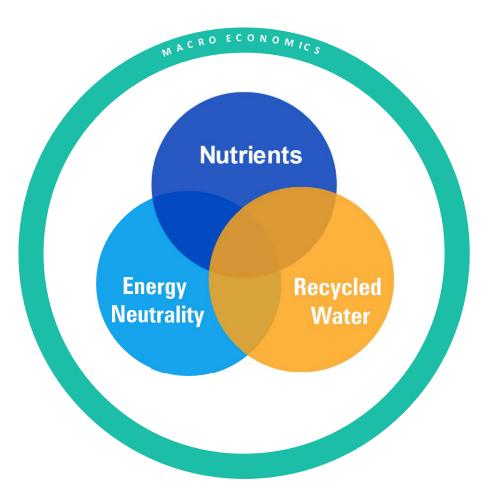
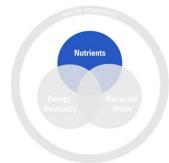
Advanced-Treated Recycle Water: How it Can Help with Nutrient Reduction

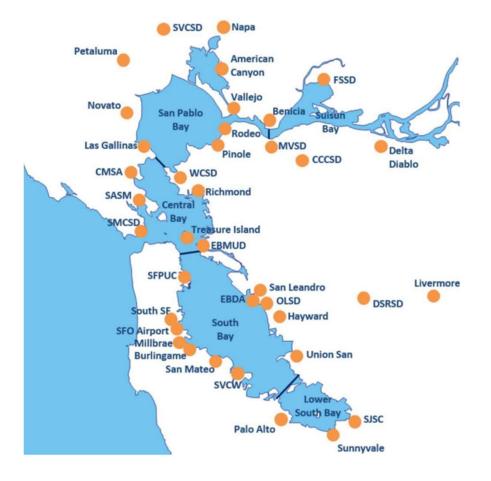

Sanjay Reddy

Senior Client Services Manager

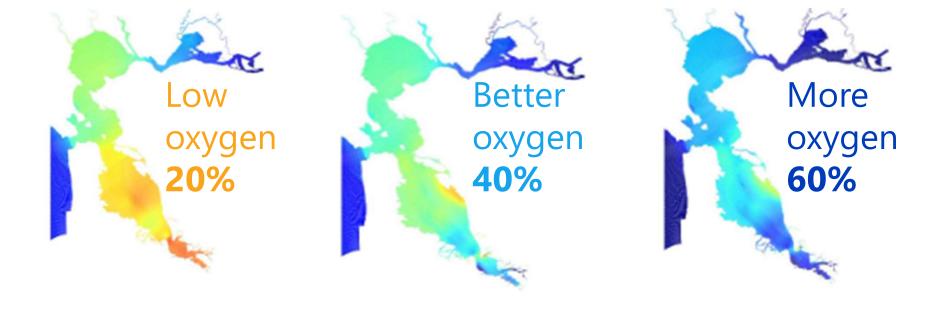

APRIL 2025

Our Multifaceted Challenge

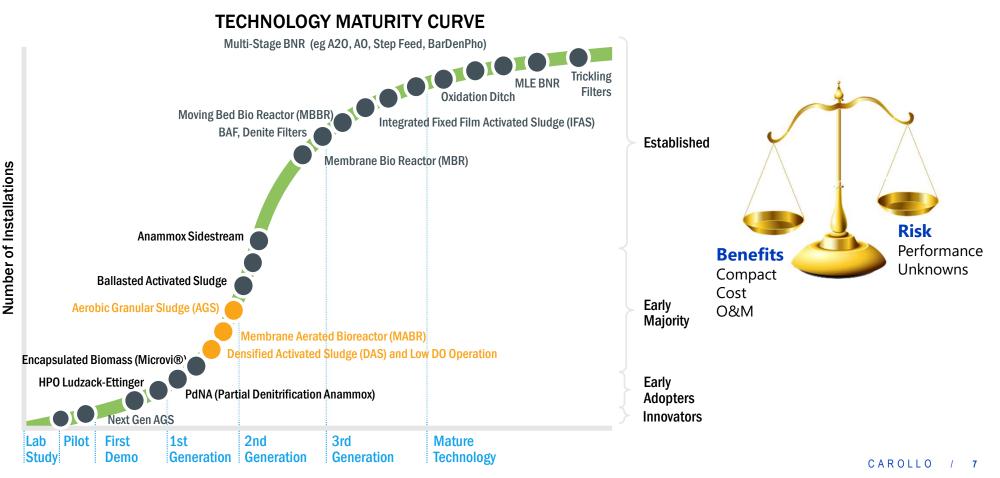
odatefooter0323.pptx/2



Nutrients


01

Nutrient removal solutions must build in flexibility


Reduced nitrogen loads equates to more oxygen left in SF Bay

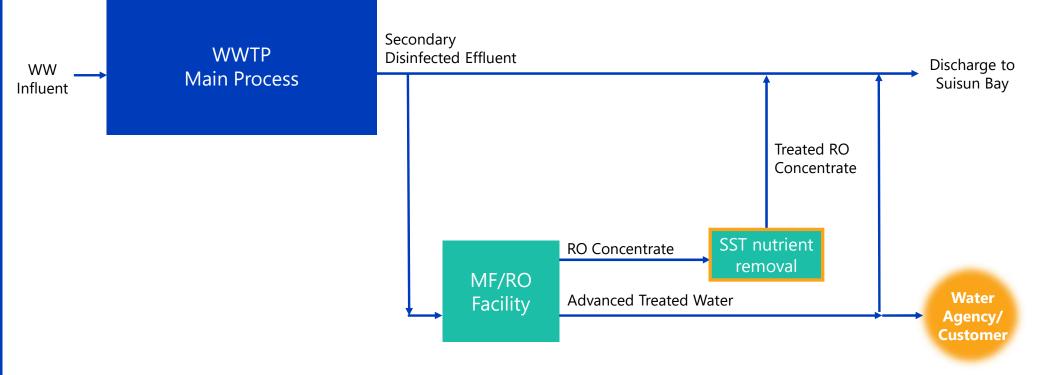
Permit requirements for compliance schedules

Interim Limits	Based on current treatment performance from May through September (95th percentile). Apply to each treatment plant individually.			
Interim Requirements	Document efforts to minimize nutrient discharges to the Bay and progress on achieving compliance with final limits.			
Final Limits	Include final limits (May through September) that will demonstrate attainment with the narrative biostimulatory substances objective.			

