

Recycled Water Pilot and Demonstration Projects at Hyperion

Christina Jones – Farzaneh Shabani

LASAN - Carollo

6/20/2024

Hyperion Recycled Water Planning and Key Projects

Hyperion Program Involves Extensive Planning and Key Projects

Hyperion AWPF Project

Program Planning

Phase 1	Phase 2	Key Upcoming Activities								
Completion FEB 2035	Completion AUG 2039	Activity/Deliverable Upcoming Deliverable Milestones	Participants/Topic TM 2 (Draft) - Secondary Process Integration	Date 11/2/2023						
Total IPR Output at Completion	Total IPR Output at Completion	Upcoming Deliverable Milestones Upcoming TD 49 Workshops	TM 7 (Draft) - Site Plan Site Plan - Treatment Conveyance (Review)	11/10/2023						
50 MGD	90 MGD	Upcoming TD 49 Workshops	Phasing, Packaging, Schedule (Initial)	11/15/2023						
			Legend:	ACW# million						

Technical Studies

Hyperion 2035 Construction Phasing

LASAN's Wyperion 2230

Informing Studies Lay the Ground for Full Scale Conversion to MBR in Phases: Phase I-A

Informing Studies Lay the Ground for Full Scale Conversion to MBR in Phases: Phase I-B

Informing Studies Lay the Ground for Full Scale Conversion to MBR in Phases: Phase 2

Informing Studies Lay the Ground for Full Scale Conversion to MBR in Phases: Phase 3

Hyperion AWPF Updates

HAWPF: Proof of Concept for the Full Scale Project

Water production anticipated beginning of 2025

Hyperion MBR Pilot

Hyperion MBR Pilot Updates

- Construction completed in 2024
- Clean water testing is in progress
- Actively collaborating with the Independent Advisory Panel (IAP)
- Wastewater testing will start once the permit is issued

THANK YOU

www.LACITYSAN.org/recycledwater

August 13, 2024

Status Update for Central Basin and West Coast Basin WateReuse Meeting - Los Angeles Chapter

SECURING OUR WATER FUTURE TODAY

Agenda (RWQCB)

Introductions

Brief Background (WRD)

- CBWCB SNMP
- Projects in CBWCB
- Monitoring Activities

Agency Request (LARWQCB)

- Reasons and Purposes for Data Assessment
- Expectations of Data Assessment

Next Steps (WRD)

- Defined Responsibilities
- Preliminary Timeline

Brief Background (WRD)

- Recycled Water Policy approved in May 2009.
 - Establish uniform requirements for recycled water use and encourage development of Salt Nutrient Management Plans (SNMP).
- WRD selected to lead the project as the groundwater basin manager with input from many stakeholders and feedback / direction from LARWQCB.
- SNMP incorporated into Basin Plan for the Los Angeles Region (Resolution No. R15-001 on February 12, 2015).
- SWRCB adopted the basin plan by Resolution No. 2015-0048 on July 21, 2015.

The SNMP, which includes the *Monitoring Plan*, will be reviewed and updated as necessary every 10 years by the CBWCB stakeholders. However, based on results from the SNMP Monitoring Program, interim updates to the SNMP may be conducted when deemed necessary (Page 8, Executive Summary).

Process for Preparing SNMP

- Stakeholders submitted a Work Plan (10/24/11).
- Work Plan Approved by LARWQCB (12/13/11).
- SNMP Preparation Guided by Technical Memorandums.
 - 1. Goals, Objectives, and Management Measures (Nov 2012).
 - 2. Definitions & Key Concepts (Oct 2012).
 - 3. Hydrogeologic Conceptual Model (Jan 2013).
 - 4. Regional Groundwater Monitoring Program Plan (Apr 2013).
 - 5. Future Groundwater Quality & Assimilative Capacity (Apr 2013).
 - 6. Implementation Measures (Jun 2013).
 - 7. Groundwater Quality Mixing Model (Mar 2014).
- Final SNMP (02/12/15).
- Final Substitute Environmental Document (02/12/15).
- Basin Plan Amendments by LARWQCB & SWRCB.

Study Area - Central Basin and West Coast Basin (CBWCB)

SERVICE AREA = 420 SQUARE MILES

43 CITIES

POPULATION > 4 MILLION

550,000 ACRE FEET USED PER YEAR

50% GROUNDWATER FROM LOCAL WATER WELLS

50% IMPORTED WATER

WRD SUPPLEMENTS NATURAL GROUNDWATER RECHARGE

Major Elements in SNMP

- Groundwater Basin Hydrogeology & Water Quality.
- Recycled Water and Stormwater Use / Recharge Goals & Objectives.
- Estimate Current and Future Salt / Nutrient Loading thru 2025.
- Assess Water Quality Impacts of Major Proposed Projects in the Basins.
- Establish Water Quality Monitoring Program including Constituents of Emerging Concern (CECs).
- Implementation Measures (Plans / Projects) to Manage Salt / Nutrient Loading.

