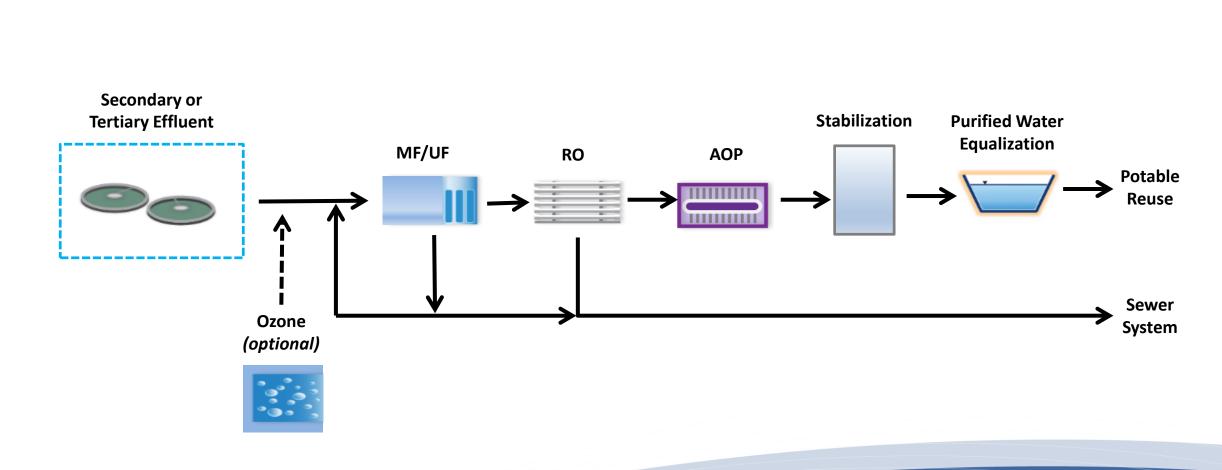
Understanding Your Options for Brine Management:

Treatment Technologies and Application in Design

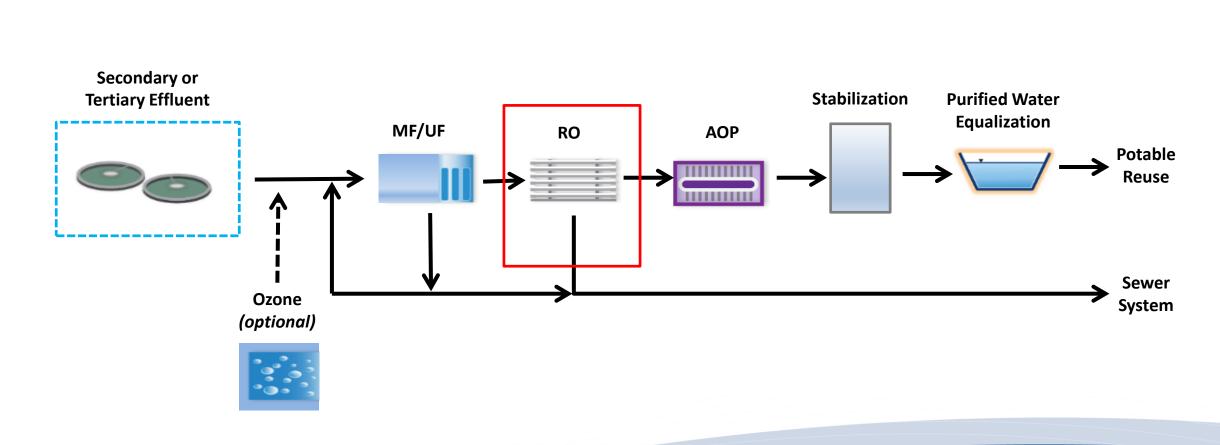
Chapter Meeting 9 October 2018

> Presented by: Alan Bracewell Kennedy/Jenks Consultants Staff Engineer

Overview of Today's Presentation


- **1.** Reasons for Managing Brine
- 2. Advanced Water Treatment Train
- **3.** Brine Treatment Technologies
 - 1. Recovery Rates
 - 2. Pros/Cons
 - 3. Example Facilities
- **4.** Evaluation of Brine Minimization Technologies
 - 1. Non-Cost Factors
 - 2. Cost Factors
- 5. Take-Aways

Reasons for Managing Brine


- Maximize existing water supply
 - As population increases, water quality and availability decreases
 - Do more with less
- Applicable to multiple source waters
 - Wastewater effluent
 - Ground water
 - Brackish water
 - Ocean desalination

