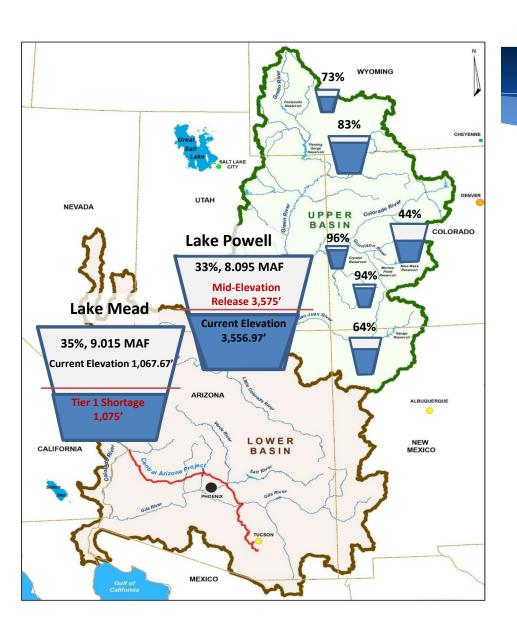

## Arizona Water Reuse 2021 Symposium


When the river runs dry, where's the next water coming from?



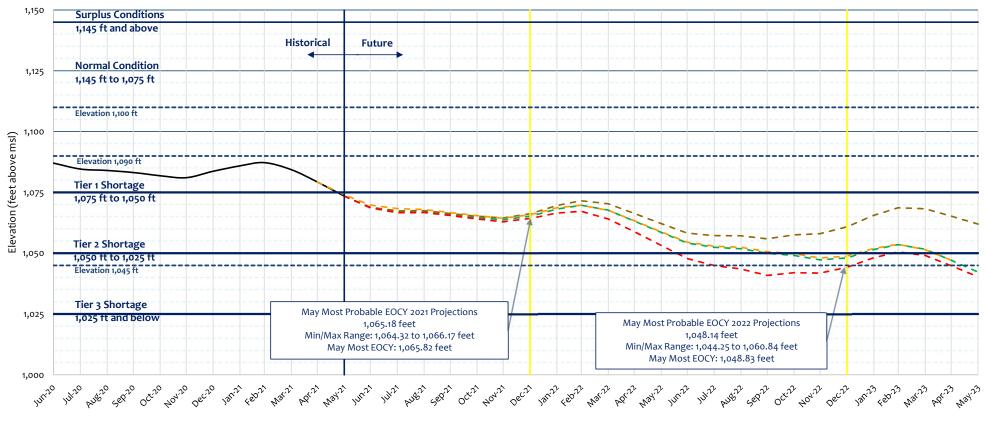
Clint Chandler
Deputy Director
Arizona Department of Water Resources
July 26, 2021

