

Identifying the amount of wastewater that is available and feasible to recycle in California WRF 4962

Harold Leverenz, PE, PhD University of California, Davis

Ryujiro Tsuchihashi, PE, PhD Jacobs

WateReuse Northern California Chapter Meeting December 3, 2021

Research Team

Principal Investigator (PI) and Project Manager:

Dr. Harold Leverenz, PE (UC Davis)

Project Team: Aaron King, Jessica Hazard, Kahui Lim, Dr. Sandy Chang

Co-Pls:

- Dr. Ryujiro Tsuchihashi, PE (Jacobs)
- Peter Lescure, PE (Lescure Engineers)

Advisory Committee:

- Dr. George Tchobanoglous, PE (UC Davis)
- Russel Adams, PE (Advanced Environmental Methods LLC)
- Dr. Robert Beggs, PE (Brown and Caldwell)
- Erika Bensch, PE (County Sanitation Districts of Los Angeles)
- Madeline Kelsch (Los Angeles Department of Water and Power)

Project Advisory Committee

Bobbi Larson Retired CASA Executive Director

Melanie Holmer CUWA Representative, Brown and Caldwell

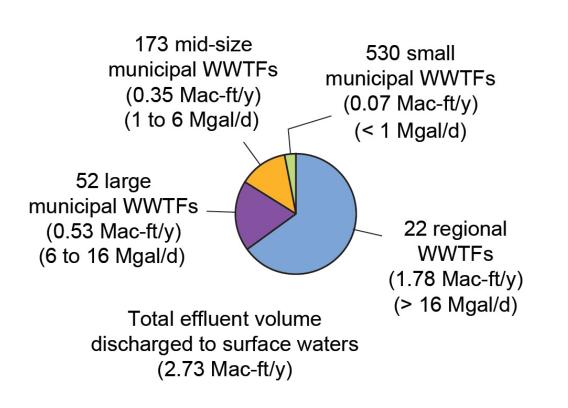
Paula Kehoe SFPUC

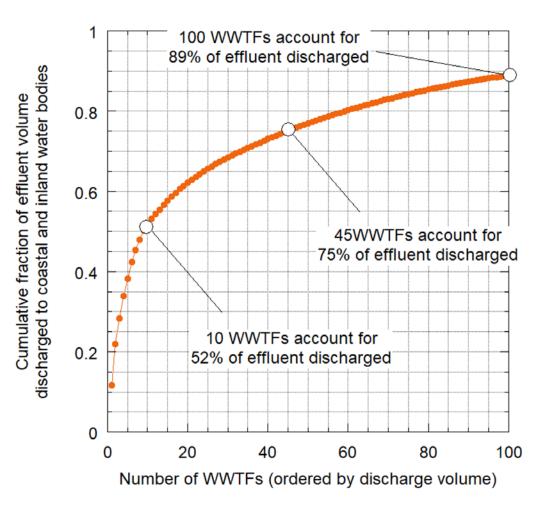
Jennifer West WateReuse California

CASWB Representatives

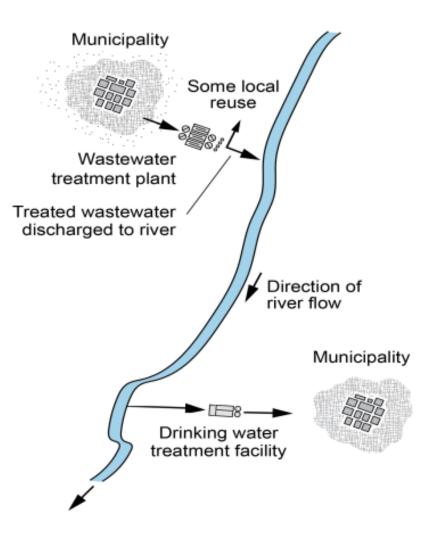
- Laura McLellan
- Rebecca Greenwood

WRF Staff

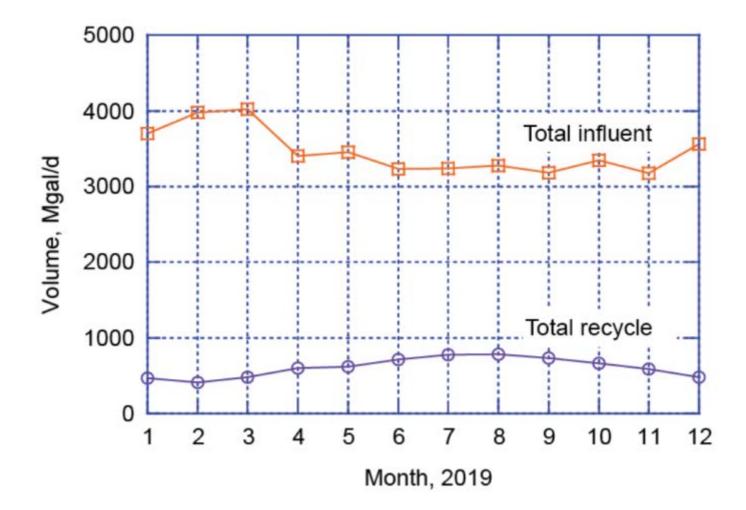

Stephanie Fevig, PE Research Manager


Valerie Roundy Project Coordinator

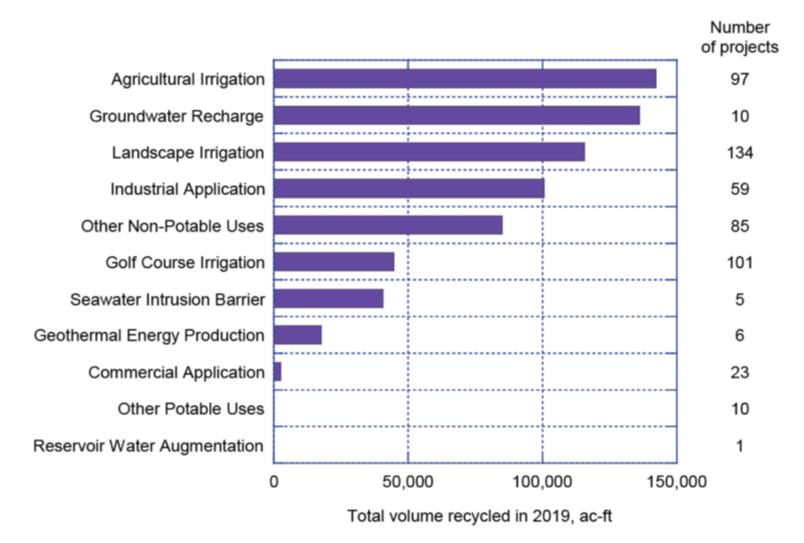
Topics

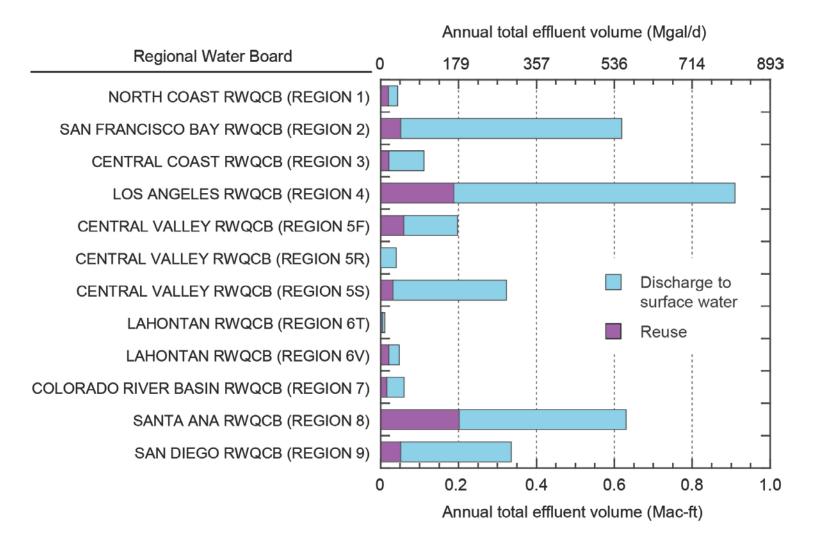

- Wastewater Management in CA
- Overview of Water Reuse in CA
- Views on Water Reuse in CA
- Obstacles to Water Reuse
- Approach for Modeling Feasibility of Expanded Water Reuse