Emerging technologies have considerable benefits

.

Recycled Water


Direct potable reuse regulations – treatment process

Ultraviolet Light/Advanced Membrane Secondary/Tertiary Ozone Oxidation Free Chlorine BAC Filtration Treatment Reverse Osmosis _____ Physical Physical UV Light Removal Removal Inactivation Oxidation Oxidation Physical Physical Physical Biological Biological Removal Removal Degradation Chemical Chemical Inactivation Inactivation Adsorption Adsorption Oxidation

Multi-barrier treatment train showing diverse treatment mechanisms

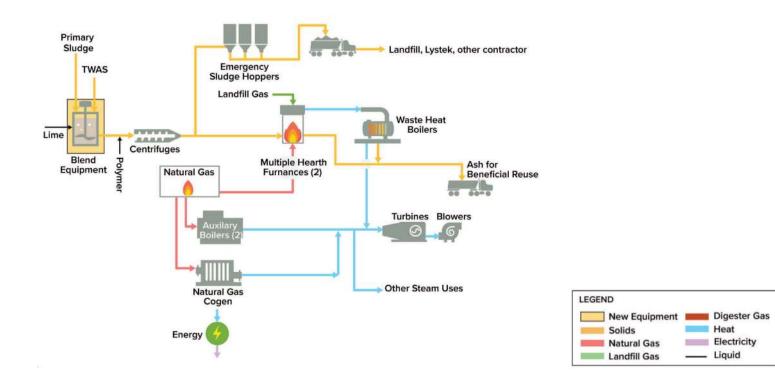
Source: May 2017 City of San Diego Pure Water Program Title 22 Engineering Report

MF/RO Facility is a multi-benefit approach to nutrient removal

Sidestream treatment of highly concentrated reject streams

Piloting of MABR technology with Anammox has been successful for high ammonia and TDS streams

Biottta treating combination of high-TDS well water and raw wastewater for perchlorate removal. *Conceptually very similar matrix to RO concentrate!*