Major Elements in SNMP

SALT AND NUTRIENT MANAGEMENT PLAN

CENTRAL BASIN AND WEST COAST BASIN Southern Los Angeles County, California

Water Quality Assessment in SNMP (Step 1 of 3)

Compile All Water Quality Data

Well Type	Total	Central Pressure	West Coast Basin	Los Angeles Forebay	Montebello Forebay	Whittier Area
		Mod	el Layer 1	_		
TDS		1	1			
# of WRD Nested MWs	8	4	0	NA	4	NA
# of Production Wells	5	0	0	NA	5	NA
# of other MWs	8	0	0	NA	8	NA
TOTAL	21	4	0	NA	17	NA
Chloride	-					
# of WRD Nested MWs	8	4	0	NA	-4	NA
# of Production Wells	5	0	0	NA	5	NA
# of other MWs	10	0	0	NA	10	NA
TOTAL	23	4	0	NA	19	NA
Nitrate as N					10000	
# of WRD Nested MWs	8	4	0	NA	4	NA
# of Production Wells	2	0	0	NA	2	NA
# of other MWs	10	0	0	NA	10	NA
TOTAL	20	4	0	NA	16	NA
	-	Mod	el Layer Z			
TDS				1		
# of WRD Nested MWs	48	19	14	3	11	1
# of Production Wells	65	25	3	2	35	0
# of other MWs	2	0	0	0	2	0
TOTAL	115	44	17	5	48	1
Chloride						
# of WRD Nested MWs	48	19	14	3	11	1
# of Production Wells	65	25	3	2	35	0
# of other MWs	2	0	0	0	2	0
TOTAL	115	44	17	5	48	1
Nitrate as N			1			
# of WRD Nested MWs	48	19	14	3	11	1
# of Production Wells	36	12	1	1	22	0
# of other MWs	2	0	0	0	2	0
TOTAL	86	31	15	4	35	1

Water Quality Assessment in SNMP (Step 2 of 3)

Use Existing Groundwater Model – Obtain Flows & Volumes

Water Quality Assessment in SNMP (Step 3 of 3)

Develop Mixing Model – Calculate Future Water Quality & Mass Loading to 2025

Purpose of the SNMP

- Manage salts and nutrients from all sources on a "**basin wide basis**" in a manner consistent with preserving beneficial use and facilitates attainment of Water Quality Objectives (WQOs).
- Key constituents were reviewed and approved by LARWQCB.
- Chloride (Cl), Total Dissolved Solids (TDS), and Nitrate-Nitrogen (NO3-N) were determined to be the most appropriate indicators of salts and nutrients in the CBWCB.
- Boron eliminated as its naturally occurring (Appendix G).
- Sulfate was eliminated as its already included in the calculation for TDS.
- Salt and nutrient constituent list recently confirmed in email communication between Brian Partington (WRD) and Jeong-Hee Lim (LARWQCB) on March 27, 2024.

Salt & Nutrient Concentrations for Cl, TDS, & NO₃-N

Water Source	TDS (mg/L)	Chloride (mg/L)	Nitrate (mg/L)
Advanced Treated Recycled Water (RW)	65 - 98	9 - 37	0.26 - 1.13
Stormwater	259 - 297	40 - 46	1.16 - 1.58
Treated Imported Water	218 - 481	25 - 84	0.09 - 0.61
Spreading Grounds Influent	286 - 492	37 - 107	1.45 - 3.07
Untreated Imported Water	251 - 624	68 - 88	0.21 - 0.67
CB Groundwater Average	529	67	0.28
CB WQO	700	150	10
Tertiary RW @ Spreading Grounds	533 - 626	105 - 149	3.41 - 6.31
Tertiary RW Irrigation	533 - 825	109 - 211	1.01 - 5.63
WCB Groundwater Average	890	306	0.05
WCB WQO	800	250	10

Source: SNMP (Feb. 2015) https://www.wrd.org/files/18f40ae8b/Salt+Nutrient+Management+Plan%2C+2015.pdf

Assimilative Capacity

- Used to evaluate projects in the interim while developing SNMP.
- Assimilative Capacity (AC) is the difference between the current concentration and the Basin Plan Objective (BPO, aka WQO).
- Example illustrates how to calculate "20% of the AC". Result is added to the current concentration to obtain "Threshold Value".
- Provides a buffer between current concentration and BPO (WQO).
- No longer applicable for individual projects since adopting a "basin wide" approach in the SNMP.

	Ce (no	entral coasta	Basin al area)		142.3	
	TDS	CI	NO3-N		TDS	
BPO/BSBPO	700	150	10.0			
Average Concentration	529	67	0.28	BSBPO 700	— ı	
Assimilative Capacity	171	83	9.72			
20% Assimilative Capacity	34	17	1.94			- AC = 171
20% Assimilative Capacity Threshold	563	84	2.22	Threshold 563 Current 529	_	} 20% AC = 34

All values in milligrams per liter TDS – total dissolved solids CI – chloride NO₃-N – nitrate as nitrogen BPO/BSBPO – Basin Plan Objective/Basin-Specific Basin Plan Objective AC – assimilative capacity Coastal area – Seaward side of the seawater intrusion barrier

Simulated Conditions in the SNMP

					IMULATED	CONDITIONS	5				
	Average	Irriga	tion with Recyc	led Water	WCBB/	DGB/AGB	De	salters		MFSG	
Scenario ª	Baseline Precipitation and Mountain Front Infiltration, Pumping, Subsurface Flows	Average Baseline	Increased Volume and Baseline Average WQ	Increased Volume and WQ at MCL/SMCLs	Average Baseline	Increased Injection Volume with AWT Recycled Water	Average Baseline	Increased Well Pumping & Treatment	Average Baseline	Tertiary- Treated and AWT Recycled Water	Tertiary- Treated Recycled Water
1. No Future Projects	*			· · · · · · · · · · · · · · · · · · ·	1	1	*		-		-
2. Increased Recycled Water for Irrigation (baseline period average WQ)	*		1		1		*		*		
3. Increased Recycled Water for Irrigation (WQ at MCL/SMCLs)	~			*	1		~		*		
4. Seawater Intrusion Barriers (increased injection volume and AWT RW)	*	*				1	~		*		
5. Desalters – Increased Groundwater Pump & Treat (West Coast Basin only)	*	*			*			~	*		
6. GRIP A (10K AFY AWT & 11K AFY tertiary-treated RW)	*	*			*		~			1	
7. GRIP B (21K AFY tertiary-treated RW)	*	*			*		~				*
8. Combined Scenarios (2 + 4 + 5 + 6 + Minor Future Changes)	*		*			1		*		1	
9. Combined Scenarios (2 + 4 + 5 + 7 + Minor Future Changes)	*		1			1		*			1
10. Combined Scenarios (3 + 4 + 5 + 6 + Minor Future Changes)	*			4		~		*		~	
11. Combined Scenarios (3 + 4 + 5 + 7 + Minor Future Changes)	*		· · · · · · · · · · · · · · · · · · ·	*		1		*	1		1