Advanced Water Treatment Train

Advanced Water Treatment Train

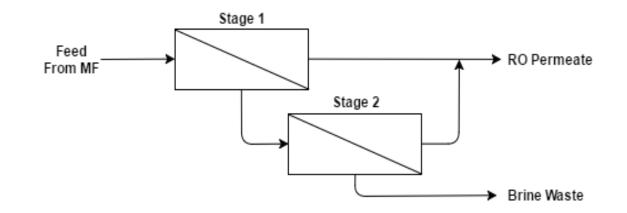
Kennedy/Jenks Consultants

Brine Minimization Technologies

- 1. Two–Stage Reverse Osmosis (No Minimization)
- 2. Multi-Stage Concentrator
- **3.** Closed Circuit Reverse Osmosis
- 4. Electrodialysis Reversal

Brine Minimization Technologies

- 1. Two-Stage Reverse Osmosis (No Minimization)
- 2. Multi-Stage Concentrator
- **3.** Closed Circuit Reverse Osmosis
- 4. Electrodialysis Reversal
- Brine Concentrators
- Forward Osmosis
- High-Efficiency Reverse Osmosis (HERO)
- Capacitive Deionization
- Vibratory Shear-Enhanced Processing


Brine Minimization Technologies

- 1. Two-Stage Reverse Osmosis (No Minimization)
- 2. Multi-Stage Concentrator
- 3. Closed Circuit Reverse Osmosis
- 4. Electrodialysis Reversal
- Brine Concentrators
- Forward Osmosis
- High-Efficiency Reverse Osmosis (HERO)
- Capacitive Deionization
- Vibratory Shear-Enhanced Processing

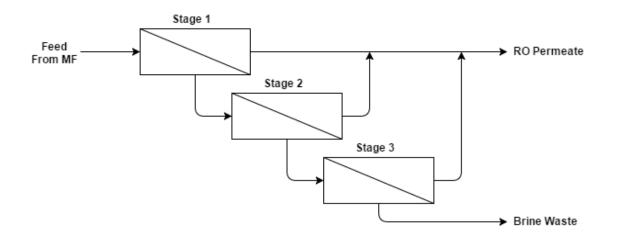
- Zero Liquid Discharge
 - Evaporation Ponds
 - Solar Ponds
 - Crystallizers
 - Spray Dryers
 - Wind-Aided Intensified Evaporation
 - Salt Recovery
 - SAL-PROC
 - Dewvaporation

Two-Stage Reverse Osmosis (No Minimization)

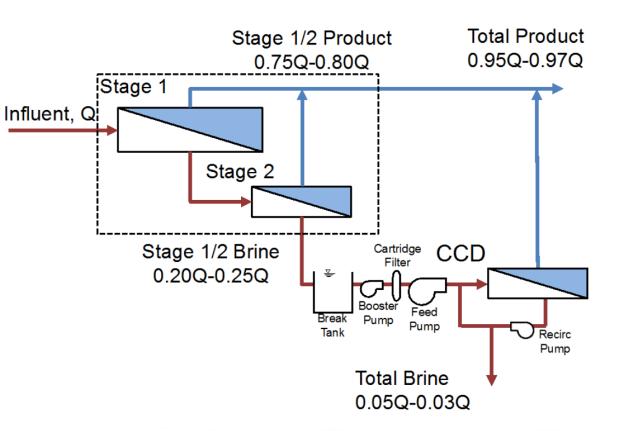
- Recovery: 75-80%
 - 50% each stage
- Pros
 - Low capital cost
 - Low energy usage
 - "Dilute" RO concentrate
- Cons
 - Disposal of large volume of RO concentrate required
 - Low recovery rate

Example Facility for Two-Stage RO: Pure Water Monterey

- 5 MGD Facility (in construction)
 - Feed: 4.94 MGD
 - Permeate: 4.0 MGD (81%)
 - Brine: 0.94 MGD
- Brine to be mixed with WWTP effluent outfall


Example Facility for Two-Stage RO: Pure Water Monterey

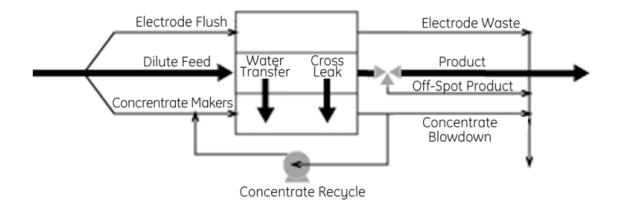
- 5 MGD Facility (in construction)
 - Feed: 4.94 MGD
 - Permeate: 4.0 MGD (81%)
 - Brine: 0.94 MGD
- Brine to be mixed with WWTP effluent ocean outfall


Multi-stage Concentrator

- Recovery: 85-90%
 - 50% each stage
- Pros
 - Medium capital cost
 - Increased recovery/reduced brine
 - Familiar technology
- Cons
 - Increased energy usage
 - Requires careful operation to protect 3rd stage RO

Closed Circuit Reverse Osmosis

- Recovery: 75-95%
 - 50% first two stages
 - 50% to 88% at CCRO
- Pros
 - Flexible recovery rate
 - Lower energy consumption
 - Reduced antiscalant usage
- Cons
 - Proprietary technology
 - Increased capital cost