Energy Neutrality

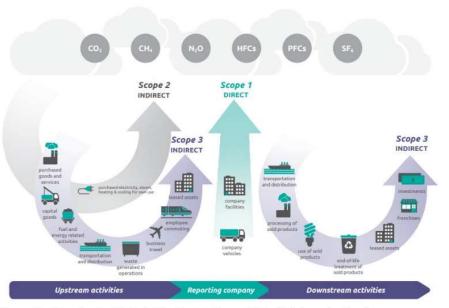
03

Central San's existing solids process

Green house gas emissions

SCOPE 1, 2 & 3 EMISSIONS

Scope 1: Direct Emissions

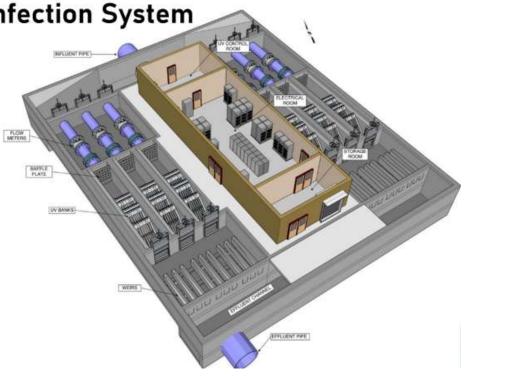

- Facility emissions (MHFs, Cogen, Boilers...)
- · Central San vehicles emissions

Scope 2: Indirect Emissions

 Purchased electricity (treatment plant, pumping stations...)

Scope 3: Indirect Emissions

 15 categories associated with upstream & downstream activities

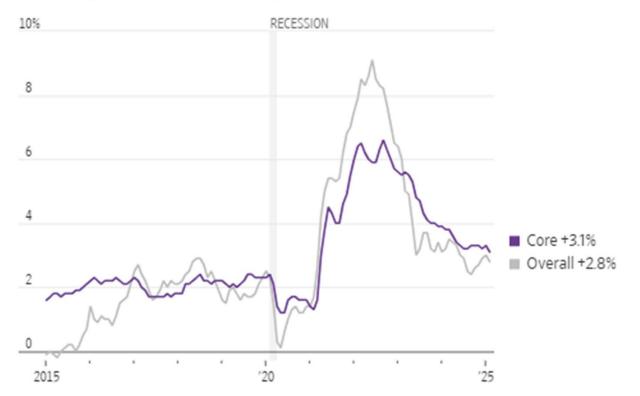


Source: https://ghgprotocol.org/sites/default/files/standards/Corporate-Value-Chain-Accounting-Reporing-Standard 041613 2.pdf

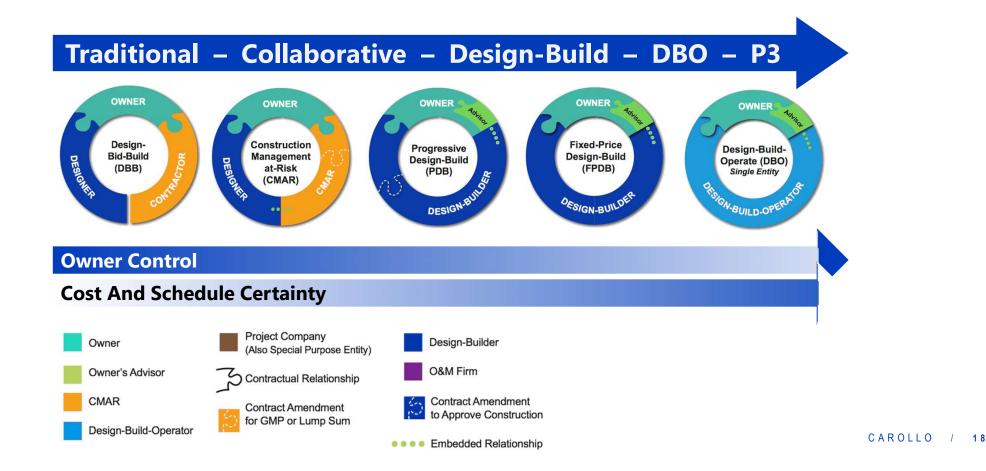
Several optimization projects in progress

Final Design of New UV Disinfection System

- Metered flow and self-cleaning UV lamp system
- Better power control and electrical savings of 50-60% (~250 kw)
- Increase wet weather capacity by an additional 40 MGD to 140 MGD


