free Cl ₂	Achieved	Indoor Use	
			Enteric Virus	1.0	3.5 ^b	4.0	8.5	8.5
		,	Giardia	2.5	6.0		8.5	7.0
≤ 0.5 NTU	80 mJ/cm ²	12 mg-min/L	Crypto	2.5	6.0		8.5	7.0
20.5 NTO			Bacteria	4.0	6.0 ^d	4.0	14	6.0
			L	γ			I	/

Sum of reduction values must meet LRTs

MBR = Membrane bioreactor (compact biological treatment)

UV = Ultraviolet disinfection

LRV = Log reduction value (pathogen removal achieved by process)

A Unit Process Log Reduction Value (LRV) Database for Water Reuse Practitioners

- Intended as a quick access resource
- LRCs and LRVs compiled for unit processes typical of onsite reuse systems
- Also compiled extensive list of process attributes
- Database available in the publication link

Science Direct publication

Monitoring Approach

- Moving away from end point, water quality monitoring
 - Costly, slow response time
 - Low, variable pathogen levels provide difficult analytical challenges
- Toward unit process performance metrics as key critical control points
 - Process-specific surrogates (i.e. transmembrane pressure, UV levels, etc.)
 - More real time data for rapid, remote response
- More operational testing needed to develop and validate surrogate approaches
Continuous Process Monitoring

SEPA

Example Treatment Process	Available Pathogen Reduction Credits Virus / Protozoa / Bacteria	Example Information Included in an Engineering Report	Example Continuous Monitoring Methods
Microfiltration or Ultrafiltration	0/4/0	Description and calculation of how the system defines an acceptable pressure decay test value per the US EPA's Membrane Filtration Guidance Manual to detect 3.0 µm breach	Daily pressure decay testEffluent turbidity
Membrane Biological Reactor	1.5/2/4	Operation within the Tier 1 operating envelope as defined in the AWRCE Membrane bio-reactor, WaterVal validation protocol	Effluent turbidity
Reverse Osmosis	Up to 2 / 2 / 2	Demonstration of ability to meet salt rejection criteria and a description of surrogate parameter used to calculate pathogen reduction credits	 Influent and effluent total organic carbon (TOC) Influent and effluent electrical conductivity
Ultraviolet Light Disinfection	Up to 6 / 6 / 6	UV reactor's validation report following US EPA UV Disinfection Guidance Manual or NSF/ANSI 55 Class A validation and demonstration of ability of system to meet criteria to achieve specified UV dose	UV intensityFlow rate
Chlorine Disinfection	Up to 5 / 0 / 5	Demonstration of ability to achieve a target CT ¹ including description of chlorine contactor, contact time provided, and monitoring of chlorine residual	Chlorine residualFlow rate
Ozone Disinfection	Up to 4 / 3 / 4	Demonstration of ability to achieve a target CT ¹ including description of ozone contactor, contact time provided, and monitoring of ozone residual	Ozone residualFlow rate

- Standard protocols for validating performance consistent with the risk-based approach
- Define critical control point monitoring for different unit processes
- Developing a better library of removal credits for different unit processes

€PA

Why do this? (Assessing)

Guiding Principles of the Water Reuse Action Plan

- Avoid burden-shifting with respect to economic and environmental impacts
- System level assessment of decentralized systems, including impacts on existing centralized infrastructure

Source: www.epa.gov/sites/production/files/2019-09/documents/water-reuse-actionplan-draft-2019.pdf

When the well runs dry, we know the value of water. Benjamin Franklin Poor Richard's Almanack 1747

Chance favors the prepared mind Louis Pasteur Remarks as new Dean of Faculty of Sciences at Lille 1854

<u>Non-potable Environmental and Economic</u> <u>Water Reuse (NEWR) Calculator</u>

Non-Potable Environmental and Water Reuse (NEWR) Calculator	Economic	Admin Info
Application to Identify Source Water Options for N	Ion-Potable Reuse	
The Non-Potable Environmental and Economic Water Reuse (NEWR) Calculator is a simple to use web-based tool for screening-level assessments of source water options for any urban building location across the United States that is considering onsite non-potable reuse.	On this Page Platform and Compatibility 	
Platform and Compatibility	<u>Capabilities</u> Applications	
NEWR is a single page web application that requires an internet connection and JavaScript enabled in the browser. The web-based application can be used on desktop devices and on mobile devices, such as smartphones and tablets. It is compatible using modern browsers with Windows and Mac operating systems.	Related Publication Resources Technical Support	
Capabilities		

Access NEWR

Research Questions:

What is the most environmentally and cost-effective source water(s) to meet large building nonpotable water needs?

