ADEQ's Use of the Triad Approach for PFAS Assessment and Cleanup

Waste Programs Division | Water Quality Assurance Revolving Fund

Matt Narter, PhD, Hydrogeologist July 27, 2021

ADEQ PFAS Actions

ADEQ has taken several actions related to Per- and Polyfluoroalkyl Substances (PFAS), including:

- Public Water System Screening
- Luke AFB Public Water System Data Collection
- State Funding for the Tucson Area Remediation Project (TARP)
- Central Tucson PFAS Project State WQARF Funding
- Aqueous Film Forming Foam (AFFF) Stakeholder Advice, Education and Outreach
- PFAS Resources Webpage

Central Tucson PFAS Project (CTPP)

- Since 2016, Tucson Water has shut down three wells north of Davis Monthan Air Force Base due to PFAS contamination
- ADEQ determined that remedial action is necessary and eligible for funding by the Water Quality Assurance Revolving Fund (WQARF) pursuant to A.R.S. § 49-287(G)
- Planning for the Central Tucson PFAS Project (CTPP) began in Spring 2020

CTPP Overview

Project Objective: *Prevent additional PFAS impacts to Tucson Water's Central Wellfield*

- Work Plan and Quality Assurance Project Plan completed in August 2020
- Planning was conducted using principles of the Triad Approach

Triad Approach

- Used during site characterization and remediation to manage decision uncertainty;
- Enables team members to correctly and cost-effectively make project decisions regarding site assessment and remedial design;

5

 Ensures that an effective conceptual site model (CSM) is developed and used for site decision-making throughout the life cycle of a cleanup project

Triad Approach Elements

- Multidisciplinary Team
- Preliminary CSM and Data Gap Analysis
- Work Plan and QAPP
- Stakeholder Planning and Outreach

Dynamic Work Strategies

- Drill Rig Capabilities
- Contingency Drilling Locations

• Real-Time Measurement Technologies

- Extensive Laboratory Collaboration
- Sonic Drilling Method

Project Decision Making

Table 4. Field-Screening Decision Matrix

Decision Question	Decision Point	Decision Criteria	Decision
1. Should borehole advancement continue?	Result is analyzed for a depth-specific sample(s) during drilling	Depth-specific sample with PFOA+PFOS >70 ppt	Yes, continue to advance the borehole to the next sampling depth
		At least two continuous depth- specific samples with PFOA+PFOS <70 ppt	No, stop drilling and move to decision question #2.
2. Should a well be constructed in the borehole?	Borehole advancement is complete	Analytical results indicate the boring defines the plume to PFOA+PFOS <70ppt	Yes, install a well that is screened based on lithologic/sampling data. Move to decision question #3
		PFOA+PFOS > 70ppt and boring provides useful/unique data for continued monitoring	Yes, install a well that is screened based on lithologic/sampling data. Move to decision question #3
		PFOA+PFOS > 70ppt and boring does not provide useful data for continued monitoring	No, backfill the boring and move to decision question #3.
3. Should a borehole be advanced in a step- out location?	Borehole advancement is complete	The highest depth-specific sample in a well >70 ppt	Yes, step out to the next alternative location downgradient and/or side- gradient, if available
		The highest depth-specific sample in a well <70 ppt	No, complete the well as an exterior plume definition well

Central Tucson PFAS Project (CTPP) Location

DITAT DEUS DITAT DEUS 1912

Approximate area of the Central Tucson PFAS Project investigation

Drinking Water & PFAS

- EPA has set a Health Advisory Level (HAL) of 70 parts per trillion (ppt) for the combined concentration of PFOA + PFOS
- Tucson Water has identified an operating target of <18 ppt for the combined concentration of PFOA + PFOS + PFHxS + PFHpA

image: NIST.gov

Project Implementation

- Installation of seven (7) monitoring wells to depths of 480-600 feet
- Depth-specific sampling in each well during drilling more than 80 PFAS samples
- Comprehensive groundwater sampling and water level monitoring
- Delineation of the three-dimensional extent of PFAS impacts in groundwater

Groundwater Sampling Results

PFOS = Perfluorooctanesulfonic acid; PFOA = Perfluorooctanoic acid; PFHxS = Perfluorohexanesulfonic acid; PFHpA = Perfluoroheptanoic acid ppt = Parts per trillion CTPP = Central Tucson PFAS Project

Vertical PFAS Extent

CTPP Demonstration System

- The permitting and design is complete for a demonstration groundwater extraction and treatment system
- The system will use inactive Tucson Water well C-007A, located in the area of highest PFAS contamination
- Water will be extracted and treated using ion exchange resin to completely remove PFAS

CTPP Timeline

Contacts & Resources

Paula Panzino Chief Science Officer panzino.paula@azdeq.gov 602-771-6145

www.azdeq.gov/WQARF www.azdeq.gov/pfas-resources