Table 16 Summary of Simulated Conditions for the SNMP Mixing Model Scenarios

a – Minor Future Changes, as referenced for all combined scenarios (8, 9, 10, and 11), include decreased imported water use for supply in the Central Basin, slightly increased imported water for supply in the West Coast Basin, and increased stormwater capture at the DGSG and other facilities

WQ - water quality

- MCL primary maximum contaminant level SMCL – secondary maximum contaminant level K – thousand AFY – acre-feet per year
- baseline conditions

DGSG – Dominguez Gap Spreading Grounds MFSG – Montebello Forebay Spreading Grounds GRIP – Groundwater Reliability Improvement Program GRIP A – GRIP Recycled Water Project A GRIP B – GRIP Recycled Water Project B – future change AGB – Alamitos Gap Seawater Intrusion Barrier DGB – Dominguez Gap Seawater Intrusion Barrier WCBB – West Coast Basin Seawater Intrusion Barrier AWT – advanced water treatment RW – recycled water

Source: SNMP (Feb. 2015) https://www.wrd.org/files/18f40ae8b/Salt+Nutrient+Management+Plan%2C+2015.pdf

Simulated Conditions in the SNMP

Table 17 Future Projects - Groundwater Quality Impacts and Use of Available Assimilative Capacity

		FUTURE PROJECTS - CHANGE IN GROUNDWATER QUALITY AND USE OF AVAILABLE ASSIMILATIVE CAPACITY																															
Scenario	1. No F	future P	rojects	2.	Increase Baseline	Increased Recycled Water Irrigation 3. Increased Recycled Water Irrigation aseline period average RW quality) (RW quality at MCL/SMCLs)								4. Seawater Barriers 5. Desalters										6. GRIP A (Tertiary and AWT RW)									
Subarea/Basin				Overa	all Scena	rio ^{a,c}	Scenario	nditions	laseline	Overa	Overall Scenario ^{a,c} Scenario minus Basel Conditions ^{b,c}				Baseline ^{6,c}	Overall Scenario 4,4			Scenario minus Baseline Conditions ^{b,c}			Overa	III Scena	rio ^{a,c}	Scenario minus Baselino Conditions ^{b,c}			Overall Scenario ^{a,c}			Scenario minus Baselin Conditions ^{b,c}		
	TDS	CI	NO3-N	TDS	CI	NO3-N	TDS	CI	NO3-N	TDS	CI	NO3-N	TDS	CI	NO3-N	TDS	CI	NO3-N	TDS	CI	NO3-N	TDS	CI	NO3-N	TDS	CI	NO3-N	TDS	CI	NO3-N	TDS	CI	NO3-N
LOS ANGELES FOREBAY *	1111			1000					1			100	11			1.			11		1.1				1			1000		- 11	1122		11
Change (2010 to 2025) (mg/L)	2.4	1.3	0.15	4.0	1.7	0.15	1.6	0.4	0.00	4.7	2.5	0.15	2.3	1.2	0.0	2.4	1.3	0.15	0.0	0.0	0.00	2.4	1.3	0.15	0.0	0.0	0.00	2.4	1.3	0.15	0.0	0.0	0.00
A.C. Used (2010 to 2025) (%)	4.0%	1.9%	1.5%	6.7%	2.4%	1.5%	2.7%	0.6%	0.0%	7.9%	3.7%	1.5%	3.9%	1.8%	0.0%	4.0%	1.9%	1.5%	0.0%	0.0%	0.0%	4.0%	1.9%	1.5%	0.0%	0.0%	0.0%	4.0%	1.9%	1.5%	0.0%	0.0%	0.0%
MONTEBELLO FOREBAY e				1.000						1925		- 61	1			1	1		1		1.1							1000	1.15		1		100
Change (2010 to 2025) (mg/L)	-62.9	-2.1	0.02	-61.8	-1.9	0.02	1.1	0.2	0.00	-61.7	-1.4	0.02	1.2	0.6	0.0	-62.9	-2.1	0.02	0.0	0.0	0.00	-62.9	-2.1	0.02	0.0	0.0	0.00	-64.7	-0.8	0.16	-1.8	1.2	0.14
A.C. Used (2010 to 2025) (%)	-37.9%	-3.4%	0.3%	-37.3%	-3.0%	0.2%	0.7%	0.3%	0.0%	-37.2%	-2.3%	0.3%	0.7%	1.0%	0.0%	-37.9%	-3.4%	0.3%	0.0%	0.0%	0.0%	-37.9%	-3.4%	0.3%	0.0%	0.0%	0.0%	-39.0%	-1.4%	1.8%	-1.1%	2.0%	1.6%
WHITTIER AREA ^e				1.1			1			1.1											10.1				10.00								
Change (2010 to 2025) (mg/L)	-36.1	-2.9	0.05	-34.8	-2.5	0.05	1.3	0.3	0.00	-34.2	-1.8	0.05	1.9	1.1	0.0	-36.1	-2.9	0.05	0.0	0.0	0.00	-36.1	-2.9	0.05	0.0	0.0	0.00	-36.1	-2.9	0.05	0.0	0.0	0.00
A.C. Used (2010 to 2025) (%)	NC	-9.8%	0.5%	NC	-8.6%	0.5%	NC	1.2%	0.0%	NC	-6.0%	0.5%	NC	3.8%	0.0%	NC	-9.8%	0.5%	NC	0.0%	0.0%	NC	-9.8%	0.5%	NC	0.0%	0.0%	NC	-9.8%	0.5%	NC	0.0%	0.0%
CENTRAL BASIN PRESSURE AREA ^e	120			-	1	1.1	1.1.1	-	1	1.4.2	1.1	100		1.1		1.00		100	11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	- 1. ć		1.0	1.1.1	100	1.12	1		1000	10	1			
Change (2010 to 2025) (mg/L)	21.5	7.9	0.13	22.5	8.2	0.13	1.0	0.3	0.00	22.9	8.7	0.13	1.5	0.8	0.0	19.0	7.5	0.13	-2.5	-0.4	0.00	21.5	7.9	0.13	0.0	0.0	0.00	21.7	8.1	0.13	0.3	0.2	0.00
A.C. Used (2010 to 2025) (%)	9.3%	8.4%	1.3%	9.8%	8.6%	1.3%	0.5%	0.3%	0.0%	10.0%	9.2%	1.3%	0.6%	0.8%	0.0%	8.2%	8.0%	1.3%	-1.1%	-0.4%	0.1%	9.3%	8.4%	1.3%	0.0%	0.0%	0.0%	9.4%	8.5%	1.3%	0.1%	0.2%	0.0%
CENTRAL BASIN *																																	
Change (2010 to 2025) (mg/L)	4.6	5.1	0.11	5.8	5.4	0.11	1.2	0.3	0.00	6.2	5.9	0.11	1.6	0.8	0.00	2.8	4.8	0.11	-1.8	-0.3	0.00	4.6	5.1	0.11	0.0	0.0	0.00	4.1	5.5	0.14	-0.5	0.4	0.03
A.C. Used (2010 to 2025) (%)	2.7%	6.1%	1.1%	3.4%	6.4%	1.1%	0.7%	0.3%	0.0%	3.6%	7.1%	1.1%	0.9%	1.0%	0.0%	1.6%	5.8%	1.1%	-1.1%	-0.3%	0.0%	2.7%	6.1%	1.1%	0.0%	0.0%	0.0%	2.4%	6.6%	1.4%	-0.3%	0.5%	0.3%
WEST COAST BASIN °	1.00	-				-	1			1					-					-									-		1	-	
Change (2010 to 2025) (mg/L)	-23.0	-23.6	0.07	-21.3	-23.0	0.07	1.7	0.6	0.00	-20.6	-22.4	0.07	2.4	1.3	0.00	-41.0	-28.3	0.06	-18.0	-4.7	0.00	-36.6	-29.4	0.07	-13.6	-5.8	0.00	-23.0	-23.6	0.07	0.0	0.0	0.00
A.C. Used (2010 to 2025) (%)	NC	NC	0.7%	NC	NC	0.7%	NC	NC	0.0%	NC	NC	0.7%	NC	NC	0.0%	NC	NC	0.6%	NC	NC	0.0%	NC	NC	0.7%	NC	NC	0.0%	NC	NC	0.7%	NC	NC	0.0%

