

Groundwater Recharge Evaluation

Laguna County Sanitation District

Central Coast WateReuse Chapter Meeting

January 25, 2024

Acknowledgements

Marty Wilder Kevin Thompson Jerry Nichols Jesse Padfield

Matthew Young

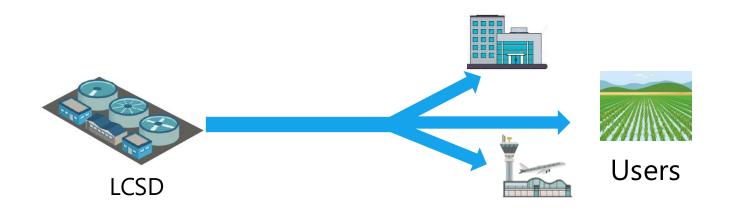
Sarah Clark Amos Branch Graham Juby Jon Marshall Andrew Coulter Anthony Cemo Jeff Stovall Cody Berg

- Laguna County Sanitation District (LCSD) Background.
- Indirect Potable Reuse (IPR) Project Components.
- Groundwater Basin Considerations.
- Project Costs.
- Ongoing Activities.

LCSD Background

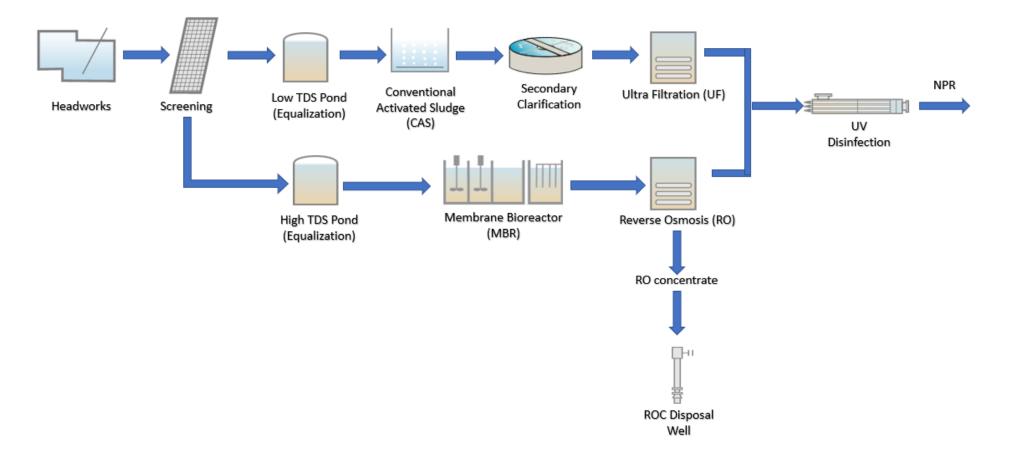
 $\bigcirc 1$

Project Background


The Current Scenario

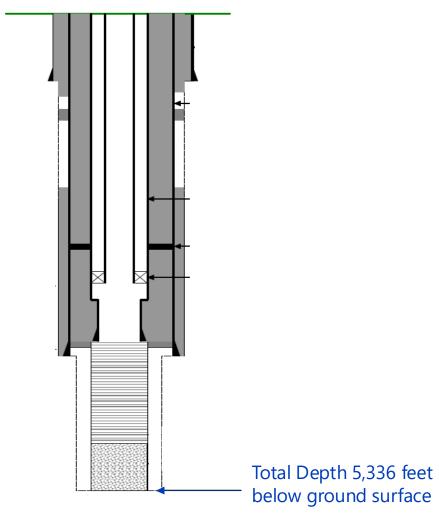
- Located southwest of the city of Santa Maria.
- Currently recycles 100% of its water.
- Treatment plant receives 1.7 mgd.

The Future Vision


• Evaluate the potential to implement an IPR project.