Macro Economics

 $() \Delta$

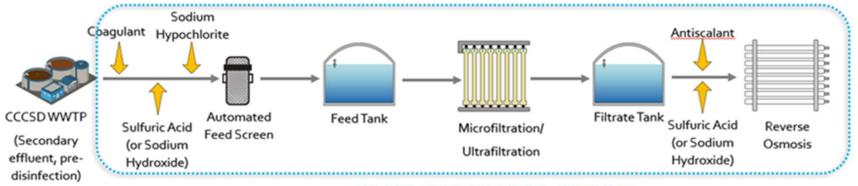


Inflation the silent killer!

Consumer price index, 12-month change

Spectrum of collaborative project delivery options

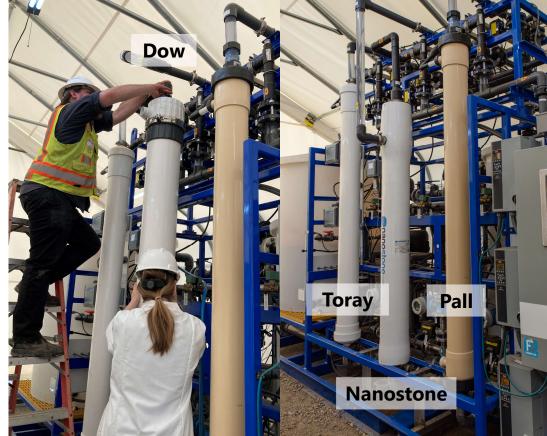
Membrane Performance for Refinery Reuse of Non-Nitrified Wastewater



Secondary process operated with low SRT

- Conventional activated sludge, no nitrification
- Save aeration power costs and still meet BOD and TSS limits
- SRT less than 2 days, more free bacteria and less floc
 - » More challenging to settle, "light and fluffy"
 - » Smaller colloidal particles in effluent
 - » Variability in effluent turbidity
- Membrane manufacturers usually want nitrified WW

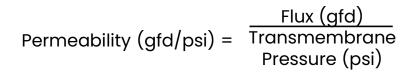
Pilot system process flow

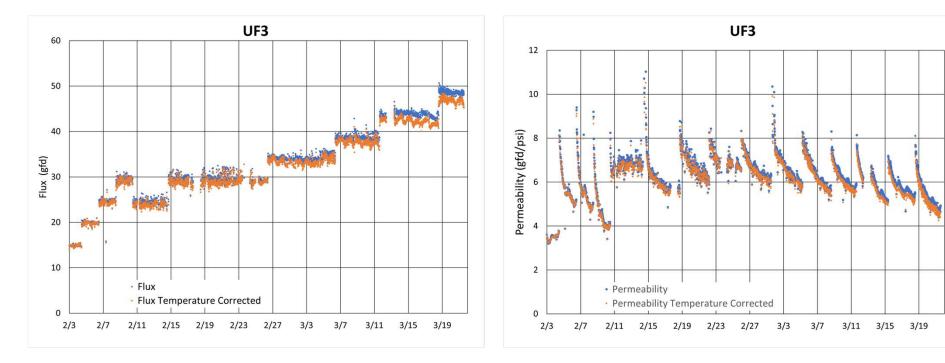

ADVANCED RECYCLED WATER PILOT PROJECT

Coagulants Tested

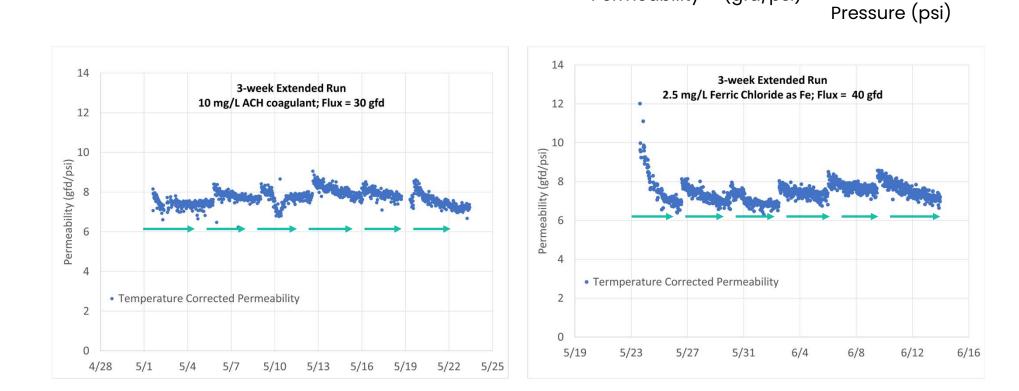
- Ferric Chloride
- Aluminum Chlorohydrate (ACH)