#### **Lake Powell and Lake Mead Combined Storage**





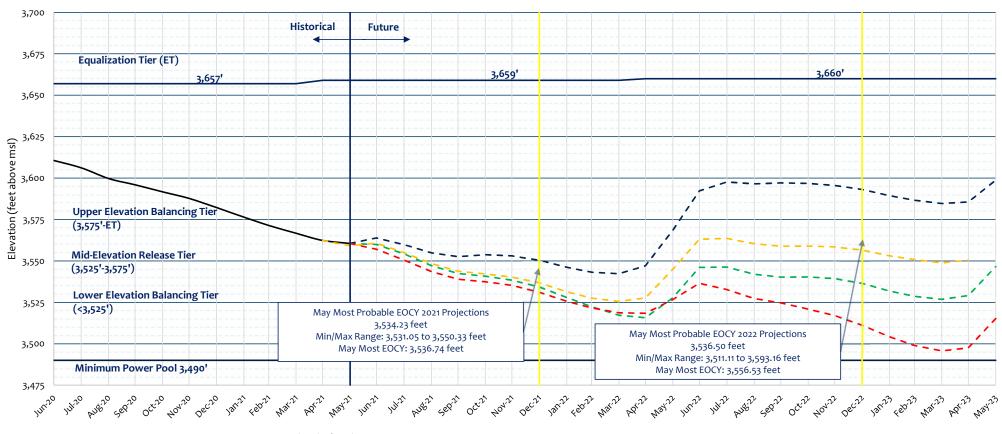
# Colorado River Water Supply Report


### System Contents: 40% or 24.360 MAF

As of July 15, 2021

| Reservoir Storage (MAF) - As of July 15, 2021 |         |                      |         |  |  |  |  |
|-----------------------------------------------|---------|----------------------|---------|--|--|--|--|
| Reservoir                                     | Current | Storage Last<br>Year | Maximum |  |  |  |  |
| ake Mead 9.015                                |         | 10.486               | 26.120  |  |  |  |  |
| Lake Powell                                   | 8.095   | 12.601               | 24.322  |  |  |  |  |
| Fontenelle                                    | 0.253   | 0.330                | 0.345   |  |  |  |  |
| Flaming Gorge                                 | 3.100   | 3.300                | 3.749   |  |  |  |  |
| Blue Mesa                                     | 0.369   | 0.573                | 0.830   |  |  |  |  |
| Morrow Point                                  | 0.110   | 0.111                | 0.117   |  |  |  |  |
| Navajo                                        | 1.090   | 1.320                | 1.696   |  |  |  |  |

#### Lake Mead End of Month Elevations


Historic and Projected based on June and May 2021 24-Month Study Inflow Scenarios



- Historic Elevations
- - June 2021 Most Probable Inflow with a Lake Powell release of 8.23 maf in WY2021 and 7.48 maf in WY2022
- – June 2021 Maximum Probable Inflow with a Lake Powell release of 8.23 maf in WY2021 and 7.48 maf in WY2022
- – June 2021 Minimum Probable Inflow with a Lake Powell release of 8.23 maf in WY2021 and 7.0 maf in WY2022
- – May 2021 Most Probable Inflow with a Lake Powell release of 8.23 maf in WY2021 and 7.48 maf in WY2022

#### **Lake Powell End of Month Elevations**

Historic and Projected based on June and May 2021 24-Month Study Inflow Scenarios



- Historic Elevations
- - June 2021 Most Probable Inflow with a Lake Powell release of 8.23 maf in WY2021 and 7.48 maf in WY2022
- - June 2021 Maximum Probable Inflow with a Lake Powell release of 8.23 maf in WY2021 and 7.48 maf in WY2022
- June 2021 Minimum Probable Inflow with a Lake Powell release of 8.23 maf in WY2021 and 7.0 maf in WY2022
- May 2021 Most Probable Inflow with a Lake Powell release of 8.23 maf in WY2021 and 7.48 maf in WY2022

#### Comparison of April 2021 and June 2021 Projections Chance of Reaching Critical Reservoir Elevations Using the Stress Test Hydrology (1988-2019)

|                                        | Run                     | 2021     | 2022       | 2023       | 2024       | 2025       |
|----------------------------------------|-------------------------|----------|------------|------------|------------|------------|
| Lake Mead<br>less than<br>1,025 feet   | April 2021              | 0%       | 0%         | 8%         | 36%        | 44%        |
|                                        | June 2021               | 0%       | 0%         | 17%        | 44%        | 58%        |
|                                        | Difference              | 0%       | 0%         | 9%         | 8%         | 14%        |
| Lake Mead<br>less than<br>1,000 feet   | April 2021              | 0%       | 0%         | 0%         | 4%         | 13%        |
|                                        | June 2021               | 0%       | 0%         | 0%         | 9%         | 21%        |
|                                        | Difference              | 0%       | 0%         | 0%         | 5%         | 8%         |
| Lake Powell<br>less than<br>3,525 feet | April 2021<br>June 2021 | 0%<br>0% | 13%<br>79% | 18%<br>30% | 20%<br>25% | 23%<br>30% |
|                                        | Difference              | 0%       | 66%        | 12%        | 5%         | 7%         |
| Lake Powell<br>less than<br>3,490 feet | April 2021              | 0%       | 0%         | <1%        | 9%         | 12%        |
|                                        | June 2021               | 0%       | 0%         | 5%         | 17%        | 16%        |
|                                        | Difference              | 0%       | 0%         | <5%        | 8%         | 4%         |

All results computed as the chance of falling below the threshold in any month in the calendar (water) year for Lake Mead (Lake Powell).



