

Identifying the amount of wastewater that is available and feasible to recycle in California WRF 4962 / Preliminary Findings

Harold Leverenz, PE, PhD University of California, Davis

Ryujiro Tsuchihashi, PE, PhD Jacobs

WateReuse Northern California Chapter Meeting May 6, 2022

Research Team

Principal Investigators:

- Dr. Harold Leverenz, PE (UC Davis)
- Dr. Ryujiro Tsuchihashi, PE (Jacobs)
- Peter Lescure, PE (Lescure Engineers)

Project Team:

- Aaron King (Luhdorff and Scalmanini)
- Jessica Hazard, Dr. Kahui Lim, (UC Davis)

Advisory Committee:

- Dr. George Tchobanoglous, PE (UC Davis)
- Russel Adams, PE (Advanced Environmental Methods LLC)
- Dr. Robert Beggs, PE (Brown and Caldwell)
- Erika Bensch, PE (County Sanitation Districts of Los Angeles)
- Madeline Kelsch (Los Angeles Department of Water and Power)

Project Advisory Committee

Bobbi Larson Retired CASA Executive Director

Melanie Holmer CUWA Representative, Brown & Caldwell

Paula Kehoe SFPUC

Jennifer West WateReuse California

CASWB Representatives

Laura McLellan and Rebecca Greenwood

Stephanie Fevig, PE Research Manager

Valerie Roundy Project Coordinator

Topics

- •Wastewater Management in CA
- •Water Reuse in CA
- Obstacles to Water Reuse
- •Approach for Modeling Feasibility of Water Reuse
- •Spatial modeling of path to potential reuse sites
- •Cost model for alternative water reuse projects
- Regional distribution of total cost results

Wastewater Management in CA

CURRENT [INLAND] EFFLUENT DISPERSAL PRACTICE: *de facto* indirect reuse

Summary of effluent management in CA

Volumetric flow (2019), ac-ft/y

Overview of Water Reuse in CA

Total volume recycled in 2019, ac-ft

Views on Water Reuse in CA

Year

Some Obstacles to Water Reuse

- •Unintended consequences of past decisions
 - 20th century infrastructure
- Dynamic conditions
 - Impacts on water supply from drought
 - Changes in population
 - Changes in indoor water use
- •Cost
 - Capital, operations, and permit compliance
- Lack of perceived threat to existing water supplies

20th Century Infrastructure

Conventional wastewater infrastructure

Conventional wastewater infrastructureNot well adapted to low flow scenarios

- Vulnerabilities with climate change
- Limits some water reuse opportunities

Changing Patterns in Water Use

	Flow, gal/capita•d					
	2015		2020		2030	
Use	Range	Typical	Range	Typical	Range	Typical
Domestic						
Indoor use	40 - 80	60	35 - 65	55 <mark>(50)</mark>	30 - 60	40 <mark>(35)</mark>
Outdoor use	16 - 50	35	16 - 50	35	16 - 50	35
Commercial	10 - 75	40	10 - 70	35	10 - 65	30
Public	15 - 25	20	15 - 25	18	15 - 25	15
Loss and waste	15 - 25	20	15 - 25	18	15 - 25	15
Total	96 - 255	175		161		135

(i) Pre-1992

(ii) Improved water conservation

(iii) Maximum water conservation

Changing Wastewater Constituent Concentrations

			Concentration, mg/L Volume, L/capita•d (gal/capita•d)	
		Typical		
Constituent	Unit	value	380 (100)	190 (50)
BOD ₅	g/capita•d	76	199	400
COD	g/capita•d	193	507	1016
TSS	g/capita•d	74	195	389
TKN as N	g/capita•d	13.2	35	70
Total P as P	g/capita•d	2.1	5.6	11
Potassium	g/capita•d	6.1	16	32
Oil and grease	g/capita•d	29	76	153

Approach for Modeling Feasibility of Expanded Water Reuse

- Selected WWTFs with available flows >4 Mgal/d
- Adjustments for future water volumes for reuse
- Database with potential sites for water reuse
- ArcGIS model to determine least cost pipeline from effluent source to reuse site
- Economic model to estimate cost to upgrade water quality and deliver water
- Distribution of costs in terms of \$/ac-ft

Flow balance corrections

- Dry weather flows estimated from 2019 Volumetric Annual Report
- Regional population changes and expected changes in indoor water use
- Water loss with solids
- Correction for water loss with concentrate management
- Water reuse specific usage factors

Flow balance corrections

Locating Targets for Water Reuse

Potential reuse site database/methodology:

- Agricultural reuse
- Commercial and industrial non-potable sites
- Groundwater recharge (surface infiltration)
- Groundwater recharge (injection)
- Water supply reservoir locations
- Direct raw water and potable water augmentation

