

Integrating Onsite
Water Reuse with
Centralized Treatment
Systems

December 19, 2019

A Few Notes Before We Start...

- > Today's webcast will be 60 minutes.
- ➤ There is one (1) Professional Development Hour (PDH) available for this webcast.
- > A PDF of today's presentation will be shared via email
- Please type questions for the presenters into the chat box located on the panel on the left side of your screen.

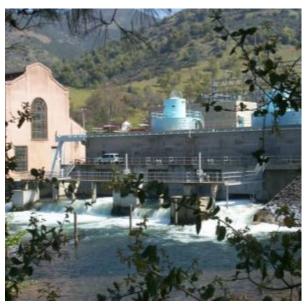
Today's Presenters

Moderator
Mary Ann Dickinson
President & CEO
Alliance for Water Efficiency

Presenter
Paula Kehoe
Director of Water Resources
San Francisco Public Utilities Commission

ADVANCING ONSITE WATER REUSE & LESSONS LEARNED

Paula Kehoe



San Francisco Public Utilities Commission

Water: delivering high quality water every day to 2.7 million people

Power: generating hydropower and solar power

Wastewater: protecting public health and the environment

Challenges to Future Water Supply Reliability

OneWaterSF: Moving from a Linear Approach to Integrated Planning and Implementation

San Francisco's Local Water Program

Conservation
Groundwater
Recycled Water
Onsite Water Reuse
Innovations Program

San Francisco knows the importance of diversifying our water portfolio...

To ensure reliability—particularly in the age of climate change—we need to use every water resource available.

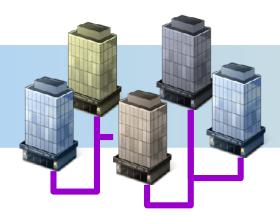
Harlan L. Kelly, Jr., SFPUC General Manager

ONSITE WATER REUSE PROGRAM IMPLEMENTATION

Buildings Generate Resources, Not Waste

Pioneering Onsite Water Reuse at SFPUC Headquarters

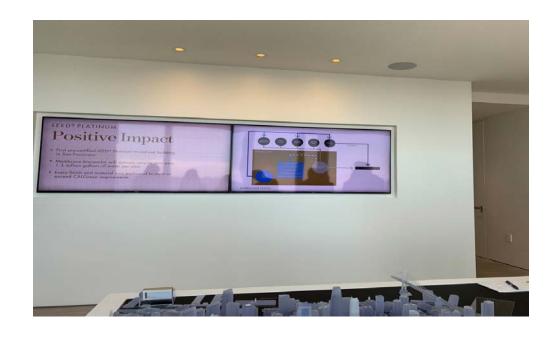
San Francisco's Evolving Onsite Water Reuse Program