Evaluated multiple membrane manufacturers with different characteristics


	Membrane	Operation Mode	Туре
Nano- stone	Ultra-filtration	Inside-Out	Ceramic
Toray	Ultra-filtration	Outside-In	Polymeric
Dow	Ultra-filtration	Outside-In	Polymeric
Pall	Micro-filtration	Outside-In	Polymeric



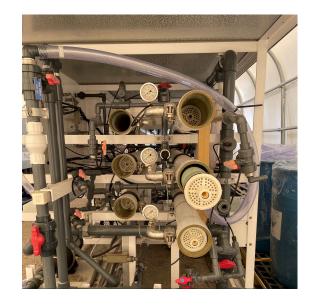
Preliminary refinery water quality objectives


Boiler Feed	Parameter	Unit	Preliminary Refinery Specification	Central San Average Final Effluent Water Quality
	Ammonia	mg-N/L	<1.0	25
Cooling Tower Makeup	Calcium Hardness	mg/L as CaCO3	130	250
	Chromium (total)	mg/L	1.67	0.53
	Copper (total)	µg/L	60	6.2
	Lead (total)	µg/L	3.7	0.48
	Nickel (total)	µg/L	43	4.1
	Nitrate	mg-N/L	15	1.8
	Silica	mg/L	25	13.1
	TDS	mg/L	280	528

Flux step increases

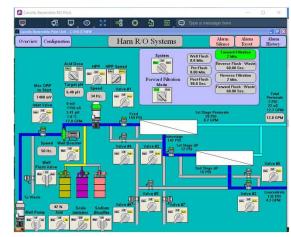
C A R O L L O / 24

Three-week extended runs

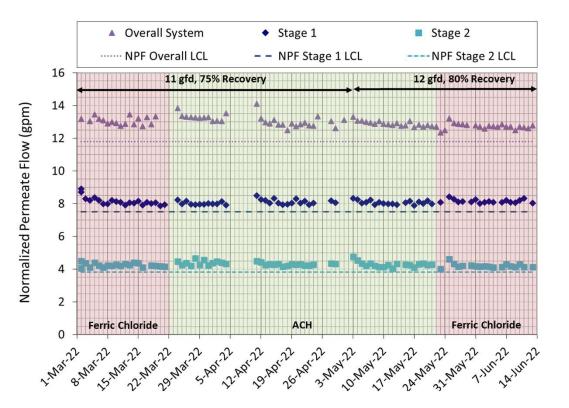

latefooter0323.pptx,

C A R O L L O / 25

Flux (gfd) Transmembrane


Permeability = (gfd/psi)

Reverse osmosis operation



RO normalized permeate flow

- Permeate flow metric that adjusts for the temperature and osmotic pressure (as a result of TDS) encountered by each stage
- A sudden and exponential decrease in NPF is associated with biological fouling or scaling
- Cleaning trigger at 90% starting NPF
- Stable and consistent performance while operating on both coagulants

Can meet preliminary refinery water quality objectives

- Ammonia was reduced 95-97%
- Bench tested a few methods to reduce ammonia
- Breakpoint chlorination found to be simple and effective method