LCP output for potential reuse sites

Conveyance to Agricultural Reuse Sites

Conveyance to Reservoir Augmentation Sites

Conveyance to Raw Water Augmentation Sites

Recycled Water Production Cost Matrix

Establish a simplified matrix for a magnitude-of-order estimate

• Treatment levels associated with end use categories

Existing Treatment Plant	A. Unrestricted Non-potable Reuse	B. Indirect Potable Reuse	C. Direct Potable Reuse
Secondary + Disinfection	Filtration + enhanced disinfection	Advanced treatment + environmental buffer	Enhanced advanced treatment + enhanced monitoring
Disinfected tertiary	No modification	Advanced treatment + environmental buffer	Enhanced advanced treatment + enhanced monitoring
Advanced treatment for IPR	No modification	No modification	Enhanced advanced treatment + enhanced monitoring
Advanced treatment for DPR	No modification	No modification	No modification

Developing Cost Curve for Treatment: Approach

Capital cost (2021), \$M 000 000

10

- Identify unit processes to add to produce recycled water
- Use previously published cost curves, adjusting to year 2021
- Add up the costs to generate treatment cost for the system, in annualized \$/AF
- Apply the cost model to CA treatment plants

Note: No Site-Specific Restrictions were considered in cost curve development

Process flowrate, Mgal/d

Upgrade from Secondary to Disinfected Tertiary

- Construction Cost, \$M = 0.793216 x (Flow rate, Mgal/d) + 13.838165
- O&M Cost, \$M/y = 0.087594 x (Flow rate, Mgal/d) + 0.0517849

Upgrade from Secondary to Advanced Treatment IPR

- MF/UF: Capital cost, $M/(Mgal/d) = 3.57 \times (plant capacity, Mgal/d)^{-0.22}$ O&M cost, $M/(Mgal/d)/y = 0.30 \times (plant capacity, Mgal/d)^{-0.22}$
- RO: Capital cost, \$M/(Mgal/d) = 7.14 x (plant capacity, Mgal/d)^{-0.22}
 O&M cost, \$M/(Mgal/d)/y = 0.44 x (plant capacity, Mgal/d)^{-0.13}
- AOP: Capital cost, \$M/(Mgal/d) = 0.474 x (plant capacity, Mgal/d)^{-0.056}
 O&M cost, \$M/(Mgal/d)/y = 0.038 x (plant capacity, Mgal/d)^{-0.052}

Upgrade from Secondary to Advanced Treatment DPR

- All cost for IPR upgrade
- O3: Capital cost, $M/(Mgal/d) = 2.26 \times (plant capacity, Mgal/d)^{-0.54}$ O&M cost, $M/(Mgal/d)/year = 0.0068 \times (plant capacity, Mgal/d)^{-0.051}$
- BAC: Capital cost, \$M/(Mgal/d)= 3.03 x (plant capacity, Mgal/d)^{-0.48}
 O&M cost, \$M/(Mgal/d)/year = 0.085 x (plant capacity, Mgal/d)^{-0.16}

Model Output: Treatment Cost

Observation/Limitation:

- \$/AF will be lower at larger plants
- Not including concentrate management (highly site-specific)
- Not including distribution system (counted with GIS-based analysis)

capacity					
Flow, Mgal/d	Secondary to disinfected Estimated cost of concentrate ma	Cost, \$/ac-ft Secondary/tertiary to magement (Raucher and Tchob	Secondary/tertiary to DPR loglous, 2014)		
4	Cost, \$/af				
7	Option	Range	Typical		
10 20	Deep well injection	60-80	70		
30	Evaporation ponds	140-175	155		
40	Land application	130-160	140		
50	Zero liquid discharge	600-750	700		
100	Line to ocean	100 - 150	115		
150					
200	231	815	1006		
250	229	786	973		
300	228	763	946		

Annualized project cost per acre foot for various treatment process upgrades as a function of treatment

Total Cost of Water Reuse Projects

Cost of Treatment + Conveyance

- Smaller volume could be reused at lower cost by non-potable reuse
- IPR and DPR become more plausible options when targeting higher total reuse volume
- Concentrate management cost may affect total cost significantly

Cumulative volume to reuse, Mac-ft/y

Coastal vs Inland

- Greater potential volume of water for reuse in coastal areas, but cost for water reuse in coastal sites is higher
 - Greater transport
 distances
 - Relatively greater flow volumes
 - Challenges with reaching potential reuse sites

Preliminary Findings

- Total water reuse rate ~50%, consisting of 22% permitted, and 28% unplanned reuse, with balance discharged to coastal waters.
- Unplanned water reuse needs to be acknowledged for environmental, habitat, and psychological benefits.
- Permitted non-potable reuse options are lower cost than DPR, but limited by lower volumetric demand.
- Water reuse is higher cost in coastal areas due to more limited non-potable reuse options.
- To achieve greater total reuse volume, IPR and DPR options may be preferred but at higher cost.

Study Limitations

- While there are many unknowns, site specific factors not considered in this study include:
 - Concentrate management
 - Facility siting
 - Purple-pipe urban distribution
- The study was not based on actual water reuse projects
- Therefore, the costs estimated in this study are representative of minimum costs for typical water reuse projects
- Discharge requirements for instream flows will need to be determined on a case-by-case basis where there is a habitat or environmental concern with effluent diversion
- Future changes in population and indoor water use are unknowns

Questions or contributions?

- Harold Leverenz
- University of California, Davis
- hlleverenz@ucdavis.edu

- Ryujiro Tsuchihashi
- Jacobs
- Ryujiro.Tsuchihashi@jacobs.com