Farget audiences:

Planners and Developers

mpact:

Inform effective reuse strategies

Percent of Annual Non-Potable Demand Met

SEPA

Mixed wastewater and graywarer systems always meet non-potable demand under modeled conditions

Scale influence impacts, cost Reuse in larger building a viable option

Water Research 191 (2021) 116635

Onsite Non-potable Reuse for Large Buildings: Environmental and Economic Suitability as a Function of Building Characteristics and Location

Sam Arden^a, Ben Morelli^a, Sarah Cashman^a, Xin (Cissy) Ma^{b,*}, Michael Jahne^b, Jay Garland^b ^aEastern Research Group, Lexington, Massachusetts USA ^b United States Environmental Protection Agency, Center for Environmental Solutions and Emergency Response, Cincinnati, Ohio USA

LRT Analysis – Effect of Treatment Train Design

Table 3. Indoor Use LRT Summary

	Virus ¹			Protozoa				Bacteria					
Source Water	2017	CA	DALY	2022	2017	CA (Giardia)	CA (Crypto)	DALY	2022	2017	CA	DALY	2022
Onsite Wastewater	8.5	8.0	10.0	11.5	7.0	6.5	5.5	6.5	7.0	6.0	n/a	5.5	7.5
Graywater	6.0	6.0	7.5	9.0	4.5	4.5	3.5	4.0	4.5	3.5	n/a	3.5	5.5
Stormwater (10 ⁻¹ dilution)	5.5	7.0	8.0	9.5	5.5	5.5	4.5	6.0	6.5	5.0	n/a	5.5	6.5
Stormwater (10 ⁻³ dilution)	3.5	n/a	6.0	7.5	3.5	n/a	n/a	4.0	4.5	3.0	n/a	3.5	4.5
Stormwater (10 ⁻⁴ dilution)	n∕a	n/a	5.0	6.5	n/a	n/a	n/a	3.0	3.5	n/a	n/a	2.5	3.5
Roof Runoff	n/a	n/a	n/a	n/a	n/a	1.5	n/a	1.0	2.0	3.5	n/a	3.5	5.0

¹ Norovirus is the reference viral pathogen for 2017, DALY, and 2022; adenovirus is the reference viral pathogen for CA.

Example Treatment Trains for Indoor Use of Onsite Wastewater/Blackwater

MBR UV		Free Chlorine	Pathogens		LRV Achieved by Treatment Process			LRV Required for	
MBR UV			MBR	uν	Free Cl ₂	Achieved	Indoor Use		
	رصف رکف	\frown	Enteric Virus	1.0	3.0ª	4.0	8.0	8.0	
CA-1		12 mg-min/L	Giardia	2.5	6.0		8.5	6.5	
			Crypto	2.5	6.0		8.5	5.5	
≤ 0.5 NTU	≤ 0.5 NTU 160 mJ/cm ²		Bactoria	n/a	n/a	n/a	n/a	n/a	
U	<u></u>	10 mg-min/L	Enteric Virus	1.0	4.0ª	3.0	8.0	8.0	
CA-2°			Giardia	2.5	6.0		8.5	6.5	
S			Crypto	2.5	6.0		8.5	5.5	
≤ 0.5 NTU	0.5 NTU 200 mJ/cm ²		Bacteria	n/a	n/a	n/a	n/a	n/a	
		\bigcirc	Enteric Virus	1.0	3.5 ^b	4.0	8.5	8.5	
2017			Giardia	2.5	6.0		8.5	7.0	
N ≤ 0.5 NTU	80 mJ/cm ²	12 mg min/l	Crypto	2.5	6.0		8.5	7.0	
≤ 0.5 NTU	80 mJ/cm²	12 mg-min/L	Bactoria	4.0	6.0 ^d	4.0	14	6.0	
	يقطن بككر	12 mg-min/L	Enteric Virus	1.0	6.0 ^b	4.0	11.0	10.0	
			Giardia	2.5	6.0		8.5	6.5	
	160 mJ/cm ²		Crypto	2.5	6.0		8.5	6.5	
20.5 NTO	≤ 0.5 NTU 160 mJ/cm ²		Bacteria	4.0	6.0	4.0	14.0	5.5	
Ĩ.			Enteric Virus	1.0	6.0 ^t	5.0	12.0	11.5	
H III		>12 mg-min/L	Giardia	2.5	6.0		8.5	7.0	
2022 Inf			Crypto	2.5	6.0		8.5	7.0	
2 ≤ 0.5 NTU			Bacteria	4.0	6.0	5.0	15.0	7.5	

