

Two Marana Water Treatment Campuses Come to Fruition

Laura Carusona - Marana Water George Maseeh - Carollo Engineers

Topics

- Marana's unregulated compound backgrout
- Water Treatment Campuses overview
- Commissioning and startup
- Operations

Marana Water's Unregulated Compound Background

Marana's Water Systems

UV AOP and GAC Selected for Full-Scale Treatment

UV AOP Design Criteria

 $Log Reduction Value (LRV) = log_{10}(\frac{Influent Concentration}{Effluent Concentration})$

Parameter	Units	Picture Rocks	Airline/Lambert
Flow	gpm (mgd)	1,400 (2.0)	1,000 (1.4)
UV AOP			
1,4-dioxane Log Reduction Value		1.25	1.25
UV Transmittance	%	97	97
Number of Duty Trains	No.	1	1
Peroxide Dose	mg/L	11-20	5-8
		Course shared as a strain standard	

Same dual-reactor, single UV AOP chamber at each site

GAC Design Criteria

Parameter	Units	Picture Rocks	Airline/Lambert
Flow	gpm (mgd)	1,400 (2.0)	1,000 (1.4)
GAC			
Media Type		Re-agg. bit. coal-derived	Re-agg. bit. coal-derived
Number of Trains	No.	2	2
Number of Contactors per Train	No.	2	2
Total Number of Contactors	No.	4	4
Contactor Diameter	ft	12	12
Liquid Loading Rate	gpm/ft ²	6.2	4.4
Total EBCT per Train	min	12.6	17.8

Same two trains of lead/lag GAC contactors at each site

Picture Rocks WTC Site Layout

Airline/Lambert WTC Site Layout

Substantial Completion March 12, 2021

Commissioning and Start-up

- Performance tests were conducted in January 2021.
- Approval of Construction for the plants was received from ADEQ in February/March 2021
- Start-up for WTC initiated in the mid-March

UV AOP Specified Treatment Criteria

Criteria	Picture Rocks	Airline/Lambert
Design Flow, gpm	1,400	1,000
Minimum UV Transmittance at 254 nm, %	97	97
1,4-dioxane Log Reduction Value	≥1.25	≥1.25
Maximum H ₂ O ₂ Dose, mg/L	20.0	8.0
Nitrate, mg/L as NO_3^-	18.9	16.4
Hydroxyl Radical Scavenging Demand, s ⁻¹	53,800	47,800

Testing Results

Target Log Reduction Value of 1.25 consistently achieved

Commissioning and Startup Activities

- ADEQ Approval-of-Construction received in late February and early March 2021
- Substantial completion achieved on March 12, 2021
- Airline/Lambert WTC commissioned on March 12, 2021
- Picture Rocks WTC commissioned on March 29, 2021

Operations

- TWO PLANTS BORN AT THE SAME TIME!
 - Picture Rocks WTC
 - Airline/Lambert WTC
- Monthly results indicate that operational treatment targets for both 1,4-dioxane and PFAS meet or exceed operational targets.
- Initial Operational Challenges
 - On-line analyzer limitations
 - Bag filters
 - Trojan UV AOP system

On-Line Analyzer Limitations

- Hydrogen peroxide and UV transmittance on-line analyzers were provided for the UV AOP systems
- Both parameters are verified using chemistry checks
- Intermittent plant operation, time needed to achieve analyzer stability, and calibration issues combine to create challenges
- Stability of groundwater quality allows monitoring of UVT and hydrogen peroxide rather than control loop dependence on the analyzer signals

Bag Filter Issues

- Bag Filters
 - Blow outs
 - Clogs
 - Change outs

Trojan UV AOP System

- Monthly results indicate that operational treatment target for both 1,4-Dioxane and PFAS exceed operational target
- Operational Challenges
 - One-time HMI failure
 - Periodic UV AOP power distribution center cabinet fuse failures
 - Troubleshooting and working through issues

Conclusions

- UV AOP and GAC have demonstrated that they are effective treatment technologies to reduce concentrations of 1,4-dioxane and PFAS, respectively, and reliably meet Marana Water's goals.
- Marana Water continues to monitor source water wells and treated water.
- Marana Water is refining the operations of the treatment plants.

Questions?

Laura Carusona lcarusona@maranaaz.gov

George Maseeh gmaseeh@carollo.com