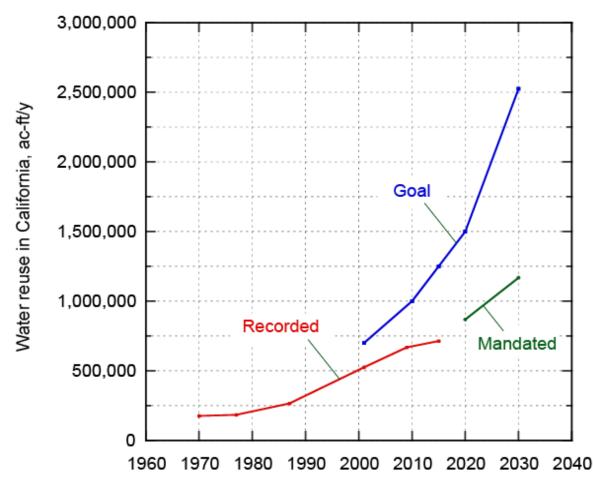
Wastewater Management in CA



CURRENT [INLAND] EFFLUENT DISPERSAL PRACTICE: de facto indirect reuse

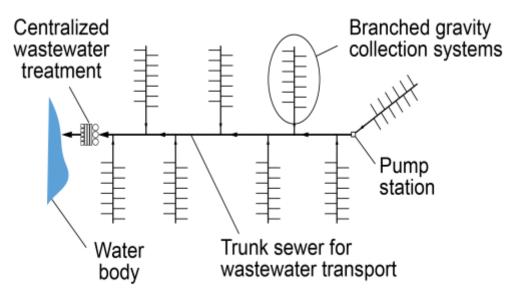



Overview of Water Reuse in CA


Overview of Water Reuse in CA

Overview of Water Reuse in CA

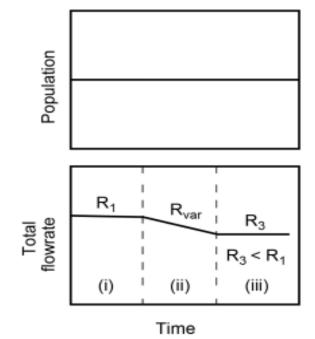
Views on Water Reuse in CA


Year

Some Obstacles to Water Reuse

- Unintended consequences of past decisions
 - 20th century infrastructure
- Dynamic conditions
 - Impacts on water supply from drought
 - Changes in population
 - Changes in how we use water
- Cost
 - Capital, operations, and permit compliance
- No perceived threat to existing water supply

20th Century Infrastructure



Conventional wastewater infrastructure

Conventional wastewater infrastructureNot well adapted to low flow scenarios

- Vulnerabilities with climate change
- Limits some water reuse opportunities

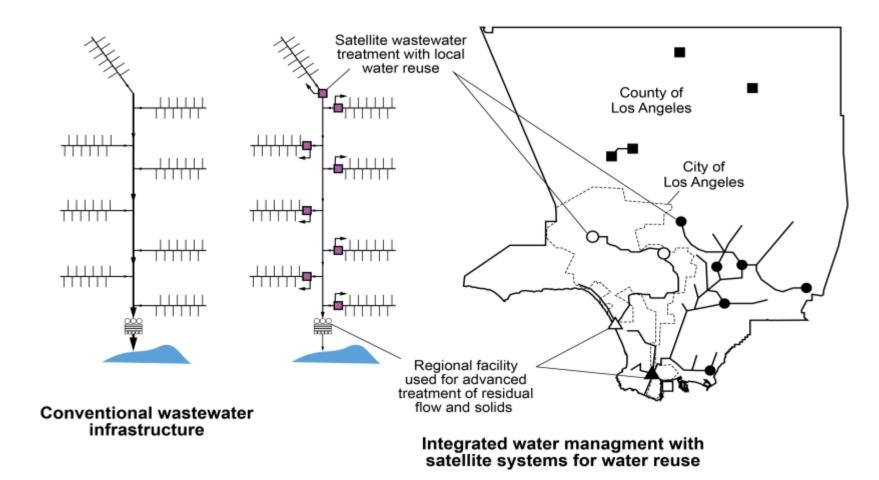
Changing Patterns in Water Use

	Flow, gal/capita•d								
	20	15	20	20	2030				
Use	Range Typica		Range Typical		Range	Typical			
Domestic									
Indoor use 40 - 80		60	35 - 65	55 <mark>(50)</mark>	30 - 60	40 <mark>(35)</mark>			
Outdoor use	16 - 50	16 - 50 35		35	16 - 50	35			
Commercial	10 - 75	40	10 - 70	35	10 - 65	30			
Public	Public 15 - 25		15 - 25	18	15 - 25	15			
Loss and waste	waste 15 - 25 20		15 - 25 18		15 - 25	15			
Total	96 - 255	175		161		135			