San Luis Obispo	
Santa Maria	
LCSD	Contract N

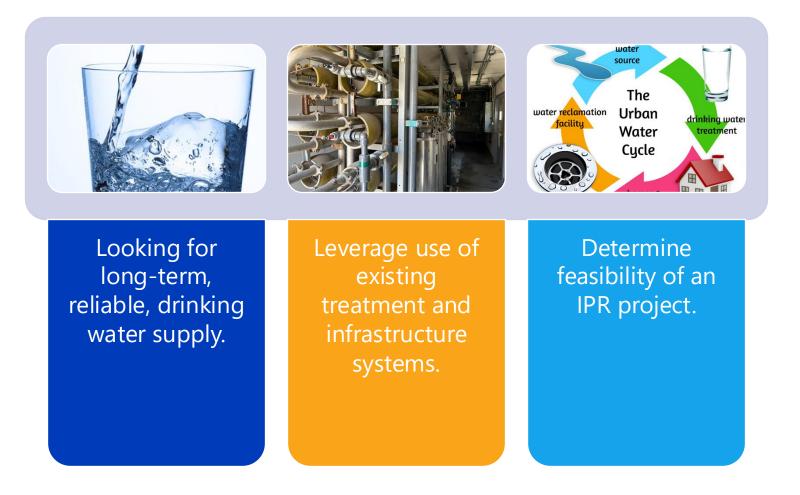
LCSD Current Treatment Train


- Current treatment consists of two main trains.
- The driver for MBR/RO is high salt influent.
- All water treated to Title 22 standards and used for non-potable reuse (NPR).

LCSD's RO Concentrate Disposal

- Utilizes existing deep injection well for ROC disposal.
- Converted from oil-production well to Class I
 Nonhazardous injection well.

CAROLLO 8


Typical IPR RO Concentrate Disposal

- Ocean outfalls often used for ROC disposal.
- Requires NPDES compliance and dilution.

Project Components

IPR Project Drivers

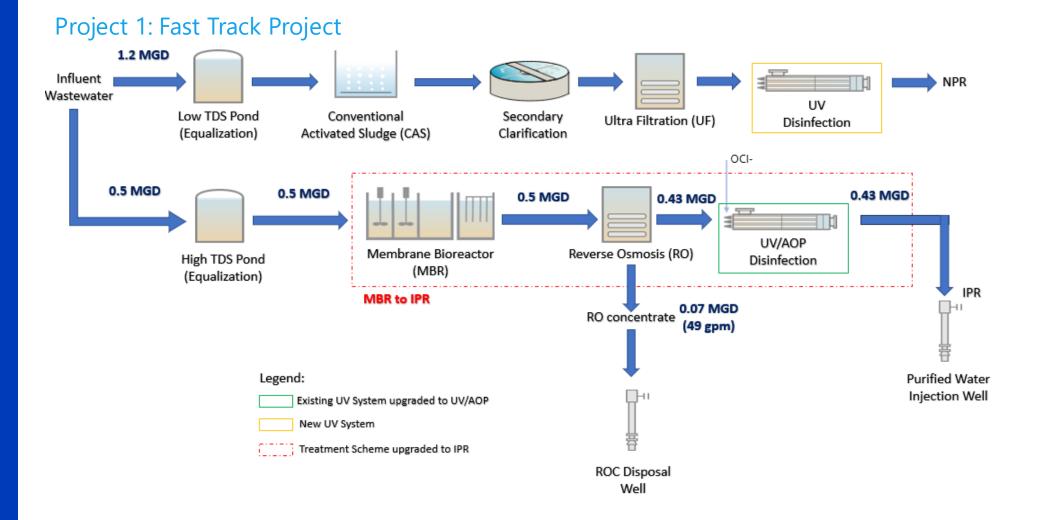
Groundwater Recharge Key Requirements

	Requirement
Treatment Train	Reverse Osmosis (RO) + Ultraviolet Advanced Oxidation Process (UV/AOP)
Pathogen Control	Virus12-logGiardia10-logCryptosporidium10-log
Environmental Buffer	Minimum aquifer retention time of 2 months .