2012

2013

2015

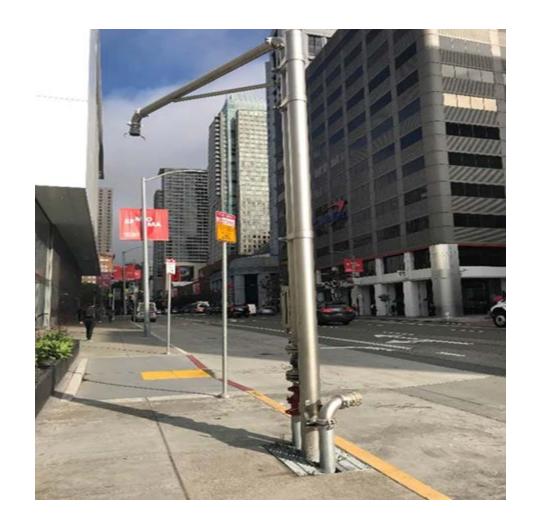
District-Scale


Mandatory for ≥ 250,000 gsf


Source: San Francisco Public Utilities Commission

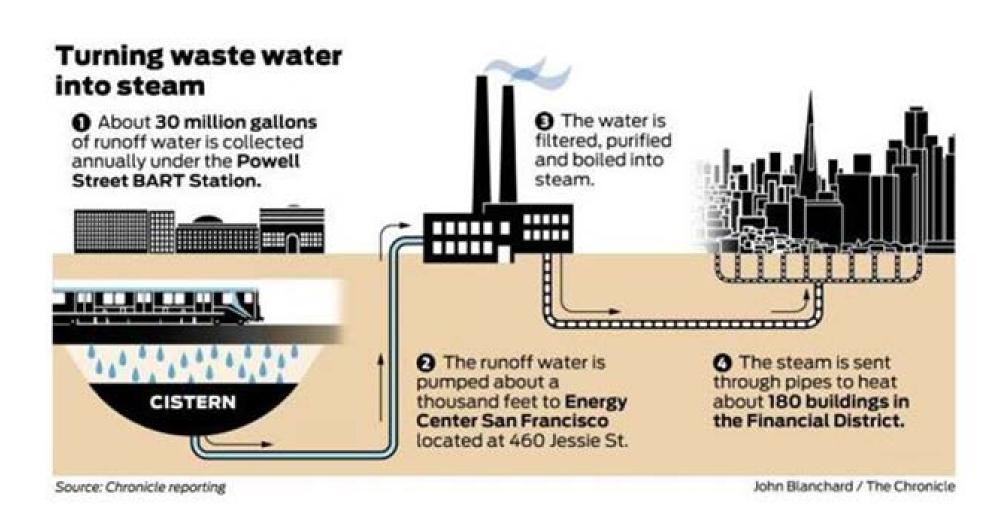
9

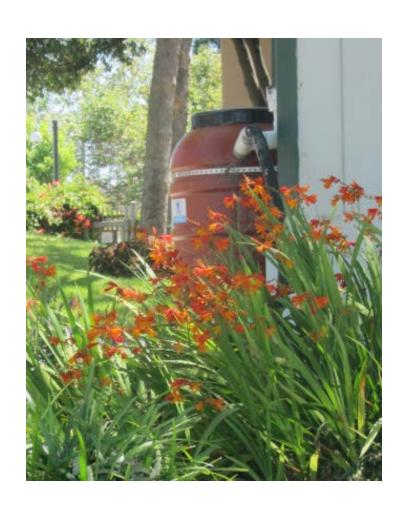
181 Fremont, San Francisco
Graywater and Rainwater for Flushing and Irrigation
1.3M GPY Potable Offset


Salesforce Tower, San Francisco
Blackwater for Flushing, Cooling, and Irrigation
7.8M GPY Potable Offset

Moscone Convention Center, San Francisco
Foundation Drainage and Condensate for Flushing, Irrigation, and Street Sweeping
11M GPY Potable Offset

Chase Center, San Francisco


Rainwater, Stormwater, Graywater, and Condensate for Flushing 3.7M GPY Potable Offset