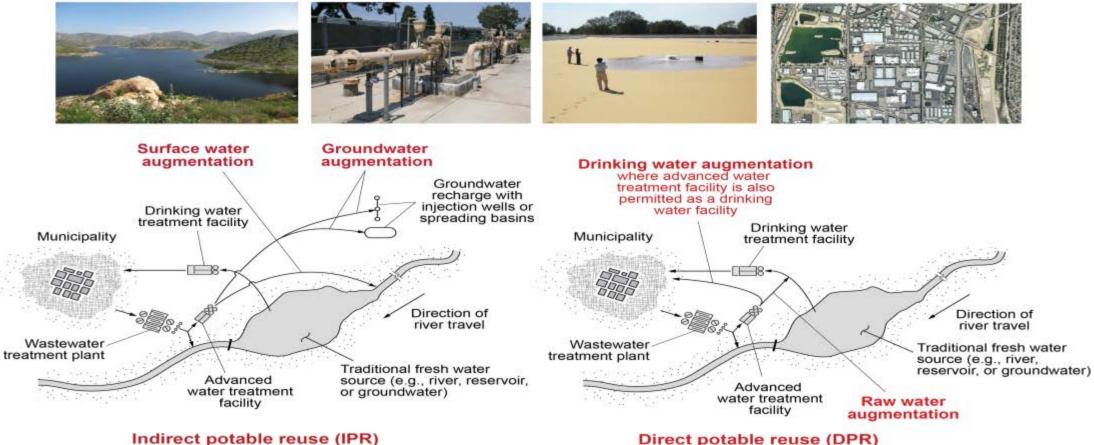
(i) Pre-1992

(ii) Improved water conservation

(iii) Maximum water conservation


Changing Wastewater Constituent Concentrations

			Concentration, mg/L			
		Table 1	Volume, L/capita•d (gal/capita•d)			
Constituent	Unit	Typical value	380 (100)	190 (50)		
BOD ₅	g/capita•d	76	199	400		
COD	g/capita•d	193	507	1016		
TSS	g/capita•d	74	195	389		
TKN as N	g/capita•d	13.2	35	70		
Total P as P	g/capita•d	2.1	5.6	11		
Potassium	g/capita•d	6.1	16	32		
Oil and grease	g/capita•d	29	76	153		