Example Facility for CCRO: Padre Dam Pilot

- Planned 12 MGD facility
 - Extra 1 MGD from secondary RO discharged to Santee Lakes
- RO waste to be blended with MF waste and sent to sewer system

Electrodialysis Reversal

- Typical recovery: 70-90%
- Pros
 - High recovery rate
 - Reduced particulate fouling
- Cons
 - Only removes cations/anions
 - Does not provide a "physical barrier"
 - ✓ Permeate must return to head of plant

High-level

Comparison of Brine Minimization Technologies

Technology	2-Stage RO (Baseline – No Brine Minimization)	Multi-Stage Concentrator	CCRO	Electrodialysis Reversal
Brine Reduction/Recovery (range)	75 - 80%	85 - 90%	75 - 95%	70 - 90%
Experience, Installations, and Permitting	High	High	Medium	High
Ease of O&M & Flexibility	Medium	Medium	High	Medium
Water Quality	High	High	High	Medium
Footprint and Constructability	High	High	Medium	Low
Non-Cost Ranking	1	1	2	3

High-level

Comparison of Brine Minimization Technologies

Technology	2-Stage RO (Baseline – No Brine Minimization)	Multi-Stage Concentrator	CCRO	Electrodialysis Reversal
Brine Reduction/Recovery (range)	75 - 80%	85 - 90%	75 - 95%	70 - 90%
Experience, Installations, and Permitting	High	High	Medium	High
Ease of O&M & Flexibility	Medium	Medium	High	Medium
Water Quality	High	High	High	Medium
Footprint and Constructability	High	High	Medium	Low
Non-Cost Ranking	1	1	2	3

Example Life Cycle Costs and Cost Ranking 7.4 MGD Facility with Brine Line

Technology	2-Stage RO (Baseline – No Brine Minimization)	Multi-Stage Concentrator	CCRO	EDR
RO + Brine Minimization	\$2.7	\$3.4	\$3.7	\$3.9
Equipment Capital Cost ¹ (\$M)				
Brine Line Diameter (in)	12	8	6	6
Brine Line Capital Cost ² (\$M)	\$13.5	\$9.8	\$7.6	\$7.6
Annual O&M Costs ³ (\$M)	\$0.9	\$0.6	\$0.4	\$0.7
Brine Discharged (AFY)	870	440	180	220
Life Cycle Unit Cost (\$/AF)	\$790	\$490	\$360	\$470
Cost Ranking	3	2	1	2

¹ Includes equipment purchasing only for RO and brine minimization systems.

² Capital costs for a 12 mile brine line.

³ Includes energy, chemicals and replacement costs for RO and brine minimization systems plus annual brine discharge fees. **Kennedy/Jenks Consultants**

Example Life Cycle Costs and Cost Ranking 7.4 MGD Facility with Brine Line

Technology	2-Stage RO (Baseline – No Brine Minimization)	Multi-Stage Concentrator	CCRO	EDR
RO + Brine Minimization	\$2.7	\$3.4	\$3.7	\$3.9
Equipment Capital Cost ¹ (\$M)				
Brine Line Diameter (in)	12	8	6	6
Brine Line Capital Cost ² (\$M)	\$13.5	\$9.8	\$7.6	\$7.6
Annual O&M Costs ³ (\$M)	\$0.9	\$0.6	\$0.4	\$0.7
Brine Discharged (AFY)	870	440	180	220
Life Cycle Unit Cost (\$/AF)	\$790	\$490	\$360	\$470
Cost Ranking	3	2	1	2

¹ Includes equipment purchasing only for RO and brine minimization systems.

² Capital costs for a 12 mile brine line.

³ Includes energy, chemicals and replacement costs for RO and brine minimization systems plus annual brine discharge fees. **Kennedy/Jenks Consultants**

Example Life Cycle Costs and Cost Ranking 7.4 MGD Facility with Brine Line)

Technology	2 Stage RO (Baseline)	Multistage Concentrator	CCRO	EDR
Non-Cost Ranking	1	1	2	2
Cost Ranking	3	2	1	2
Overall Ranking	2	1	1	2

Key Take-Aways

- Each technology has its own strengths/weaknesses
- Costs are very site dependent
 - Access to brine line or ocean outfall
 - Water needs of the service area
 - Available land for construction
- Numerous emerging/niche technologies

- Never too early to consider brine minimization
 - Feasibility level: consider non-cost and cost factors
 - Demo best technologies during drafting of preliminary design report (PDR)
 - 3. Apply learnings from demonstration plant for design

Kennedy/Jenks Consultants

Thank you.

Questions?

Presented by: Alan Bracewell alanbracewell@kennedyjenks.com Kennedy/Jenks Consultants Staff Engineer