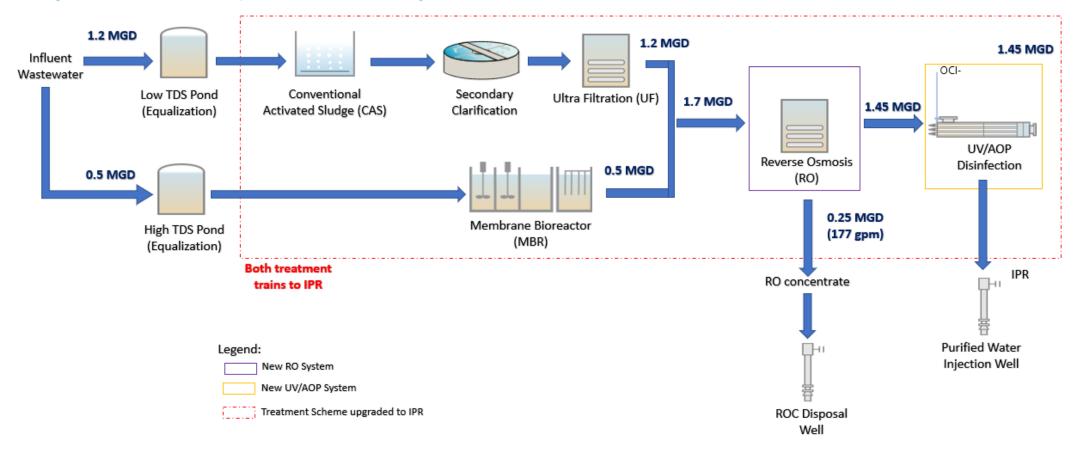
Existing Treatment Components

MBR system

RO system



UF system


UV system

Potential Potable Reuse Treatment Configuration

Potential Potable Reuse Treatment Configuration

Project 2: Full IPR Implementation Project

Pathogen Control

Process	Virus	Giardia	Cryptosporidium		
(Project 1 & 2) MBR-Based Treatment					
MBR	1	2.5	2.5		
RO	2	2	2		
UV/AOP	6	6	6		
Free Chlorine	0 to 6				
Groundwater Retention Time	2+	0	0		
Total	12+	10.5	10.5		
Requirement	12	10	10		
(Project 2) CAS + UF-Based Treatment					
UF	0	4	4		
RO	2	2	2		
UV/AOP	6	6	6		
Free Chlorine	0 to 6				
Groundwater Retention Time	2+	0	0		
Total	12+	12	12		
Requirement	12	10	10		

Groundwater Basin Considerations

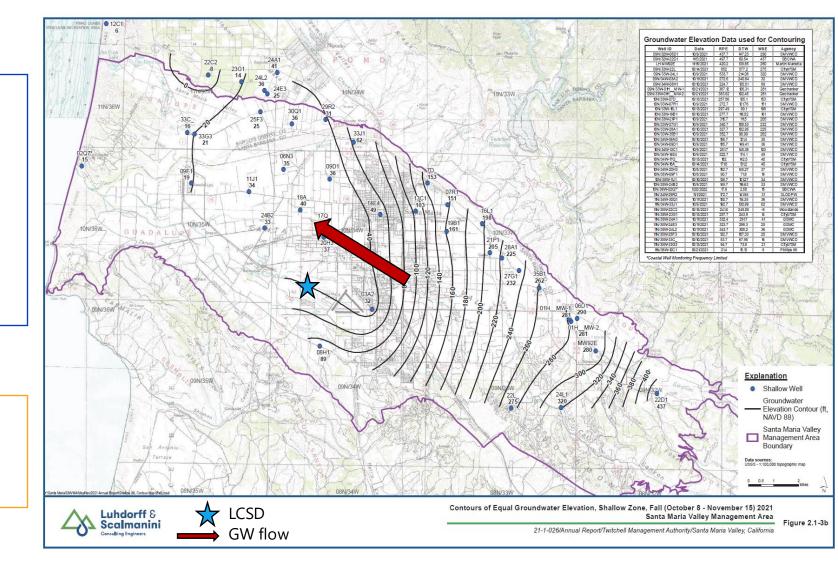
 \mathbf{S}

Purified Water Injection Strategy

- **Option 1**: Inject purified water near the Getty Basin.
 - » Pros: Use of existing Flood Control District infrastructure.
 - » Cons: Complexity of coordinating with another District.

