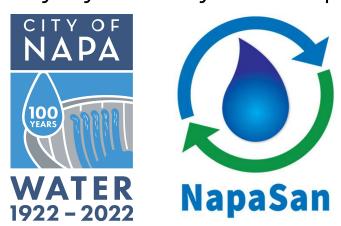


Purified Water Feasibility Study

Water Reuse December 13, 2024



2023 Strategic Plan

6C. Partner with the City of Napa to complete a preliminary feasibility study for developing a "purified water" potable reuse program

Background

- 2021: Drought Contingency Plan identifies purified water feasibility study as a near-term project
- February 2023: City of Napa and NapaSan kickoff joint study performed by Carollo Engineers. Study costs shared evenly by the City and NapaSan

Study Summary

- > Source Water Flows: Available water volume
- > Source Water Quality: Inform system design
- > Regulatory Summary: DPR regulations TWA/RWA
- > Alternatives Analysis: System size, location, costs
- > Residuals Management: NPDES compliance
- > Governance Framework: Interagency partnership
- > Implementation Roadmap: Timeline

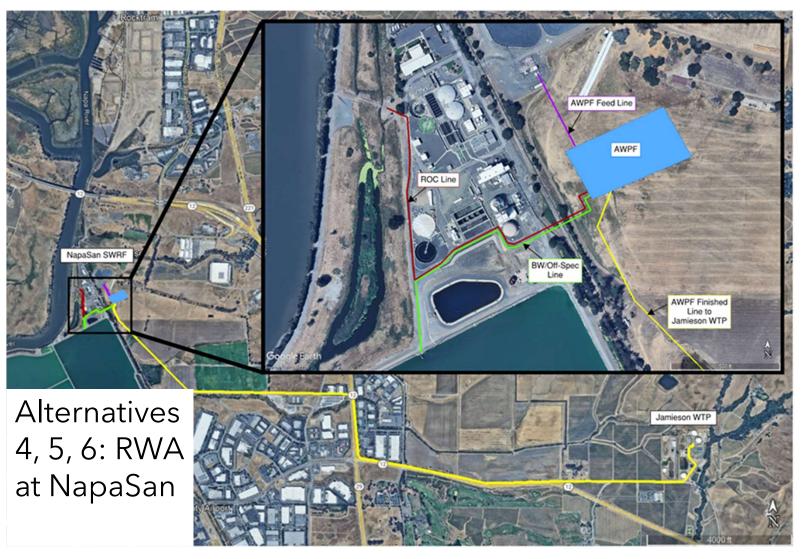
Source Water Flows

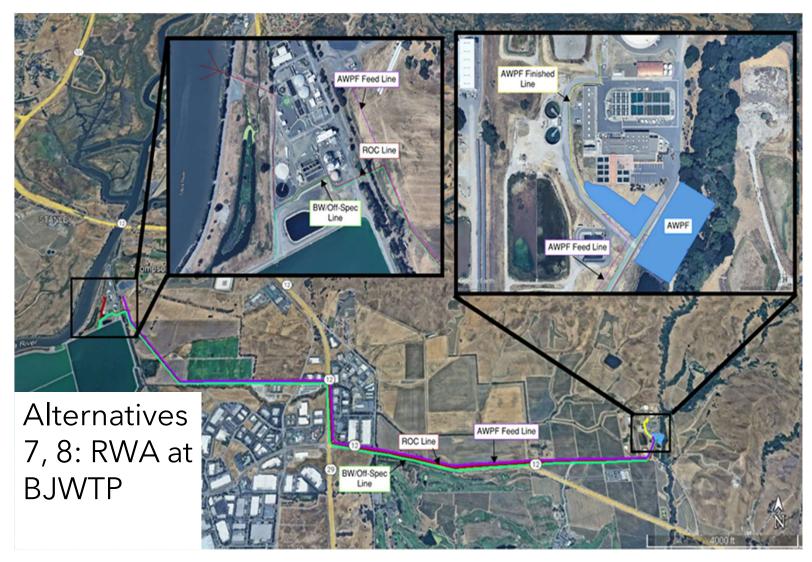
- > Determine volume of water supply available
- To meet existing recycled water irrigation demand, only non-dry season wastewater flow was evaluated (6 months/year)
- Stormwater flow from urban runoff and small wet weather events considered to increase AWPF utilization
- > 3 advanced water purification facility (AWPF) sizes:
 - 1.8 mgd: lowest useful flow
 - 6 mgd: mid-size AWPF
 - 10 mgd: maximum reliable source water flow

