

Reviewing the Options:

Treatment Alternatives Evaluation for Tempe's Kyrene WRF

Doug Kobrick – Senior Associate, Hazen and Sawyer

WateReuse of Arizona Annual Symposium

July 27, 2021

Project team

- City of Tempe
- Hazen and Sawyer
 - Engineering studies, design services
- EUSI, Inc.
 - Condition assessment, operations considerations
- PCL Construction
 - Condition assessment, cost estimating, constructability

Kyrene Water Reclamation Facility

- 9 mgd membrane bioreactor (MBR)
 - Converted from conventional 4.5 mgd MLE circa 2004
 - Tight site, good-neighbor issues important
- Scalping plant no solids processed on site
 - Tempe is a member of Subregional Operating Group (SROG)
 - Majority of Tempe's wastewater was still treated at 91st Ave WWTP
 - All KWRF residuals returned to the SROG system, go to 91st Ave.
- KWRF shut down in year 2010
 - Cost-saving measure during the downturn
 - 91st Ave more cost-effective in terms of treatment
 - Tempe has sufficient capacity at 91st Ave. for all of its flows
- Tempe has continued to grow
 - Flows have not increased
 - Strength has increased

Kyrene Water Reclamation Facility - Restart

Goals

- Create a cost-effective renewable water resource in accordance with City policies/ goals
 - Direct reuses (Kiwanis Park, Ken McDonald GC, SRP Kyrene power plant)
 - Capture long-term storage credits (LTSCs) for City's water portfolio or potential exchange with others
- Bring facility back online at 4.5 MGD
 - Approx. max month for area tributary to KWRF
 - Other potential capacities will be considered later in project
- Produce class A+ water for direct reuse, recharge the rest
- BADCT / APP compliance and minimized ASR well fouling
- Plant will not discharge: no AZPDES permit
- Consider energy impacts, other sustainability criteria

City of Tempe - Metered water demand by customer class

Tempe's water resources portfolio

- Most of the City is on-Project (SRP)
 - Former farmland
 - Most reliable water supply available
- Off-Project areas:
 - Downtown Tempe*
 - Along Salt River bed^{*}
 - Tempe Town Lake

*major growth areas

- Additional water resources
 - Central Arizona project
 - Roosevelt Dam new conservation storage
 - White Mountain Apache Tribe settlement
 - Groundwater
 - Long-term storage credits support groundwater pumping for resource and operational needs

Additional KWRF considerations

- Cost effective technologies
- Potential larger capacity
 - Recapture all reclaimed water not committed elsewhere
 - Would require a pump-back system at added cost
- Incorporate/repurpose existing infrastructure and equipment
- Low-energy configuration
 - Look at true energy footprint, including external factors
 - Minimize greenhouse gas emissions
 - Recapture energy value of the waste? [no]
 - Supplemental solar or other on-site energy generation? [no]

Project scope

Upgrades and Improvements - Treatment Process and Capacity Evaluation

Part 1: Additional Process Analyses and Pre-Design Evaluations

• Evaluation of alternative wastewater treatment processes to be considered for the re-started KWRF *beyond* just the existing membrane bioreactor (MBR) and other unit processes at KWRF

Part 2: Reclaimed Water Market Analysis

• Assess the existing and potential value of reclaimed water produced at the KWRF, for use by Tempe or potentially in partnership with other utilities or entities

Approach for selecting treatment process for design

World of **Options**

Conceptual Screening								
Eliminate alternatives that are clearly not competitive		227. 	: ::. 					

C

Screening to arrive at 10 to 12 alternatives for next phase

Screening to arrive at 5 alternatives for next phase

Evaluate Final 5 **Alternatives**

"Road map"