Scenario	1. No F	uture Pr	ojects		7. 0	GRIP B (T	ertiary RV	V)		(2	8. Comb +4+5+	oined Pro 6 + Mino	ojects/Sco or Future (enarios Changes) ^d	(2	9. Com + 4 + 5 +	bined Pr 7 + Mine	oject/Sce or Future (narios Changes)	d	(3	10. Com + 4 + 5 +	bined Pr 6 + Mine	rojects/Sc or Future	enarios Change	11. Combined Projects/Scenarios (3 + 4 + 5 + 7 + Minor Future Changes) ^d									
Subarea/Basin				Overa	III Scenar	io ^{a,c}	Scenario Cor	minus B nditions	aseline	Overa	all Scenar	io ^{a,c}	Scenario	minus I nditions	Baseline b,c	Over	verall Scenario ^a Scenario minus Baseline Conditions ^b		Overa	II Scenar	rio ^{a,c}	Scenario Co	o minus andition	Baseline s ^{b,c}	Overa	all Scena	rio ^{a,c}	Scenario Co	minus B nditions ^t	aseline						
	TDS	CI	NO3-N	TDS	CI	NO3-N	TDS	CI	NO3-N	TDS	CI	NO3-N	TDS	CI	NO3-N	TDS	CÍ	NO3-N	TDS	Ci	NO3-N	TDS	CI	NO3-N	TDS	CI	NO3-N	TDS	CI	NO3-N	TDS	CI	NO3-N			
LOS ANGELES FOREBAY *			1.1	-		1			1	1.00		- 5.3	14.34		1	1.000			1.000	-	1.01	1.30				-			22				100			
Change (2010 to 2025) (mg/L)	2.4	1.3	0.15	2.5	1.3	0.15	0.1	0.0	0.00	-1.3	0.8	0.15	-3.7	-0.5	0.00	-1.2	0.8	0.15	-3.6	-0.5	0.00	-0.6	1.6	0.15	-3.0	0.3	3 0.00	-0.5	1.6	0.15	-2.9	0.4	0.00			
A.C. Used (2010 to 2025) (%)	4.0%	1.9%	1.5%	4.2%	1.9%	1.5%	0.2%	0.0%	0.0%	-2.2%	1.1%	1.5%	-6.2%	-0.8%	0.0%	-2.0%	1.1%	1.5%	-6.0%	-0.7%	0.0%	-1.0%	2.4%	1.5%	-5.0%	0.59	6 0.0%	-0.9%	2.4%	1.5%	-4.9%	0.5%	0.0%			
MONTEBELLO FOREBAY													1.		1.11				1.			1.											1			
Change (2010 to 2025) (mg/L)	-62.9	-2.1	0.02	-45.7	3.8	0.22	17.2	5.9	0.20	-66.4	-1.1	0.16	-3.5	1.0	0.14	-47.4	3.6	0.22	15.5	5.7	0.20	-66.1	-0.7	0.16	-3.2	1.	4 0.14	-47.1	4.0	0.22	15.8	6.0	0.20			
A.C. Used (2010 to 2025) (%)	-37.9%	-3.4%	0.3%	-27.5%	6.2%	2.5%	10.4%	9.5%	2.2%	-40.0%	-1.7%	1.8%	-2.1%	1.6%	1.6%	-28.6%	5.8%	2.5%	9.4%	9.1%	2.2%	-39.8%	-1.1%	1.8%	-1.9%	2.29	6 1.6%	-28.4%	6.4%	2.5%	9.5%	9.8%	2.2%			
WHITTIER AREA "																															1					
Change (2010 to 2025) (mg/L)	-36.1	-2.9	0.05	-36.1	-2.9	0.05	0.0	0.0	0.00	-42.1	-3.8	0.05	-6.0	-0.9	0.00	-42.1	-3.8	0.05	-6.0	-0.9	0.00	-41.5	-3.1	0.05	-5.4	-0.	2 0.00	-41.5	-3.1	0.05	-5.4	-0.2	0.00			
A.C. Used (2010 to 2025) (%)	NC	-9.8%	0.5%	NC	-9.8%	0.5%	NC	0.0%	0.0%	NC	-12.8%	0.5%	NC	-3.1%	0.0%	NC	-12.8%	0.5%	NC	-3.1%	0.0%	NC	-10.5%	0.5%	NC	-0.79	6 0.0%	NC	-10.5%	0.5%	NC	-0.7%	0.0%			
CENTRAL BASIN PRESSURE AREA ^e													11.005		1				1			1			1			1				-				
Change (2010 to 2025) (mg/L)	21.5	7.9	0.13	22.9	8.4	0.13	1.4	0.4	0.01	18.4	7.6	0.13	-3.1	-0.4	0.01	19.5	7.9	0.14	-2.0	-0.1	0.01	18.8	8.2	0.13	-2.6	0.	2 0.01	20.0	8.4	0.14	-1.5	0.5	0.01			
A.C. Used (2010 to 2025) (%)	9.3%	8.4%	1.3%	9.9%	8.9%	1.3%	0.6%	0.5%	0.1%	8.0%	8.0%	1.4%	-1.3%	-0.4%	0.1%	8.5%	8.3%	1.4%	-0.8%	-0.1%	0.1%	8.2%	8.6%	1.4%	-1.1%	0.29	6 0.1%	8.7%	8.9%	1.4%	-0.6%	0.5%	0.1%			
CENTRAL BASIN *				75.00			1.1			11									11-1			-				-	_									
Change (2010 to 2025) (mg/L)	4.6	5.1	0.11	7.7	6.4	0.15	3.1	1.3	0.04	0.7	5.0	0.14	-4.0	-0.1	0.03	4.2	5.9	0.15	-0.4	0.8	0.04	1.1	5.6	0.14	-3.5	0.	5 0.03	4.7	6.5	0.15	0.1	1.3	0.04			
A.C. Used (2010 to 2025) (%)	2.7%	6.1%	1.1%	4.5%	7.7%	1.5%	1.8%	1.5%	0.4%	0.4%	6.0%	1.4%	-2.3%	-0.1%	0.3%	2.5%	7.1%	1.5%	-0.2%	0.9%	0.4%	0.7%	6.7%	1.4%	-2.0%	0.69	6 0.3%	2.8%	7.8%	1.5%	0.1%	1.6%	0.4%			
WEST COAST BASIN ®		-					A			A					-				1			S		-				1	-							
Change (2010 to 2025) (mg/L)	-23.0	-23.6	0.07	-23.0	-23.6	0.07	0.1	0.0	0.00	-57.4	-34.7	0.06	-34.4	-11.1	0.00	-57.3	-34.7	0.06	-34.3	-11.1	0.00	-56.8	-34.1	0.06	-33.8	-10.	5 0.00	-56.7	-34.1	0.06	-33.7	-10.4	0.00			
A.C. Used (2010 to 2025) (%)	NC	NC	0.7%	NC	NC	0.7%	NC	NC	0.0%	NC	NC	0.6%	NC	NC	0.0%	NC	NC	0.6%	NC	NC	0.0%	NC	NC	0.6%	NC	N	C 0.0%	NC	NC	0.6%	NC	NC	0.0%			