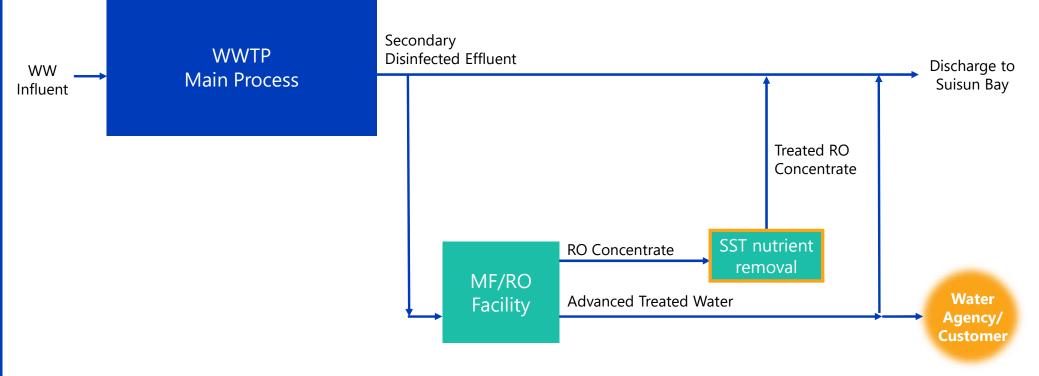
Parameter	Unit	Preliminary Refinery Specification	Maximum RO Permeate Concentration
Ammonia	mg-N/L	<1.0	1.6
Calcium Hardness	mg/L as CaCO3	130	<3.0
Chromium (total)	mg/L	1.67	<0.002
Copper (total)	µg/L	60	<2.0
Lead (total)	µg/L	3.7	<0.5
Nickel (total)	µg/L	43	<5.0
Nitrate	mg-N/L	15	<0.1
Silica	mg/L	25	<0.5
TDS	mg/L	280	17

C A R O L L O / 28

Ammonia rejection by RO

- Ammonia Removal Across RO was high 95 – 97%.
- Removal was not quite high enough to meet the refinery target(<1.0) consistently.
- The RO operated in a stable fashion in spite of the nonnitrified feed water.
- As anticipated, recovery increases marginally reduced rejection (c. 2%)

	NH ₃ Concentration (mg/L as N)			RO
Date	Combined RO Feed/ UF Filtrate	RO Permeate	RO NH ₃ Removal (%)	Recovery (%)
3/2/2022	37	1.1	97.0	
3/9/2022	39	1.2	96.9	
3/16/2022	36	1.2	96.7	
3/21/2022	35	1.1	96.9	75
3/30/2022	48	1.6	96.7	
4/13/2022	43	1.2	97.2	
4/20/2022	32	1.2	96.3	
5/25/2022	35	1.6	95.4	90
6/6/2022	33	1.4	95.8	80


We can meet refinery and CA Title 22 non potable reuse objectives

- Refinery limits estimated from their NPDES permit
- Water quality specifications are preliminary, subject to later discussion and all can be met
- Finished water ammonia is an issue that can be solved by breakpoint chlorination

Parameter	Unit	Maximum RO Permeate Concentration ⁽⁸⁾	Preliminary Refinery Recycled Water Quality Specification ⁽¹⁾	Title 22 Regulatory Compliance Limit
Alkalinity	mg/L asCaCO₃	not tested ⁽⁷⁾	80	-
Ammonia	mg-N/L	1.6	< 1.0	-
Calcium Hardness	mg/L asCaCO₃	<3.0	130	-
Chloride	mg/L	1.8	170	-
Chromium (total)	mg/L	<0.002	1.17-1.67(2)	-
Copper (total)	μg/L	<2.0	37-60 ⁽³⁾	-
Lead (total)	μg/L	<0.5	3.7(4)	-
Nickel (total)	μg/L	<5.0	43 ⁽⁵⁾	-
Nitrate	mg-N/L	<0.1	15	-
Orthophosphate	mg-PO ₄ /L	<0.03 (<0.01 mg/L as P)	3 (0.97 mg/L as P)	-
Silica (as SiQ₂)	mg/L	<0.5	25	-
Total Coliform	MPN/100 mL	not tested ⁽⁷⁾	-	<2.2 <23 (one sample in 7 day period)
TDS	mg/L	17	280	-
TSS	mg/L	<10 ⁽⁶⁾	< 2.0	-
Turbidity	NTU	All UF systems complied prior to RO typically at 0.05 NTU	-	< 0.2 (95% of time in 24-hour period) < 0.5 (at all times)

MF/RO Facility is a multi-benefit approach to nutrient removal

Conclusions

- Advanced recycle water treatment trains can be designed in a way to remove nutrients
- Advanced treated water may not be the cheapest way to remove nitrogen; however, just implementing biological nitrogen removal seems like a missed opportunity
- Advanced treated water can be tacked on later in time but there will efficiency loses