Industrial Reuse

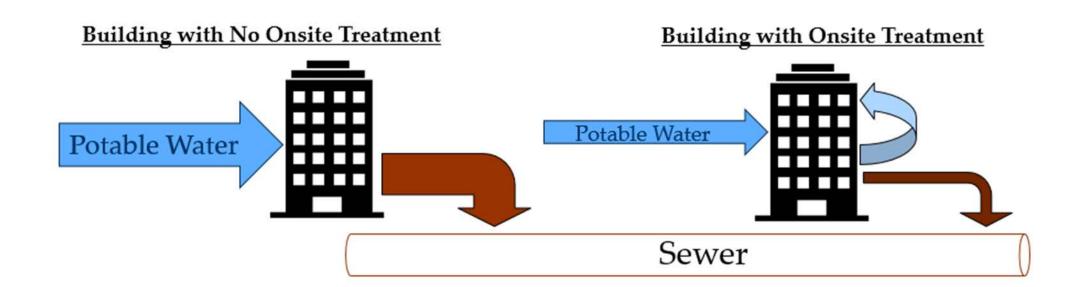
NRG Steam Loop 30M GPY Potable Offset

Reusing Rainwater & Graywater on a Residential Scale

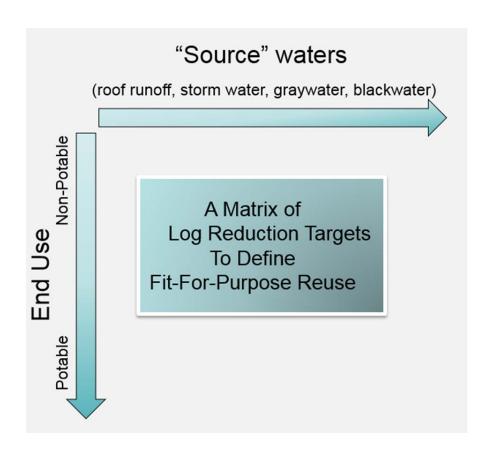
ONSITE WATER REUSE SAN FRANCISCO'S LESSONS LEARNED

- Program Development
- Water Quality and Treatment Design
- Key Utility Considerations
- Operator Capacity
- Partner with Developers, Vendors and General Public
- Resource Recovery Opportunities

Onsite Water Reuse Lessons Learned *Program Development*


- Need for multi-agency collaboration
- Identify roles and responsibilities
- Establishment of rules and regulations
- Identify enforcement measures
- Policy synergies
- Cultural shift

Onsite Water Reuse Lessons Learned Key Program Elements


- Require connections to municipal water and sewer systems
- Require backflow protection requirements
- Conduct cross-connection test prior to operation

Onsite Water Reuse Lessons Learned Water Quality and Treatment Design

- CA Plumbing Code limitations
- Protection of public health: risk-based water quality standards
- Design treatment systems to reduce pathogens that can impact public health (protozoa, bacteria, and virus)

Onsite Water Reuse Lessons Learned Water Quality and Treatment Design

Graywater and Blackwater Treatment

- Biological treatment of graywater and blackwater can reduce TSS, turbidity and BOD; improve UV Transmittance; and can reduce ammonia
- Raw graywater BOD can be as high as 600 mg/L
- Consider aesthetics desired for end uses, e.g. toilet flushing

Onsite Water Reuse Lessons Learned Water Quality and Treatment Design

Rainwater Harvesting

- Routing rainwater through a green roof or planter can create issues with color and turbidity
- Tanks and pipes must be properly sealed to prevent mosquito growth
- Plumbing cistern to be able to flush with potable water helps avoid dry season stagnation

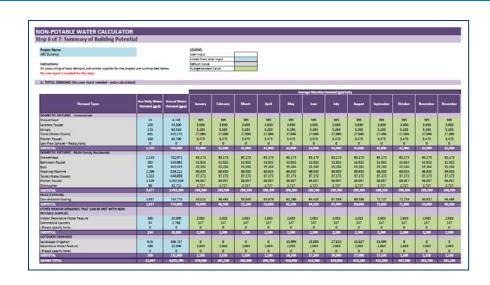
Onsite Water Reuse Lessons Learned Key Utility Considerations

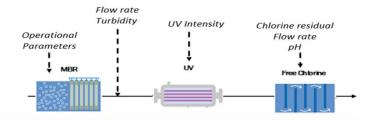
- Wastewater flows and odors
- Revenue impacts
- Capacity charge adjustments
- Excess use charges

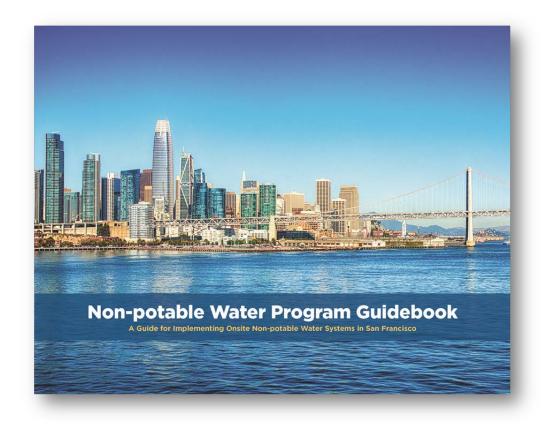
Management and Mitigation Approach

- ✓ Hydraulic modeling used to evaluate impacts
- ✓ So far, no impacts expected in SF
- ✓ Alternative strategies available (e.g. flushing, trucking solids)

Onsite Water Reuse Lessons Learned Operator Capacity


- Operators benefit from having experience with both traditional water and wastewater technologies
- Require operators to sign affidavit acknowledging they possess appropriate knowledge, skills, and training
- Early communication is key among operators, project owners, and engineers about ongoing O&M costs and responsibilities