Existing condition summary

1 = excellent, 2 = good, 3 = average, 4 = fair, 5 = poor

Zone #	Process	Average Condition Score	Total # of Assets	Total Assets with Fair or Poor Score						
Preliminary Treatment										
1	Influent Pump Station	4.1	29	21						
2	Screens	3.4	57	18						
3	Grit	3.1	14	3						
4	Equalization	2.6	115	18						
5	Odor Control	3.5	225	96						
	Biological Treatment									
6	AB Blowers	2.8	43	0						
7	Aeration Basins	3.3	95	35						
8	Membrane Blowers	2.9	47	7						
9	Membranes	3.4	782	156						
11	Membrane Air Compressors	2.9	119	49						
	Disinfection/Rec	laimed Water Pumping								
10	UV Treatment	3.3	150	48						
12	Recycle Pump Station	2.8	101	29						
13	Effluent Pump Station	2.9	295	42						
	Suppo	ort Systems								
14	Storm Water	2.7	58	3						
15	Sump Pump Station	3.4	36	8						
16	Plant Water System	2.7	95	2						
17	Chemical Feed/Storage	3.2	110	22						
18	Potable Water System	2.7	83	7						
19	Plant Air System	3.8	53	30						
20	Electrical Equipment	NA	32	NA						

CA results -- Future application of existing KWRF components

Preliminary Treatment

- Can be restored with a moderate rehabilitation.
- Fine screening rehabilitation required.
- EQ rehabilitation needed.
- Existing capacity exceeds 4.5-mgd capacity.
- Not a differentiating consideration, disregarded in evaluating biological and disinfection process alternatives.

Biological Treatment

- Bioreactor basins area are not a constraint at 4.5-mgd.
- Bioreactor basins might not provide sufficient volume for non-intensified processes beyond 4.5-mgd.
- Aeration diffusers and piping rehabilitation required.
- RAS pump station could be repurposed as an IMLR pump station.
- For non-MBR alternatives, filters and/or clarifiers required.
- Differentiating consideration

CA results -- Future application of existing KWRF components

Disinfection and Pumping

- Requires substantial rehabilitation but would provide sufficient capability at 4.5-mgd.
- The permeate pump station might not be repurposed for effluent pumping in non-MBR processes.
- Not a differentiating consideration, other than repurposing effluent pump station.

Support Systems

- Rehabilitation needed in these areas.
- Not a differentiating consideration, consistent across alternatives.

Secondary Treatment Process Alternatives

	World of Options	
Conventional BNR	Intensified BNR	Next Generation N-Removal
• MLE	• IFAS	 Simultaneous Nit - Denit
 Oxidation Ditch 	• MABR	 Nitritation/Denitritation
• SBR	• Biomag	Mainstream
 Multi-Stage BNR 	• BIOCOS	Deammonification
 Step-Feed BNR 	Granular Sludge	• PANDA
 Two-Sludges 	• MBR	
	• DAS	

Organization of process alternatives

- Biological ("Secondary") Treatment
 - Conventional biological nutrient removal (BNR)
 - Intensified BNR
 - Next-generation BNR processes
 - Solids separation (clarification / filtration) will be considered to the extent applicable to each biological process
- Tertiary Treatment
 - Tertiary biological treatment
 - Tertiary advanced treatment
- Disinfection

Secondary Treatment							
Conventional BNR Int		Intensified BNR Next-Genera Nitrogen Rem		neration Removal	Secondary Solids Separation		
Modified Ludzack- Ettinger	Membrane Bioreactor		Simulta Nitrificat Denitrif	aneous tion and fication	Clarifier		
Oxidation Ditch	Integrated Fixed Film Activated Sludge		Nitrita Denitri	ation/ itation	Filter		
Multi-stage BNR	Mer Bi	nbrane Aerated ofilm Reactor	Mains Deammo	tream nification	Microfiltration		
Step-Feed BNR		BioMag	Partial De Anam	nitritation mox			
Two-Sludge Activated Sludge	Biolo	ogical Combined Systems					
Sequencing Batch Reactor	Ae Den	robic Granular Sludge sified Activated Sludge					
Adva	Advanced Treatment						
Tertiary Biologica	Disinfection						

Flocculation/Sedimentation

Ozone/BAC

Post-Filtration GAC

Reverse Osmosis

Ion-Exchange

Moving Bed Biofilm Reactor

Denitrification Filters

Fluidized Bed Reactors

Microalgae

Biocatalysts

UV Disinfection

UV AOP

Chlorination

Ozonation

Peracetic Acid

Initial screening criteria

"Pass/fail" criteria -- Applied for initial conceptual screening

Technology Maturity

- How well-developed is the technology?
- Technology that has not yet been successfully employed at full-scale is eliminated.