Source: SNMP (Feb. 2015) https://www.wrd.org/files/18f40ae8b/Salt+Nutrient+Management+Plan%2C+2015.pdf

How projects could affect S/N

	Impact to S/N	Impact to S/N	
	Loading to	Concentrations in	
Description	Groundwater	Groundwater	Example Project
Replace current			Seawater intrusion barriers
water with lower TDS	Decrease	Decrease	replacing imported water with
water			AWT recycled water
			New stormwater capture project;
Add lower TDS water	Increase	Decrease	new AWT recycled water
			injection wells ^a
Replace current			Existing irrigation that replaces
water with higher	Increase	Increase	imported water with tertiary-
TDS water			treated recycled water
Add higher TDS	la sus sus	Income	New irrigation with tertiary
water	Increase	Increase	treated recycled water
Increase saline	Decrease	Decrease	Desalters
plume pumping	Decrease	Decrease	Desalters
Increase well	Decrease	None	Typical groundwater production
pumping	Decrease	NOTE	Typical groundwater production
TDS – total dissolved solids	S AWT – advand	ced water treatment	S/N – salt and nutrient

 a – New injection of AWT recycled water via wells (not replacing an existing water source) is currently a conceptual implementation measure

Source: Table J-5 SNMP (Feb. 2015) https://www.wrd.org/files/18f40ae8b/Salt+Nutrient+Management+Plan%2C+2015.pdf

- 25+ years of installing deep, nested monitoring wells with the USGS.
- 63 borings have been installed since the early 1990s. Deepest well was drilled to 3,004 Ft BGS (Lynwood #1).
- Multiple wells placed in a single boring with 20-foot screens, each zone is isolated with Grout Seals.
- 354 Wells, deepest screens are completed greater than 1,000 Ft BGS.
- 69 nested monitoring wells selected to be part of the SNMP. 13 locations across the Central Basin and West Coast Basin.