## Lower Basin – Lake Mead Percent of Traces with Event or System Condition Results from June 2021 CRMMS-ESP/CRSS using the Full Hydrology and Stress Test Hydrology (values in percent)

| Event or System Condition                                                                                                                                                       |     | 2022 | 2023 | 2024 | 2025 | 2021 | 2022 | 2023 | 2024 | 2025 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|------|------|------|------|------|------|------|------|
| Surplus Condition – any amount (Mead ≥ 1,145 ft)                                                                                                                                |     | 0    | 0    | <1   | 4    | 0    | 0    | 0    | 0    | 0    |
| Surplus – Flood Control                                                                                                                                                         |     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Normal or ICS Surplus Condition (Mead < 1,145 and > 1,075 ft)                                                                                                                   |     | 0    | 3    | 12   | 15   | 100  | 0    | 5    | 3    | 1    |
| Recovery of DCP ICS / Mexico's Water Savings (Mead >/≥ 1,110 ft)                                                                                                                | 0   | 0    | 0    | 3    | 7    | 0    | 0    | 0    | 0    | 0    |
| DCP Contribution / Mexico's Water Savings (Mead ≤ 1,090 and > 1,075 ft)                                                                                                         | 100 | 0    | 3    | 9    | 9    | 100  | 0    | 5    | 3    | 1    |
| Shortage Condition – any amount (Mead ≤ 1,075 ft)                                                                                                                               | 0   | >99  | 97   | 88   | 81   | 0    | >99  | 95   | 97   | 99   |
| Shortage / Reduction – 1 <sup>st</sup> level (Mead ≤ 1,075 and ≥ 1,050)                                                                                                         | 0   | >99  | 74   | 31   | 23   | 0    | >99  | 60   | 30   | 28   |
| DCP Contribution / Mexico's Water Savings (Mead ≤ 1,075 and > 1,050 ft)                                                                                                         | 0   | >99  | 74   | 31   | 23   | 0    | >99  | 60   | 30   | 28   |
| Shortage / Reduction – 2 <sup>nd</sup> level (Mead < 1,050 and ≥ 1,025)                                                                                                         | 0   | 0    | 23   | 54   | 39   | 0    | 0    | 34   | 65   | 32   |
| DCP Contribution / Mexico's Water Savings (Mead ≤ 1,050 and > 1,045 ft)                                                                                                         | 0   | 0    | 17   | 9    | 8    | 0    | 0    | 26   | 4    | 7    |
| DCP Contribution / Mexico's Water Savings (Mead ≤ 1,045 and > 1,040 ft)                                                                                                         | 0   | 0    | 5    | 10   | 7    | 0    | 0    | 8    | 10   | 8    |
| DCP Contribution / Mexico's Water Savings (Mead ≤ 1,040 and > 1,035 ft)                                                                                                         | 0   | 0    | 0    | 13   | 8    | 0    | 0    | <1   | 12   | 4    |
| DCP Contribution / Mexico's Water Savings (Mead ≤ 1,035 and > 1,030 ft)                                                                                                         | 0   | 0    | 0    | 13   | 10   | 0    | 0    | 0    | 22   | 9    |
| DCP Contribution / Mexico's Water Savings (Mead ≤ 1,030 and ≥/> 1,025 ft)                                                                                                       | 0   | 0    | 0    | 8    | 5    | 0    | 0    | 0    | 18   | 5    |
| Shortage / Reduction – 3 <sup>rd</sup> level (Mead < 1,025)                                                                                                                     |     | 0    | 0    | 3    | 20   | 0    | 0    | 0    | 2    | 38   |
| DCP Contribution / Mexico's Water Savings (Mead ≤ 1,025 ft)</td <td>0</td> <td>0</td> <td>0</td> <td>3</td> <td>20</td> <td>0</td> <td>0</td> <td>0</td> <td>2</td> <td>38</td> | 0   | 0    | 0    | 3    | 20   | 0    | 0    | 0    | 2    | 38   |