Applicability to KWRF current needs

- Ability to meet current reclaimed water requirements at KWRF?
- Some processes provide benefits that might be useful in the future but are not necessary at the present time.

Processes from original group – eliminated by initial screening

BIOCOS	Nitritation / dentitritation (nitrite shunt)	Mainstream deammonification
Moving bed bioreactor (MBBR)	Denitrification filters	Fluidized bed reactor
Microalgae	Biocatalysts	Ozone/BAC
Post-filtration GAC	Reverse osmosis	lon exchange
	Advanced oxidation processes (AOP)	

Evaluation criteria

Capital cost

- Repurposing of existing structures
- · Construction for rehabilitations based on CA
- Construction of new process units, equipment
- Demolition or abandonment of components
- Licensing fees for proprietary processes

Energy efficiency

- Energy included in O&M cost
- Also evaluated separately because of City's energyefficiency and climate-related goals.

Expandability

• Leaves existing components available for future use.

Ease of permitting

• Well-accepted processes - approval is straightforward

1 = excellent, 2 = good, 3 = average, 4 = fair, and 5 = poor

O&M cost

- Equipment maintenance
- Operator labor
- Energy consumption
- Chemical consumption

Solids separation requirements

- Secondary clarifiers required for most biological treatment processes are not present at KWRF
- Intensified BNR may allow excess BNR basins to be used as clarifiers
- Secondary clarifiers also require tertiary filtration.

Difficulty of implementation

• Requires extensive changes to the existing facility.

Adaptability

• Ability to meet potential requirements, such as ECs.

Biological / BNR Alternative Criteria Scoring

1 = Most favorable, 3 = Neutral, and 5 = Least favorable

Technology	Capital Cost	O&M Cost	Energy Consumption	Solids Separation Requirements	Expand- ability	Difficulty of Implementation	Ease of permitting	Adapt- ability	Average Score		
	Conventional BNR										
MLE	2	3	3	4	4	2	1	3	2.75		
SBR	4	3	3	3	3.5	4	2	2.5	3.13		
Ox Ditch	4	4	4	4	4.5	4	1	5	3.81		
Multi-stage BNR	4	3.5	3.5	4	4	4	2	3	3.50		
Step-Feed BNR	4	3.5	3	4	4	3.5	3	3	3.50		
Two-Stage Activated Sludge	5	3.5	4	5	4	5	4	3	4.19		
			In	tensified BNR							
MBR w/ MLE	1	5	5	1	1	1	1	1	2.00		
AGS	3.5	2.5	1	3	1	3	4	3	2.63		
DAS (MLE w/ Clarifiers)	4	3	2	4	2	3.5	3	3	3.06		
IFAS	4	3.5	3	4	2	3.5	3	3	3.25		
MABR	5	3	2.5	4	2	4	5	3	3.56		
BioMag	5	4	3.5	5	3	4	5	3	4.06		
Next-Generation Nitrogen Removal											
PANDA	4	2.5	1.5	4	2	4	5	3	3.25		
Simultaneous Nit-Denit	4	2.5	1.5	4	2	5	5	3	3.38		

Modified Ludzack-Ettinger process

1 = Most favorable, 3 = Neutral, and 5 = Least favorable

- Capital cost: O&M cost: Energy efficiency: Solids separation: Expandability: Difficulty: Ease of permitting: Adaptability:
- **2** *Treatment basins already configured for MLE but need clarifiers and filters*
- 3 Moderate operating cost
- 3 *IMLR pumping; AX basin mixing; aeration for complete nitrification*
- 4 Need new clarifiers and filters unless coupled with MBR
- 4 Will consume most bioreactor capacity for 4.5 mgd. Does not require EQ
- 2 Well-understood process, but need new solids basins on crowded plant site
- 1 Well-recognized process, meets BADCT
- 3 Neutral

1 = excellent, 2 = good, 3 = average, 4 = fair, and 5 = poor

Capital cost: 4 Extensive basin modifications, re-equipping

O&M cost:

Energy efficiency:

Expandability:

Difficulty:

Adaptability:

3 Additional operational complexity, energy moderate-see next item

Step 1: Fill

3 Moderate energy cost, single tank approach eliminates IMLR and AX mixing

Step 2: React

Step 3: Settle

Step 4: Decant

Step 5: Idle

- Solids separation: 3 Clarifiers not required, need to add filtration
 - **3.5** Consumes bioreactor capacity, could convert to AGS; requires EQ basin
 - 4 Significant basin modifications
- Ease of permitting: 2 Well-understood but more complicated
 - **2.5** Could convert to AGS later when added capacity is needed

Membrane Bioreactor

1 = Most favorable, 3 = Neutral, and 5 = Least favorable

Capital cost:	1	Existing process components to remain nearly intact other than rehabilitation			
O&M cost:	5	Energy-intensive process, periodic membrane replacements, vendor issues			
Energy efficiency:	5	Requires aeration for complete nitrification, membrane scouring			
Solids separation:	1	No modifications needed			
Expandability:	1	Compact process, existing facilities already capable of the max 9 mgd			
Difficulty:	1	Minimal changes needed			
Ease of permitting:	1	Renewal of already-permitted plant			
Adaptability:	1	Membrane-quality effluent best for feed to RO or other advanced processes			
Two subalternatives: (1) Restore MBR as it exists (500C)					

(2) Update to current "leapMBR" aeration (500D) – or other current technology

Aerobic Granular Sludge

1 = Most favorable, 3 = Neutral, and 5 = Least favorable

Capital cost:	3.5	Requires reconfiguring bioreactors, constructing filtration, and license fee
O&M cost:	2.5	Energy efficient, no clarifier to operate, added operator attention to process
Energy efficiency:	1	Significantly more energy-efficient than typical BNR processes
Solids separation:	3	Clarifiers not required, need to add filtration
Expandability:	1	Intensified process would leave ample space for expansion. Needs EQ
Difficulty:	3	Significant modifications to bioreactors
Ease of permitting:	4	New process, no local history but gaining credibility
Adaptability:	3	Neutral

Densified Activated Sludge

1 = Most favorable, 3 = Neutral, and 5 = Least favorable

O&M cost:

Solids separation:

Expandability:

Difficulty:

Adaptability:

- Capital cost: 4 Reconfiguring bioreactors, constructing clarifiers / filtration, no license fee
 - **3** Energy efficient, added operator attention to process
- Energy efficiency: 2 Biological process much more energy efficient
 - 4 Need new clarifiers and filtration
 - 2 Intensified process leaves expansion space. Need clarifiers, filtration space
 - **3.5** Significant modifications to bioreactors plus addition of clarifiers, filtration
- Ease of permitting: 5 New process, no local history
 - 3 Neutral

Capital cost:	4 Requires reconfiguring bioreactors, constructing clarifiers and filtration
O&M cost:	2.5 Low energy consumption, increased operator effort and complexity
Energy efficiency:	1.5 Eliminates much aeration demand
Solids separation:	4 Need new clarifiers and filtration
Expandability:	2 Intensified process leaves expansion space. Need space for clarifiers/ filtration
Difficulty:	4 New process but requires less-fine process control
Ease of permitting:	5 New process, no history
Adaptability:	3 Neutral

Proposed treatment trains for further evaluation

Complete treatment trains

Train	Preliminary Treatment	Biological Treatment	Additional Treatment	Disinfection	Comments
1		MLE	PANDANew clarifiersNew filters		
2	Existing Headworks with	MLE	DASNew clarifiersNew filters	UV (best score) or	
3	rehabilitation	MLE	Refurbished MBR	Chlorination (lowest energy)	Best score. Most energy-intensive
4		MLE	New MBR	(letter energy)	Best score. Most energy-intensive
5		SBR	New filters		 Lowest energy consumption.
6		SBR	AGSNew filters		 Lowest energy consumption.