Water Level Contours

Change in Elevation

Chloride – Mostly within a "trapped" saline plume in the West Coast Basin

SECTION 4 SALT AND NUTRIENTS IN GROUNDWATER

In February 2009, the SWRCB adopted Resolution No. 2009-0011, which established a statewide Recycled Water Policy. This Policy encourages increased use of recycled water and local stormwater for groundwater recharge across the State. It also requires local entities to develop a Salt and Nutrient Management Plan (SNMP) for each groundwater basin in California to monitor groundwater quality and any impact due to increased use of recycled water and stormwater for recharge.

A SNMP Workplan was jointly prepared by the CBWCB stakeholders and approved by the Los Angeles Regional Water Quality Control Board in December 2011. The SNMP for the CBWCB was finalized on February 12, 2015, and adopted in July 2015. The full text of the "Salt Nutrient Management Plan" (WRD, 2015) can be found at <u>https://www.wrd.org/other-reports</u>.

The objective of the SNMP is to manage salts and nutrients from all sources "... on a basin wide or watershed-wide basis in a manner that ensures attainment of water quality objectives and protection of beneficial uses." Future groundwater quality and assimilative capacity were calculated based on predicted salt and nutrient loading through 2025 in the CBWCB. Accordingly, current and proposed projects through 2025 were identified and used to develop strategies to manage salt and nutrient loading. The SNMP included the following:

- · Stormwater and Recycled Water Use/Recharge Goals and Objectives,
- Characterization of the Hydrogeologic Conceptual Model/Water Quality,
- · Estimation of Current and Future Salt and Nutrient Loading,
- A Basin Wide Water Quality Monitoring Plan,
- · Estimation of Salt and Nutrient Assimilative Capacity,
- An Anti-degradation Analysis,
- · Implementation Measures to Manage Salt and Nutrient Loading, and
- · California Environmental Quality Act analysis of the SNMP.

Regional Groundwater Monitoring Report <u>Section 4</u> Salt and Nutrients in Groundwater

13 Locations 69 Well Screens Sample Semiannually Trend Graphs: Cl/TDS

4-1

- 354 wells sampled semiannually 60,000 results (600 Samples x 100 Constituents).
- Majority of groundwater continues to remain high quality and meets drinking water standards established by the SWRCB.
- Localized areas of poor water quality due to natural or man-made contaminants, tracked closely by WRD.
- Main natural contaminants are chloride and total dissolved solids due to seawater intrusion and naturally occurring metals (mainly Fe & Mn).
- Main man-made contaminants are associated the industrial operations (mainly VOCs).
- Results are published in our Regional Groundwater Monitoring Report (RGWMR), annually each March.
- Data publicly available via our Interactive Well Search Website. (<u>http://gis.wrd.org/</u>)

REGIONAL GROUNDWATER MONITORING REPORT WATER YEAR 2022-2023

Central and West Coast Basins Los Angeles County, California

March 2024
How close did we get to what was planned in the SNMP?

Scenarios	Baseline (2001-2010)	Planned (10/11 - 24/25)	Actual (10/11 - 22/23)	Planned vs. Actual
Increase Recycled Water for Irrigation	10,610	23,140	18,482 ⁽¹⁾	(4,658)
Seawater Barriers (Increase Volume)	27,098	31,700	27,249	(4,451)
Seawater Barriers (Increase ATW)	10,303	31,700	14,863	(16,837)
Increase Pumping at Desalter	1,867	5,500	3,360 (2)	(2,140)
GRIP, now ARC (Increase ATW)	0	10,000	11,000 (2)	1,000
GRIP, now ARC (Increase 3° RW)	44,633	71,000	53,054	(17,946)

Notes:

ARC = Albert Robles Center for Water Recycling & Environmental Learning

(1) Data provided by West Basin Municipal Water District. Existing recycled water irrigation in 2022.

(2) Facility monthly operational volumes are approximately 280 AF.

(3) ARC started operations in Jan. 2020. Facility monthly operational volumes are approximately 980 AF. Facility off for several months due to historically high rainfall in water years 2022/23 and 2023/24.