Graywater for toilet flushing

Onsite Water Reuse Lessons Learned Develop Technical Assistance

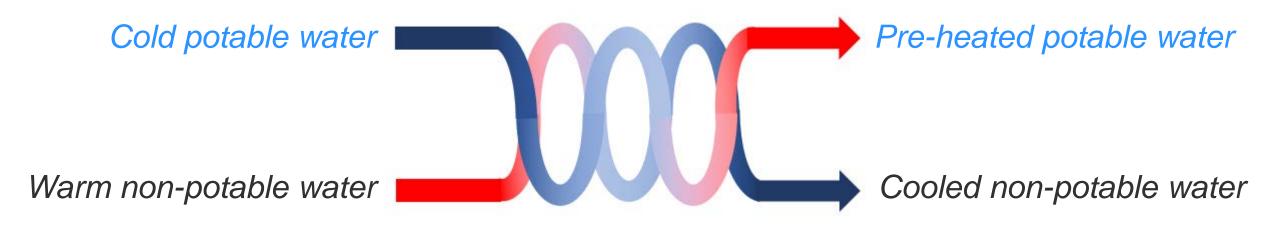
Pathogen Credits			
Treatment Process	MBR	UV	Chlorine
Virus	1.5	Up to 6	Up to 5
Protozoa	2	Up to 6	0
Bacteria	4	Up to 6	Up to 5
Ongoing Requirements	Operate within Tier 1 envelope	Online monitoring to confirm validated dose	Demonstrate CT with verified free chlorine residual

Onsite Water Reuse Lessons Learned Share Learning with Developers and Vendors

 Encouraging blackwater reuse in commercial buildings as opposed to graywater can achieve significantly higher potable water savings

Onsite Water Reuse Lessons Learned Public Education

 Signage in bathrooms and common areas is an opportunity to engage occupants and visitors about conserving water with onsite water treatment systems



Onsite Water Reuse Lessons Learned Resource Recovery Opportunities

Wastewater Heat Recovery:

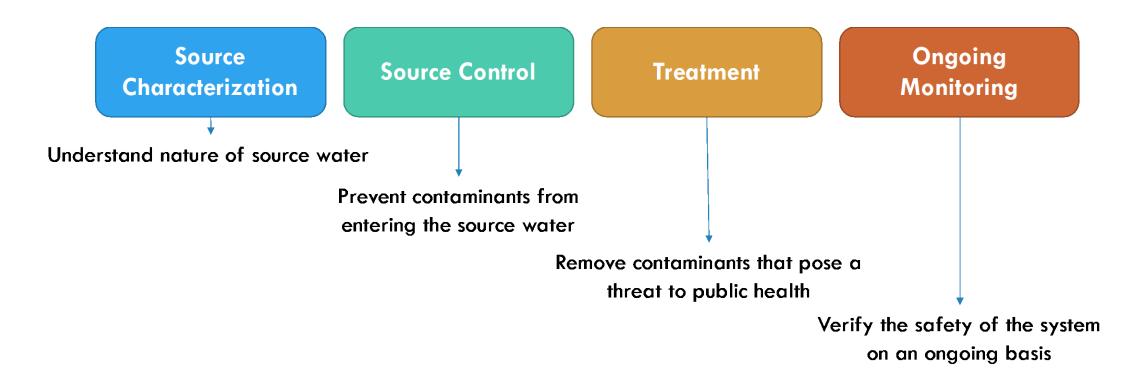
The extraction of thermal energy from warm wastewater, and subsequent beneficial use of this energy to offset building energy use for applications such as hot water heating or space heating/cooling

Onsite Water Reuse Lessons Learned Wastewater Heat Recovery

- Potential for heat recovery is greatest in multi-family residential buildings
- Maximizing benefits requires integration with building hot water and/or space heating & cooling systems
- Wastewater heat recovery has synergies with onsite reuse
 - ✓ Onsite water reuse systems will already have EQ tanks that can provide consistent flow to heat recovery system
 - ✓ Heat can be recovered from treated gray or blackwater, meaning less wear and tear
 on heat recovery equipment from raw wastewater
 - ✓ Heat recovery will cool down treated non-potable water, which can help control Legionella growth in distribution system