Site Layout – Alternatives 3 & 4

MLE + MBR

Ultimate treatment capacity ~ 9.0 mgd

Hydraulic Profile

Site Layout – Alternative 6

AGS + Tertiary Filters

Ultimate treatment capacity ~ 6 mgd

INFLUENT PUMP STATION	SOREENING	GRIT REMOVAL	WATER LEVEL CORRECTION TANK	AGS TAN	IKS	EFFLUE	NT EQ TANK	FILTER INFLUENT PUMP STATION	DISK FILTERS	EFFLUENT PUMPS	UV DISINFECTION
DESIGN PARAMETERS Submersible Pumps: 2X 70 HP with VF09 Configuration: N+1 Firm Capacity: 75 mgd @ d0 hd fH/0 INSTRUMENTATION Flow Pressure Pressure Pressure Pressure Pressure Pressure Pressure Pressure Pressure Temperature Pri Ammonia TSS UVT/UTI Nitrate	DESIGN PARAMETERS Coarse Screen Coarse Screen Coarse Screen Configuration: N=1 Firm Paak Hour Flow: 144 mgd Max Headloss: 187 Fine Screen Nax Headloss: 10.5' INSTRUMENTATION Flow Anmonia Turbidity DO Tiss UVTUTI Nitrate	DESIGN PARAMETERS Vortex GriE:1X Configuration: Nwth Dypass Peak Hour Flow 14.4 mgd Max Headlose: 0.25' INSTRUMENTATION Flow Level © Pressure © Pressure © Pressure © Temperature pH Ammonia Turbidity DO DO TSS UVT/UTI Nitrate	DESIGN PARAMETERS Basin Volume: 0.5 MG Total Configuration: N with typass Mixing: Vertical Shaft Mixers Equalization Pumps Anoxic Pumps (%) 0.5 HP with VFDs Configuration: N-1 Firm Oapacity: 54 mgd @ x 38 ft of 14,0 INSTRUMENTATION Flow Level Pressure Pre	DESIGN PARAMETERS Bain Volume: 5X 23 MG Total Configuratione: N Aeration: Fine Babble Offused Aeration Fine Capacity: 34 mgd Blowers Blowers: Blowers: 4X 200 HP with VFDs Configuration: NH Firm Capacity: 9/900 SCFM @ 637 psi	INSTRUMENTATION Flow Level Pressure Temperature PH O O O O O O O O O O O O O O O O O O	DESIGN PARAM Basin Volume: 04 INSTRUMENTAT Flow Level Pressure Temperature pH Annnonia Turbidity DO DO UVT/UTI Nitrate	RETERS BAVQ THON O O O O O	DESIGN PARAMETERS Pumps: 4X @ 25 HP with VFDs Configurations N+1 Firm Capacity: 54 mgd @ 5ft of H ₂ O INSTRUMENTATION Flow Lovel Pressure pH Ammonia Turbidity DO TSS UVT/UT1 Nitrate	DESIGN PARAMETERS Filters: 2X Configuration: N+1 Firm Capacity: 54 mg5 INSTRUMENTATION Flow Level Pressure PH Ammonia Turbidity DO TSS UVT/UTI Nitrate	DESIGN PARAMETERS Pungs: 3X @ 25 HP Configuration: H1 Firm Capacity: 54 mg3 INSTRUMENTATION Flow Level • Pressure • pH Ammonia Turbidity DO TSS UVT/UTI Nitrate	DESIGN PARAMETERS Trains: 4X Trojan - Chumber ASSY724.726A Configuration: N+1 Dosage: BOD00 wattracobre ² UV Transmittance: 70% Firm Gapacity: 54 mgd INSTRUMENTATION Pow Evel Presure Presure PH Armonia Turbidity DO TSS UVTLUTI Nitrate
											31

Site Plan, Constructability, and Operability

Hydraulic Profile

Alterr	natives	Eva	luation

Category	Criteria	Weighting	Category Weighting			
Cost	Capital Cost	15%	20%			
	25-Year O&M Cost	15%	30 %			
Environmental Impacts	Energy Consumption	20%				
	GHG Emissions	20%	30 %			
Operability	Staffing/FTE	1%				
	Operability	1%				
	Shock Load 1%		5%			
	Automation	1%				
	Maintainability	1%				
Other	Reliability/Redundancy	5%				
	Ultimate Treatment Capacity5%Permitting5%Effluent/Water Quality5%					
			35%			
	Proprietary Product	5%				
	Performance History 5%					
	Research	5%				

- Score each alternative across criteria
- Normalize and aggregate scores with weightings
- Review ranking, strengths, weakness of alternatives