Sources:

SNMP (Feb. 2015) <u>https://www.wrd.org/files/18f40ae8b/Salt+Nutrient+Management+Plan%2C+2015.pdf</u> Engineering Survey & Report (June 2024) <u>https://www.wrd.org/files/aa3a18719/WRD+2024+ESR+-+June+%28FINAL%29.pdf</u>

Plans for a Locally Sustainable Water Supply for Region

Complete groundwater sustainability

WATER INDEPENDENCE

Regional groundwater reliance

WIN4ALL

Unused Local Water Supplies

Available Groundwater Storage Space

Locally Sustainable Water Supply for Region

THE 2040 PLAN FOR REGIONAL WATER INDEPENDENCE

Working with Regional Partners to Implement WIN4ALL

Agency Request - Data Assessment (LARWQCB)

Reasons and Purposes

- Basin Plan Amendment (adopted Feb. 12, 2015, through Resolution No. R15-001) requires CBWCB SNMP to update SNMP:
 - As necessary to reflect changing conditions in CBWCB;
 - where results from the SNMP Monitoring Program indicate that revisions/modifications are warranted; and/or
 - o at the end of the planning horizon (i.e. 2025);
- Recycled Water Policy (Amended in December 2018)
 - State Water Board Amended Recycled Water Policy in December 2018
 - Added data assessment requirements (section 6.2.6)
 - Data assessment every five years, or based on Basin Plan Amendment (BPA)
 - To update available AC evaluation
 - To determine whether SNMP updates or revisions are needed

Adopted December 11, 2018

Effective April 8, 2019

STATE WATER RESOURCES CONTROL BOARD CALIFORNIA ENVIRONMENTAL PROTECTION AGENCY

Agency Request - Data Assessment (LARWQCB)

Expectations:

- Data assessment shall evaluate:
 - o Observed trends in water quality vs predicted trends in SNMP;
 - Sufficiency of monitoring network;
 - o Data gaps;
 - Impact on GW quality predicted in SNMP, based on recent trends and SNMP models;
 - Projects foreseeable in data assessment but not included during SNMP development.
- To be completed in a timely manner

Next Steps (WRD)

- Responsibilities:
 - LARWQCB Regulatory agency reviewing and approving SNMP.
 - WRD Led agency overseeing SNMP.
 - Stakeholders Participate in updating the SNMP.

• <u>Preliminary</u> Timeline of Data Assessment (Discussion Only)

Fiscal Year Ending June 2025

- Meet with stakeholders / RWQCB
- Develop scope for MOUs.
- Scope concurrence from RWQCB.
- Finalize stakeholder MOU's.

Fiscal Year Ending June 2026

- Hire consultant via RFQ.Workshops with RWQCB.
- Submit work plan to RWQCB.
- Work plan approved by RWQCB.

Fiscal Year Ending June 2027

- Conduct data assessment & submit report to RWQCB.

- Incorporate comments and submit final report to RWQCB.

- Approval letter from RWQCB.

Contact Information

Brian Partington, PG, CHg

Manager of Hydrogeology

Water Replenishment District of Southern California

bpartington@wrd.org

Xiaofei Cui, PhD

Senior Water Resource Control Engineer

Los Angeles Regional Water Quality Control Board

<u>xiaofei.cui@waterboards.ca.gov</u>

LOS ANGELES COUNTY SANITATION DISTRICTS Converting Waste Into Resources

WateReuse Legislative Update, LA Chapter

Phillip Vander Klay

August 13, 2024

Legislative Update

Bills - Appropriations Committee

The Budget - \$74.5 million for RW

Proposition 4 – AKA the Climate Bond

Regulatory Update

Recycled Water Fees

• September 18 Board Meeting for Fee Adoption

Clean Water SRF

- Modified "Scenario D" Eliminates gap year
- IUP cutoff score of 12 and cap of \$50 million

Fee Development Process and Timeline

Fee Authority for Recycled Water Facilities

Clean-up to Water Code sections 13260 and 13523 to provide explicit authority to assess fees for recycled water facilities to ensure adequate oversight and resources for timely permitting of recycled water projects.

Recycled Water Fee Option Iterations

Option F: Fee by Production Type and Distribution/Use

Fee based on production type of potable and non-potable or distribution and/or use.

Recycled Water Production	Potable Fee	Non-Potable Fee
Permits issued for recycled water production	\$16,000	\$2,800

Recycled Water Distribution and/or Use	Fee
Permits issued for recycled water distribution and/or use only	\$1,500

Regulatory Update

Recycled Water Fees

• September 18 Board Meeting for Fee Adoption

Clean Water SRF

- Modified "Scenario D" Eliminates gap year
- IUP cutoff score of 12 and cap of \$50 million

Recycled Water Permits Fees Stakeholder Meeting

July 18, 2024

Water Boards

Division of Administrative Services – Fee Branch

Staff Presentation

- Fee Development Process
- Stakeholder Feedback
- Updated Fee Option
- Open Discussion
- Next Steps

Fee Development Process and Timeline

Fee Authority for Recycled Water Facilities

Clean-up to Water Code sections 13260 and 13523 to provide explicit authority to assess fees for recycled water facilities to ensure adequate oversight and resources for timely permitting of recycled water projects.

Recycled Water Fee Option Iterations

Recycled Water Fees Stakeholder Feedback

Spread the Fees Broadly

Sizing, design flow, and volume

Duplicative Fees & Fee-for-Service

Inequities in previously proposed fee options

Option F: Fee by Production Type and Distribution/Use

Fee based on production type of potable and non-potable or distribution and/or use.

Recycled Water Production	Potable Fee	Non-Potable Fee
Permits issued for recycled water production	\$16,000	\$2,800

Recycled Water Distribution and/or Use	Fee
Permits issued for recycled water distribution and/or use only	\$1,500

Option F: Fee Examples

Recycled Water Production	Potable Fee	Non-Potable Fee
Permits issued for recycled water production	\$16,000	\$2,800

Pormit Typo	Baco Eco*	Potable	Non-Potable
Реппитуре	Dase ree	Fee Total	Fee Total
WDR – TTWQ/CPLX Rating: 2B	\$26,785	\$42,785	\$29,585
NPDES – Design Flow: 2.5 MGD	\$19,384	\$35,384	\$22,184
Water Recycling Requirements	N/A	\$16,000	\$2,800
Enrollee under General WRRs 2016-0068-DDW	\$1,500		