SAN FRANCISCO'S INNOVATIONS PROGRAM

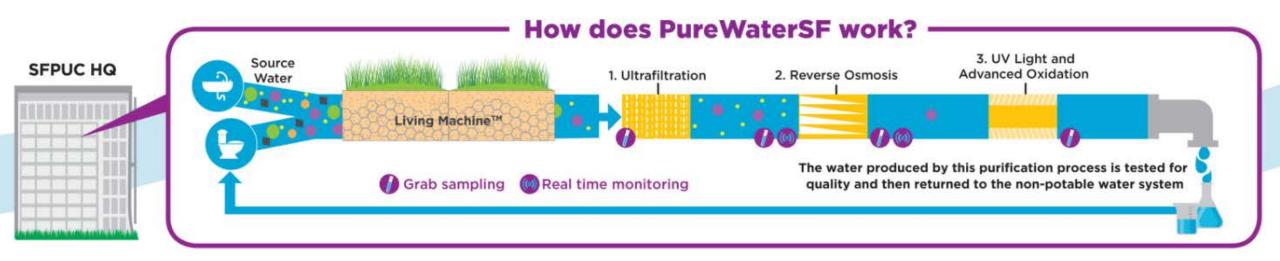
Brewery Process Water Reuse



- Typical brewery can use 5 7 gallons of water to produce 1 gallon of beer
- Breweries can collect & treat process water onsite to reduce water footprint
 - Rinsing tanks, bottles, and kegs
 - Floor wash down
 - Cooling towers
 - Beer production
- SFPUC Onsite Water Reuse Grant Program contain guidance on brewery process water reuse

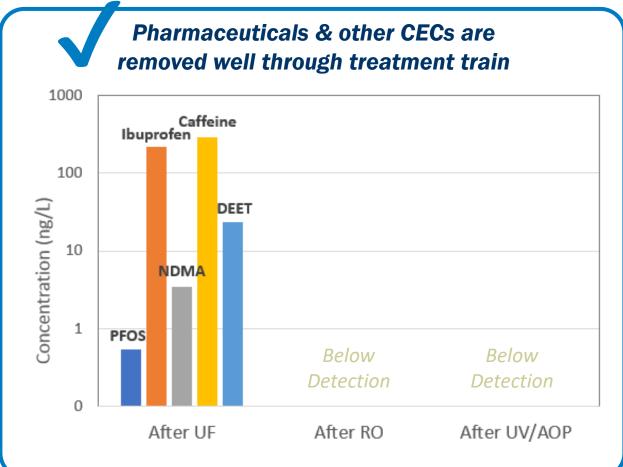
Need for New Strategy to Protect Public Health

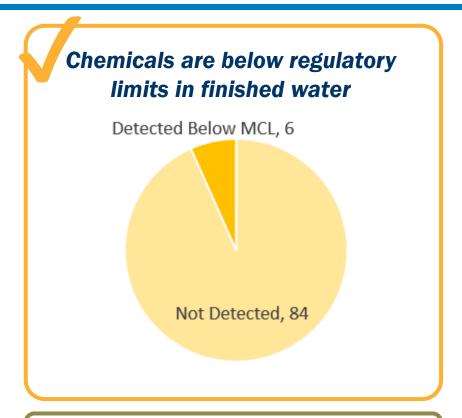
 San Francisco's chemical and pathogen control strategy is based on four key elements to ensure public health protection:



PureWaterSF

Researching Direct Potable Reuse at the Building Scale





PureWaterSF

Findings: Water Quality and Treatment Performance

Treatment processes achieved pathogen removal goals

Atmospheric Water Generation Additional Opportunity to Produce Water Onsite

Source: Zero Mass Water

AWG at the Denver Botanic Garden



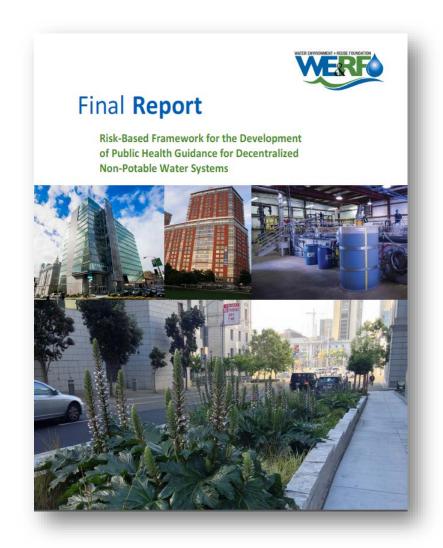
ONSITE WATER REUSE COLLABORATING ON A NATIONAL LEVEL

National Blue Ribbon Commission for Onsite Non-potable Water Systems

National Blue Ribbon Commission Address Key Issues

- Create Consistent Water Quality Standards From State to State
- Promote Risk-Based Water Quality Standards
- Encourage Local Oversight and Management Programs
- Forum for Peer to Peer Learning

National Blue Ribbon Commission for Onsite Non-potable Water Systems


Varying Water Quality Standards Across the US

Graywater Use to Flush Toilets						
	BOD ₅ (mg L ⁻¹)	TSS (mg L ⁻¹)	Turbidity (NTU)	Total Coliform (cfu/ 100ml)	E. Coli (cfu/ 100ml)	Disinfection
California	10	10	2	2.2	2.2	0.5 – 2.5 mg/L residual
California	10	10	2	2.2	2.2	chlorine
New Mexico	30	30	-	-	200	-
Oregon	10	10	-	-	2.2	-
Georgia	-	-	10	500	100	-
Texas	-	-	-	-	20	-
Massachusetts	10	5	2	-	14	-
Wisconsin	200	5	-	-	-	0.1 – 4 mg L ⁻¹ residual chlorine
Colorado	10	10	2	-	2.2	0.5 – 2.5 mg/L residual chlorine
Typical Graywater	80 - 380	54 -280	28-1340	10 ^{7.2} –10 ^{8.8}	10 ^{5.4} -10 ^{7.2}	N/A

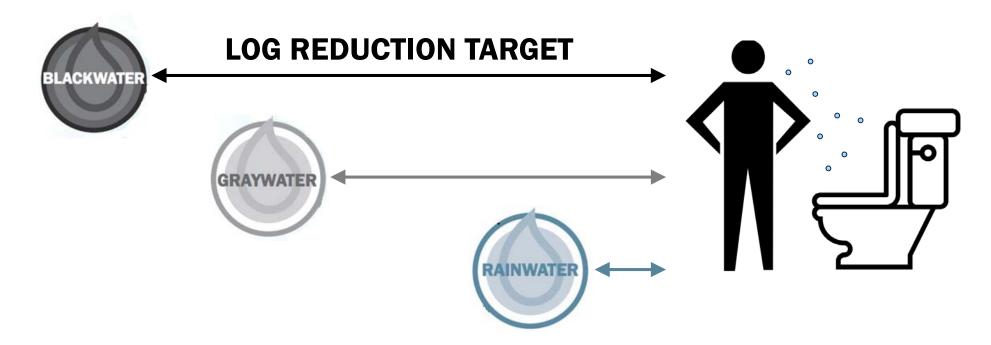
Source: Jay Garland, US EPA

Independent Expert Panel

Developed a risk-based water quality approach for onsite non-potable water systems

Pathogen Log Reduction Targets (LRTs)

Continuous online monitoring

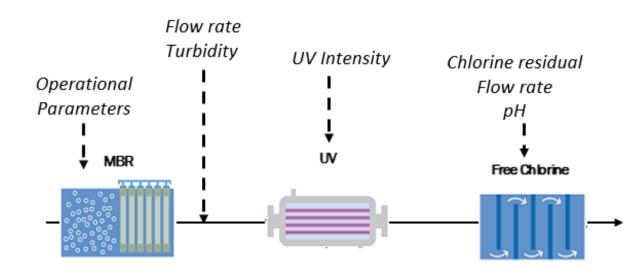

Treated water quality standards

Pathogen Log Reduction Targets

Source waters have different starting pathogen concentrations

Target safe pathogen level is the same regardless of source water

Log reduction target is the difference between the starting point and the safe end point