Cost Environmental Impacts Operability Other

Evaluation results – ROUND 1

Weighted Results (Cost 30%, Environmental Impact 30%); higher score is better

MLE – Modified Ludzack-Ettinger process. Typical AZ denitrification process

DAS – Densified activated sludge High MLSS to intensify process

MBR – Membrane bioreactor. Existing KWRF process. Subalternatives: existing and updated

AGS – Aerobic granular sludge. Intensified process with simultaneous nitrification/ denit

AGS (Alt 6) has best score among alternatives due to lowest energy consumption and lowest environmental impacts

MBR alternatives rank best for capital cost. Worst score re: environmental impacts due to energy consumption

Energy use contributes to 25% of the total score

"Right answer" depends upon what is deemed most important

- Weighting factors
- Evaluation range for each variable
- Multiple related/overlapping variables
- This is not "cooking the books" or "garbage in garbage out"
- Important to be attentive to what is really important and be sure it is weighted and scaled accordingly

Evaluation results – ROUND 2

More emphasis placed on capital cost and finished water quality, expandability

Details...

Criteria	Category	Relative Criteria Weight	Category Weight	Raw Scores				Normalized Scores (Unweighted)					Weighted Scores					
				MLE	DAS	MBR – refurb	MBR - new	AGS	MLE	DAS	MBR - refurb	MBR - new	AGS	MLE	DAS	MBR - refurb	MBR - new	AG S
Capital Cost	Cost	10%	20%	\$26,610,000	\$26,950,000	\$22,080,000	\$22,520,000	\$28,610,000	0.68	0.66	0.86	0.84	0.59	6.8	6.6	8.6	8.4	5.9
25-Year O&M	Cost	10%		\$25,654,000	\$26,295,000	\$28,795,000	\$28,774,000	\$24,336,000	0.95	0.93	0.85	0.85	1.00	9.5	9.3	8.5	8.5	10.0
GHG Emissions	Environme ntal Impacts	20%	50%	2,134	2,195	2,616	2,557	1,828	0.61	0.54	0.00	0.08	1.00	12.2	10.7	0.0	1.5	20.0
Effluent/Water Quality	Environme ntal Impacts	30%		3	3	5	5	3	0.50	0.50	1.00	1.00	0.50	15.0	15.0	30.0	30.0	15.0
Operability	Operability	4%	11%	4	4	3	2	4	0.25	0.25	0.50	0.75	0.38	1.0	1.0	2.0	3.0	1.5
Shock Load	Operability	3%		4	4	3	3	3	0.25	0.25	0.50	0.50	0.50	0.8	0.8	1.5	1.5	1.5
Maintainability	Operability	4%		3	3	4	4	2	0.50	0.50	0.25	0.25	0.75	2.0	2.0	1.0	1.0	3.0
Reliability/Redundancy	Other	3%	19%	1.2	1.2	1.5	1.5	1.2	1.00	0.88	0.00	0.00	0.88	3.0	2.6	0.0	0.0	2.6
Ultimate Treatment Capacity	Other	3%		4.2	4.2	8.4	8.4	5.9	0.00	0.00	1.00	1.00	0.40	0.0	0.0	3.0	3.0	1.2
Permitting	Other	3%		0	0	1	1	0	0.00	0.00	1.00	1.00	0.00	0.0	0.0	3.0	3.0	0.0
Proprietary Product	Other	5%		2	3	1	2	1	0.50	1.00	0.00	0.50	0.00	2.5	5.0	0.0	2.5	0.0
Performance History	Other	5%		1	2	5	5	2	0.00	0.25	1.00	1.00	0.25	0.0	1.3	5.0	5.0	1.3

Modernized MBR is the recommended process for the restart of the KWRF

- Best finished water quality
- Capital cost is lower make use of existing facilities
- Most intensified process, can gain most capacity from tight site
- More energy intensive, but...
 - New MBR system and reconfigured plant will use much less energy per unit of flow treated than the previous KWRF
- GHG generation is a criterion and was given substantial weight, but it was not decisive
- Next steps: evaluate potential for additional capacity for potential shared water resources project with other entities

Thank you!

Doug Kobrick, PE – Hazen and Sawyer

602 826-2454

dkobrick@hazenandswyer.com