Purified Water Injection Strategy

- **Option 2**: Inject purified water northwest of the WRP.
 - » Pros: Not limited by Flood Control District.
 - Allows for year-round injection.
 - » Cons: Will require new infrastructure.



Groundwater Basin

Proposed Injection Location

- Sits within the Santa Maria Valley Groundwater Basin (SMVGB).
- Wells generally pull from deep aquifer (250 -2,200 feet below ground surface).

Groundwater Basin Directional Flow

• West-Northwest towards the ocean.

Groundwater Basin Analysis

Groundwater Velocity

- Estimated travel time of injected water to nearby wells.
- Preliminary analysis indicates sufficient travel time for IPR regulations.
- Additional groundwater modeling currently underway.

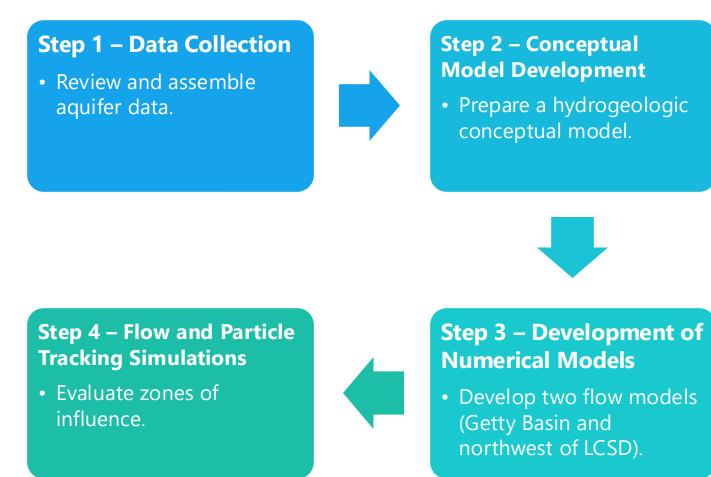
0.5 ft/day

Deep

6 months

12 months

100 feet


200 feet

Northwest of

LCSD

Continued Groundwater Modeling

• Refine groundwater velocity and particle transport in the groundwater basin.

Additional Regulatory Considerations

• Basin plan requirements: Boron is a constituent of concern.

Current Boron Concentrations

Parameter	Basin Objective	Estimated Basin Concentration	Estimated Concentration in Purified Water
Boron, (mg/L)	0.2	0.19	0.18-0.24

Proposed Regulatory Pathways:

- » Source Control: Managing boron from the source.
- » Intake Credit: Accounting for boron already present in drinking water.
- » Assimilative Capacity: Accounting for ability of groundwater basin to dilute boron.

Project Costs

 $\bigcirc 4$

Project Cost Estimates

Class 5 Planning-Level Estimates Expected Accuracy -50% to +100%

Project	Feed Flow	Treatment Costs	New Infrastructure Costs	Total Capital Costs	Annualized ⁽¹⁾ Project Cost (Infrastructure & Treatment)	Annual Operations & Maintenance Costs	Total Cost per Acre-Foot
Project 1: Fast Track	0.5 mgd	\$12.9 M	\$8.4 M	\$21.3 M	\$1.1 M	\$1.2 M	\$4,950
Project 2: Full IPR Implementation	1.7 mgd	\$46.6 M	\$32 M	\$78.6 M	\$4.3 M	\$2.4 M	\$4,130

Notes:

(1) Annualized project costs assume a 30-year loan with a 3.5% interest rate.

Ongoing Activities

05

Continued Project Work

- Identify regional partnerships.
- Position project for USBR Title XVI grant funding
- Continue feasibility analysis and groundwater modeling.
- Upcoming USBR Machine Learning R&D.

Open Discussion/Questions

06