Some considerations for Water Reuse

- Decentralized Water Reuse
- Potable Reuse
- Integrated Water Management

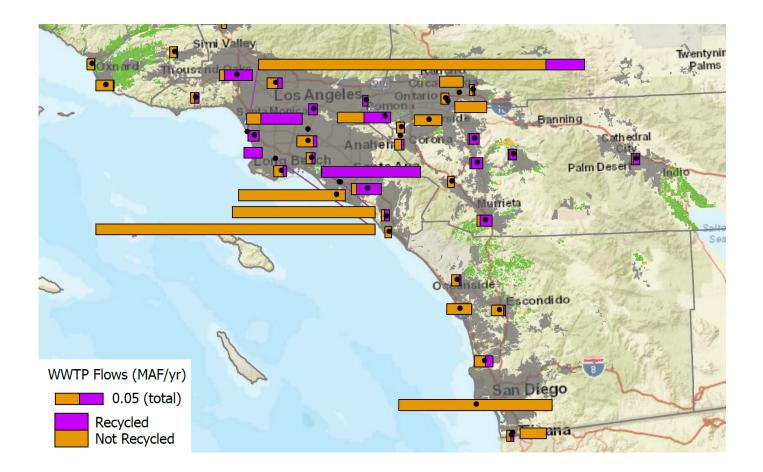
Decentralized Water Reuse

Potable Reuse

Groundwater and surface water augmentation

Direct potable reuse (DPR) Raw and drinking water augmentation

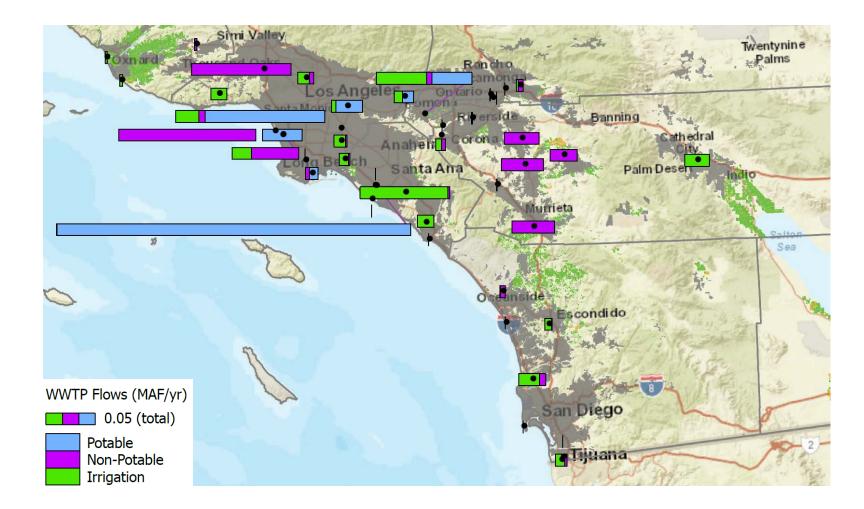
Integrated Water Management



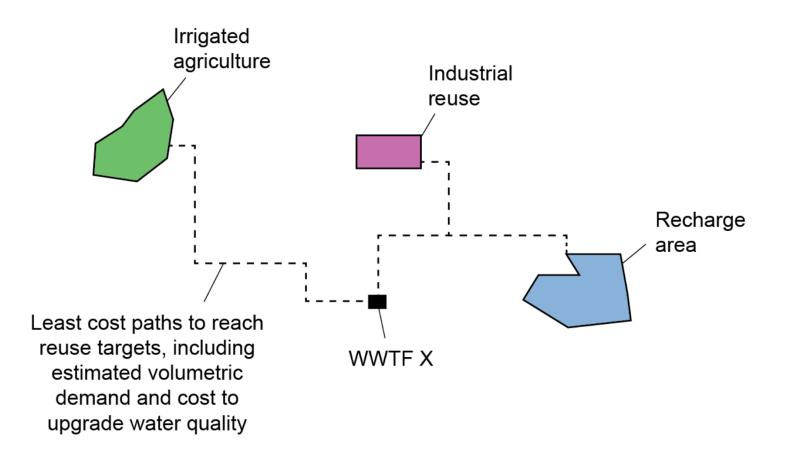
Approach for Modeling Feasibility of Expanded Water Reuse

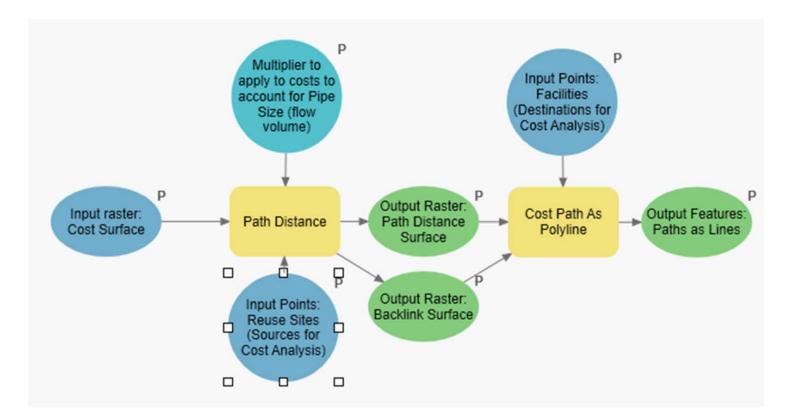
- Spatial distribution of volume and quality for current discharges (AcrGIS)
- Focus on top 100 largest facilities
- Economic model
 - Cost to upgrade effluent quality
 - Cost to reach reuse sites (costpath analysis)

- Flow balance corrections
 - Current dry weather flow
 - Population change
 - Water loss with solids
 - Correction for reductions in indoor water use
 - Correction for water loss with concentrate management