*FY 2023-24 Fee Amount

Open Discussion

Next Steps

- July 25 Comments Due on Proposed Option F
 - Submit comments to: FeeBranch@waterboards.ca.gov
- August 1 Water Quality Fees Stakeholder Meeting
- September 18 Board Meeting for FY 2024-25 Fee Schedule Adoption

Division of Drinking Water Regulatory Update

THOMAS TSUI, P.E. WATEREUSE LA CHAPTER MEETING AUGUST 13, 2024

DPR update

Office of Administrative Law (OAL) approved Direct Potable Reuse (DPR) regulations on August 6, 2024

Effective date is October 1, 2024

https://www.waterboards.ca.gov/drinking_water/certli c/drinkingwater/documents/direct_potable_reuse/sbd dw-23-001-dpr-reg-text-oal-final.pdf

CCCPH update

Water Board adopted the Cross-Connection Control Policy Handbook (CCCPH) in December 2023

Effective date is July 1, 2024

https://www.waterboards.ca.gov/drinking_water/certli c/drinkingwater/docs/2023/cccph-adopt-2023-12-19.pdf

Cr (IV) update

Water Board adopted hexavalent chromium Maximum Contaminant Level (MCL) of 0.010 mg/L on April 17, 2024

OAL approved hexavalent chromium MCL on July 24, 2024

Effective date is October 1, 2024

Questions?

Thomas Tsui

<u>Thomas.Tsui@waterboards.ca.gov</u>

RWU General email

<u>ddwrecycledwater@waterboards.ca.gov</u>

Last Board of Trustees Meeting: July 9, 2024

WRCA Strategic Planning

Background

 Expansion of WRCA membership, engagement initiatives, and evolving practices prompted the need to develop a new strategic plan.

Recommendation

• Hiring MatterLogic to complete the next WRCA 3-year Strategic Plan

Budget Implications

- Cost of next plan: \$47,575
 - Total net assets: \$1,103,484.93
 - Balance Expected: \$890,493.93

Last Board of Trustees Meeting: July 9, 2024

"DIREKT" Initiative

(DPR Investment In Research Enhancing Knowledge Transfer)

Objective: Collectively address issues included in DPR regulations and Implementation of DPR

Initiatives

- Combined IPR/DPR Systems
- Post-RO Treatment
- AWPF Optimization & Best Practices
- Non-Targeted Analysis (NTA) Methods

Next Steps

NWRI Scoping Workshops

- Treatment Credit Validation
- Public Acceptance

Last Board of Trustees Meeting: July 9, 2024

2024 WateReuse California Annual Conference

- September 15th-17th
 - Hyatt Regency 11999 Harbor Blvd. Garden Grove, CA
- Advanced Registration Deadline: September 3rd
- Hotel Reservation Deadline: August 26th

• Over 700 leader from Water reuse industry are expected to be in attendance.

SEPTEMBER 15-17, 2024 HYATT REGENCY ORANGE COUNTY

Last Board of Trustees Meeting: July 9, 2024

Turning the Tide Towards Water Reuse

- Celebrating 40 years of the WateReuse Symposium!
- Presentation Deadline: August 16, 2024
- Focus areas include and not limited to...
 - Policies and Regulations Advancing Water Recycling
 - Planning, Operations, Maintenance, and Management of Water Reuse systems
 - Water Reuse around the World

MARCH 16-19 JW MARRIOT TAMPA WATER STREET

IN COLLABORATION WITH THE WATER RESEARCH FOUNDATION

Last Board of Trustees Meeting: July 9, 2024

Strategic Planning & Summer Board of Trustees Meeting

- **Vision**: "A nation in which every community Uses water Recycling to safeguard public health and achieve environmental an economic resilience."
- **Mission:** "To empower communities and businesses to embrace water recycling as a cornerstone to safe, resilient, and sustainable water source."
- Strategic Goals and objectives divided into 3 categories
 - **1.** Advocacy,
 - **2.** Programs & Communications,
 - **3.** Membership, Sections and Operations

LA Chapter Updates

- Communications: Oliver Slosser
 <u>oslosser@lvmwd.com</u>
- Rising Professionals Committee: Seto Cherchian
 <u>Scherchian@mwdh2o.com</u>
- Technical Topics: Alex Franchi <u>alex.franchi@aecom.com</u> Dinaz Kureishy <u>dinaz.kureishy@santamonica.gov</u>
- Agricultural Committee: (Volunteer Opportunity) Seto Cherchian <u>SCherchian@mwdh2o.com</u>

- Recycled Water Users Manual: John Lockett
- Meeting Summaries: (Volunteer Opportunity) Thank you! Karina Gonzalez and Annie Chen, LA Sanitation & Environment
- Ad Hoc Urban Irrigation Manual Update Committee: Co-chairs: Monica Sanchez/LACSD, Erika Bensch/LACSD, Jesus Gonzalez/LADWP

Member Agency Roundtable

Save the Date! Los Angeles and Orange County WateReuse Summit

Ripple Effect: Recycle, Recharge, Repeat! October 8, 2024 11 am – 3 pm

Long Beach Aquarium of the Pacific

100 Aquarium Way Long Beach, CA 90802

Pacific Visions Auditorium Capacity of <u>Featuring:</u> 190 Attendees!

- Expert panel discussion
- Presentations by local reuse leaders
- Networking opportunities
- Complimentary parking and lunch!

Los Angeles and Orange County WateReuse Summit

Don't Miss the Opportunity to Sponsor!

Blue Whale Sponsorship \$1000

20-minute presentation on water reuse topic

Company/agency logo on event flyer, handouts, and intro slides

Limited slots remaining! Must respond by August 23, 2024

Dolphin Sponsorship \$500

Company/agency logo on event flyer, handouts, and intro slides

Contact Alex Waite (<u>alex.waite@santamonica.gov</u>) or LA & OC chapter board member for more information.