Regulatory Summary

- > DPR regulations finalized in December 2023
- Extensive requirements for treatment, monitoring, source control, reporting, staffing, and more
- Each treatment component (e.g., RO, UV, ozonation)
 results in additional pathogen removal credits
 - Minimum credits required
- > 24/7 staffing for 12 months potentially decreasing over time
 - CPO must be Grade 5 AWTO, all operators must be certified AWTO

Alternatives Analysis


 8 alternatives (combination of treatment plant size and location) considered


	Alt 1	Alt 2	Alt 3	Alt 4	Alt 5	Alt 6	Alt 7	Alt 8
Feed Flow, mgd	1.8	6.0	10	1.8	6.0	10	1.8	6.0
AWPF Location	NapaSan SWRF						BJWTP	
Reuse Type	TWA				RWA			

- > Infrastructure requirements for all alternatives
 - AWPF feed line
 - AWPF finished line
 - RO concentrate line
 - Backwash and off-spec line

WATER REUSE MEETING · DECEMBER 13, 2024

WATER REUSE MEETING · DECEMBER 13, 2024

Capital and O&M Cost Summary

> Capital Cost Estimates

Cost Type	Alternative Cost (\$M)								
	Alt 1	Alt 2	Alt 3	Alt 4	Alt 5	Alt 6	Alt 7	Alt 8	
Feed Flow, mgd	1.8	6.0	10	1.8	6.0	10	1.8	6.0	
AWPF Location	NapaSan SWRF BJWTP							VTP	
Reuse Type	TWA			RWA					
Project Capital Cost	\$120.4	\$218.4	\$270.1	\$132.4	\$242.5	\$299.8	\$144.8	\$257.9	

> O&M Cost Estimates

Cost Type	Alternative Cost (\$M)								
Cost Type	Alt 1	Alt 2	Alt 3	Alt 4	Alt 5	Alt 6	Alt 7	Alt 8	
Feed Flow, mgd	1.8	6.0	10	1.8	6.0	10	1.8	6.0	
AWPF Location	NapaSan SWRF BJWTP						VTP		
Reuse Type	TWA								
12 mo. Annual O&M Cost	\$5.06	\$8.33	\$11.86	\$5.16	\$8.60	\$12.33	\$5.09	\$8.36	
6 mo. Annual O&M Cost	\$4.00	\$5.25	\$6.31	\$4.05	\$5.36	\$6.47	\$4.01	\$5.26	

Unit Cost Estimates

	Alt 1	Alt 2	Alt 3	Alt 4	Alt 5	Alt 6	Alt 7	Alt 8
Feed Flow, mgd	1.8	6.0	10	1.8	6.0	10	1.8	6.0
AWPF Location	NapaSan SWRF BJWTF					TP		
Reuse Type	TWA							
AFY Produced: 6 mo.	758	2,231	3,181	758	2,231	3,181	758	2,231
\$/AF: 6 mo.	\$14,000	\$7,700	\$6,600	\$14,900	\$8,400	\$7,200	\$15,700	\$8,700
AFY Produced: 12 mo.	1,613	5,377	8,961	1,613	5,377	8,961	1,613	5,377
\$/AF: 12 mo.	\$7,200	\$3,800	\$3,000	\$7,700	\$4,100	\$3,200	\$8,000	\$4,200

- > Highly conservative cost estimates
- > Costs annualized over 30 years with interest
- > \$/AF much higher than current water supplies

Complexities

- > In California DPR is novel contributing to high costs
- New regulations are extensive, costly, but necessary since there is limited history
- > Public perception remains a hurdle
- > NPDES permit implications increased risk
- > Residuals management a challenge
- > Requires new operator certification
- Requires interagency cooperation for success achievable but additional challenge

Study Conclusions

- > A purified water project is:
 - Technically feasible
 - Not cost-effective at this time
- > Future actions for City and NapaSan
 - Monitor cost comparison of alternate water supplies (City)
 - Monitor regulatory requirements (both agencies)
 - Monitor costs and public acceptance of other facilities (both)
 - Evaluate dry-weather stormwater augmentation which has potential benefit to recycled water irrigation customers (NapaSan)

Questions?