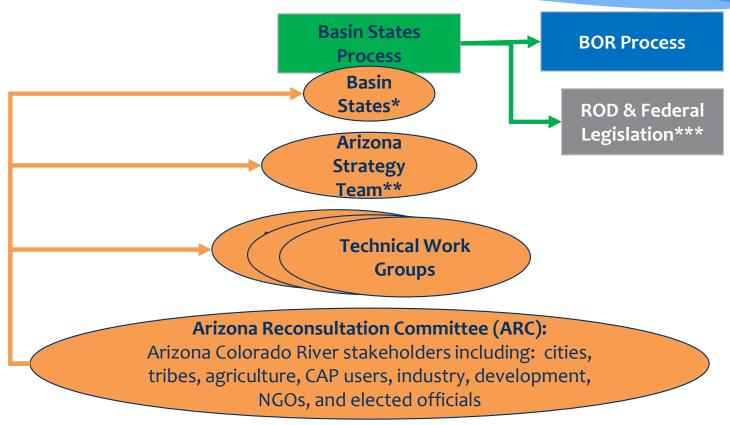
#### Notes

<sup>4</sup> Percentages shown in this table may not be representative of the full range of future possibilities that could occur with different modeling assumptions.

<sup>5</sup> Percentages shown may not sum to 100% due to rounding to the nearest percent.



<sup>&</sup>lt;sup>1</sup> Modeled operations include the 2007 Interim Guidelines, Upper Basin Drought Response Operations, Lower Basin Drought Contingency Plan, and Minute 323, including the Binational Water Scarcity Contingency Plan

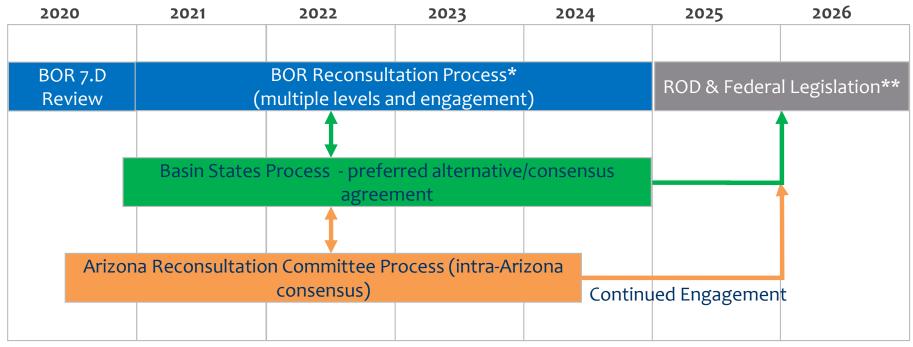

<sup>&</sup>lt;sup>2</sup> Reservoir conditions from June-December 2021 were simulated using the June 2021 CRMMS in ensemble mode using the CRRFC unregulated inflow forecast ensemble dated June 3, 2021 (CRMMS-ESP).

<sup>3</sup> Each of the 35 initial conditions from CRMMS-ESP were counted with 114 bydrologic inflow sequences from the Full Hydrology, that researches the observed natural flow record from 1906-2019 for a

<sup>&</sup>lt;sup>3</sup> Each of the 35 initial conditions from CRMMS-ESP were coupled with 114 hydrologic inflow sequences from the Full Hydrology that resamples the observed natural flow record from 1906-2019 for a total of 3,990 traces analyzed and with 32 hydrologic inflow sequences from the Stress Test Hydrology that resamples the observed natural flow record from 1988-2019 for a total of 1,120 traces analyzed.

<sup>6</sup> While all CRMMS-ESP projections show Lake Mead's December 31, 2021 elevation falling below 1,075′, the August 2021 24-Month Study will set the 2022 Lower Basin operating tier.

### **Arizona Reconsultation Process**




<sup>\*</sup>By invitation to support the co-Chairs

<sup>\*\*</sup>Requires confidentiality agreement for legal advice and negotiating strategies

<sup>\*\*\*</sup>Federal legislation if necessary

### Arizona's Estimate of Reconsultation Processes & Timeline



<sup>\*</sup>Exact timing of BOR Reconsultation Process yet to be determined

<sup>\*\*</sup> Federal legislation if necessary

## **Contact Information**

### Clint Chandler Deputy Director

Phone: 602.771.3974

Email: cchandler@azwater.gov

Website: www.azwater.gov

Twitter: @azwater