Spatial Distribution of Effluent and Reuse Areas

Spatial Distribution of Effluent and Reuse Areas


Spatial Distribution of Effluent and Reuse Areas


Locating Targets for Water Reuse

Potential reuse site databases:

- Agricultural reuse
- Commercial and industrial nonpotable sites
- Groundwater recharge (surface infiltration)
- Groundwater recharge (injection)
- Water supply reservoir locations
- Direct raw water and potable water augmentation

Calculation of cost to reach reuse sites

Recycled Water Production Cost Matrix

Establish a simplified matrix for a magnitude-of-order estimate

- Treatment levels associated with end use categories
 - A. Restricted, non-potable reuse: Secondary + Disinfection
 - B. Unrestricted, non-potable reuse: Secondary + Tertiary filtration + Enhanced disinfection
 - C. Potable Reuse: Secondary + Advanced Treatment + Enhanced disinfection + Multi barrier/ Engineered buffer

Existing Treatment Plant	A. Restricted Non- potable Reuse	B. Unrestricted Non- potable Reuse	C. Potable Reuse
Secondary + Disinfection	No modification	Filtration + Enhanced disinfection	Advanced treatment + Enhanced disinfection + Multi-barrier/ Engineered buffer
Secondary + Tertiary filtration + Enhanced disinfection	No modification	No modification	Advanced treatment + Enhanced disinfection + Multi-barrier/ Engineered buffer
Secondary + Advanced treatment + Enhanced disinfection + Multi-barrier/ Engineered buffer	No modification	No modification	No modification

Recycled Water Production Cost Matrix

Existing Treatment Plant	A. Restricted Non- potable Reuse	B. Unrestricted Non- potable Reuse	C. Potable Reuse					
	\$/AF treated, 30-yr project period							
A	0	100	700					
В	0	0	700					
С	0	0	0					

Reference: Tchobanoglous et al. 2017

Recycled Water Production O&M Cost Matrix

Existing Treatment Plant	A. Restricted Non- potable Reuse	B. Unrestricted Non- potable Reuse	C. Potable Reuse					
	Additional cost on top of existing facility							
A	20	60	450					
В	10	60	450					
С	0	0	0					

Reference: Tchobanoglous et al. 2017

Preliminary Output

					Cost based on available flow							
	Available Q MGD	Available Q AFY	Existing process	Target process	30-yr Project Cost	Annual O&M cost	Target process	30-yr Project Cost	Annual O&M cost	Target process	30-yr Project Cost	Annual O&M cost
Plant 1	50	56005	А	А	\$0	\$1,120,100	В	\$561,792,012	\$3,360,300	С	\$3,932,544,082	\$25,202,250
Plant 2	5	5601	А	А	\$0	\$112,010	В	\$9,990,232	\$336,030	С	\$69,931,622	\$2,520,225
Plant 3	10	11201	А	А	\$0	\$224,020	В	\$33,603,000	\$672,060	С	\$235,221,000	\$5,040,450
Plant 4	20	22402	А	А	\$0	\$448,040	В	\$113,026,569	\$1,344,120	С	\$791,185,983	\$10,080,900
Plant 5	30	33603	А	А	\$0	\$672,060	В	\$229,794,827	\$2,016,180	С	\$1,608,563,788	\$15,121,350
Plant 6	100	112010	А	А	\$0	\$2,240,200	В	\$1,889,635,555	\$6,720,600	С	\$13,227,448,885	\$50,404,500
Plant 7	65	72807	А	А	\$0	\$1,456,130	В	\$889,152,852	\$4,368,390	С	\$6,224,069,967	\$32,762,925

Refinement:

- Calibration of overall cost using actual project cost data
- Inclusion of Available Volume (counting loss through treatment, e.g., RO concentrate)
- Integration with GIS-based end-use model (conveyance cost, potential demand/seasonality)

Data and Input Needs for Model Calibration

- Cases where there could be challenges diverting effluent from an existing discharge
- For facilities greater than 6 Mgal/d, details for known or potential significant reuse projects:
 - Coordinates
 - Type of reuse
 - Volume required
 - Cost

Questions or contributions?

- Harold Leverenz
- University of California, Davis
- <u>hlleverenz@ucdavis.edu</u>

- Ryujiro Tsuchihashi
- Jacobs
- Ryujiro.Tsuchihashi@jacobs.com