* Credit achieved using adenovirus as reference pathogen

^b Credit achieved using norovirus as reference pathogen

° California regulators have specified one model treatment train (CA-1) for wastewater, but may allow alternatives that meet the LRTs including train CA-2

^d Assumes 3-4 LRV bacterial credit per 40 mJ/cm² UV reactor based on WaterVal

EPA LRT Analysis – Contributions

- Little influence of changing LRTs, source water more important
- MBR treatment, not disinfection, the main driver of energy use for wastewater
- Infrastructure dominant source of energy and costs with rainwater (RW) and AC condensate

Summary

- Significant development and impact of risk-based modeling to inform treatment
 - Harmonized set of pathogen log-reduction target values for **domestic related potable, nonpotable reuse**
 - Risks characterization developed for **food processing wastewater**, and treatment trains drafted in preparation for pilot studies
 - Developing/applying chemical risk assessment tools for potable reuse applications and produced water
- Increasing focus on validating and defining system performance
 - Standard protocols for validating performance consistent with the risk-based approach
 - Define critical control point monitoring
 - Developing a better library of removal credits for different unit processes
- System level tools are available to help planners and developers
 - Regional differences are important consideration for most efficient approaches
 - Primary treatment (oxidation of organic matter, removal of nutrients) remains a large driver of energy use and cost
 - Heat recovery systems to reduce costs and improve efficiency
 - Defining/quantifying resiliency?

BUILDING INFRASTRUCTURE LOCALLY FOR DECENTRALIZED WATER SYSTEMS

https://watereuse.org/educate/national-blueribbon-commission-for-onsite-non-potable-watersystems/bild/

- Goal is to accelerate the adoption and implementation of decentralized water systems while protecting public health
 - Develop a road map that drives us towards that goal
- Broad participation from product manufacturers, utilities, public health regulators, designers, codes & standards orgs, academia, research orgs, international orgs, and NGOs
- 4 working groups formed: Public Health, Sustainable Technology/Innovation, Capacity Development, and Communications
- Applicable scales appliance, single-family home, building, and district/campus
- Applicable types of DWS residential, commercial, and industrial

"Size matters not. Look at me. Judge me by my size, do you? Hmm? Hmm. And well you should not"

Yoda

\$EPA

Impact

National Blue Ribbon Commission for Onsite Water Systems

- Collaborations with key stakeholder groups
 - New Mexico Produced Water Research Consortium
 - National Blue-Ribbon Commission for Onsite Water Systems
- Partnerships with industry
 - CRADAs: Tyson Foods, WaterGen
 - Produced water: NGL, PWR, Exxon
- State technical support
 - CA, CO, ID, KS, MN, NM, OH, WA
- Working with code agencies
 - IAPMO, NSF, ARCSA

NEW MEXICO PRODUCED WATER RESEARCH CONSORTIUM

Ex on Mobil

DEPARTMEN1 OF HEALTH

Protection

Agency

Environmental

Department of Health and Environment

State Water Resources Control Board

sas

COLORADO

Department of Public Health & Environment

Jay Garland

Associate Director for Research Center for Environmental Solutions and Emergency Response US EPA ORD Garland.Jay@epa.gov

513-569-7334

Michael Jahne Environmental Engineer Center for Environmental Solutions and Emergency Response US EPA ORD Jahne.michael@epa.gov 513-485-2354

⁵⁰ The views expressed in this presentation are those of the individual authors and do not necessarily reflect the views and policies of the US EPA.

Thank You Jay and Michael!

Audience Q & A

Email for PDHs: Webcasts@watereuse.org Email for staff support: Mmerk@watereuse.org