Pathogen Log Reduction Targets for Various Water Sources & End Uses

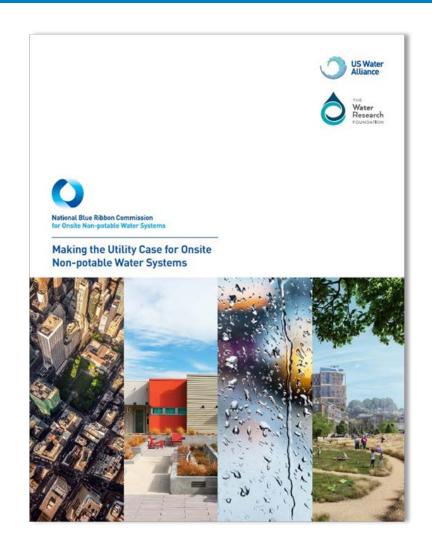
	Enteric Viruses	Parasitic Protozoa	Enteric Bacteria	
Blackwater				
Outdoor use	8.0	7.0	6.0	
Indoor use	8.5	7.0	6.0	
Graywater				
Outdoor use	5.5	4.5	3.5	
Indoor use	6.0	4.5	3.5	
Roof Runoff				
Outdoor use	N/A	N/A	3.5	
Indoor use	N/A	N/A	3.5	
Stormwater				
Outdoor use	3.0	2.5	2.0	
Indoor use	3.5	3.5	3.0	

Example Graywater System Treatment Train

Graywater for toilet flushing

Pathogen Credits				
Treatment Process	MBR UV		Chlorine	
Virus	1.5	Up to 6	Up to 5	
Protozoa	2	Up to 6	0	
Bacteria	4	Up to 6	Up to 5	
Ongoing Requirements	Operate within Tier 1 envelope	Online monitoring to confirm validated dose	Demonstrate CT with verified free chlorine residual	

Model Regulations for Consistency Across the US



- San Francisco
- Colorado, Regulation #84
- California SB 966 and Hawaii HB 444
- Minnesota and Washington D.C.
 Guidelines for Stormwater
- Washington State and Oregon
- Texas and Alaska

Addressing Utility Considerations

- Stretch drinking water supplies
- Assist with stormwater management
- Defer capital investment in large centralized infrastructure
- Potential for lower energy footprint

Utilities Incorporating Onsite Water Systems

SAN FRANCISCO

Mandatory for new development over 250,000 sq ft

AUSTIN WATER

10 mgd from decentralized systems by 2040

NEW YORK CITY

Battery Park operating decentralized system since 2003; Grant program for onsite systems

DENVER WATER

Blackwater system at new admin building

SANTA MONICA

Downtown stormwater, groundwater, wastewater reuse by 2020

ANAHEIM

Operating blackwater system for irrigation around City Hall and toilet flushing in Anaheim West Tower

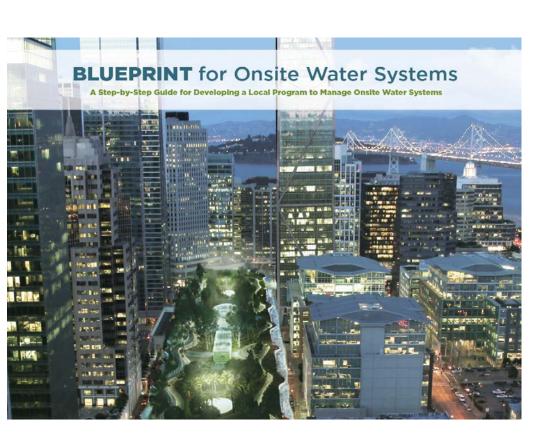
CITY OF ST. PAUL

District-scale rainwater harvesting system at Allianz Field

VANCOUVER

Rainwater harvesting is key water conservation strategy

PORTLAND


Hassalo on Eighth recycling blackwater from four downtown city blocks

Source: San Francisco Public Utilities Commission

46

Tools for Developing Local Oversight and Management Programs

Developing a local program to manage onsite water systems offers a proactive way to increase water resiliency and promote green building practices while protecting public health. The development of a program should follow a sequence of steps and associated actions, which will inform critical decisions regarding the scope, structure, and implementation of the program.

Convene a Working Group

covered in the program.

Establish a small working group to guide the development of the local program.

- 2 Select the Types of Alternate Water Sources
 Narrow the specific types of alternate water sources
- Z Identify End Uses

Classify specific non-potable end uses for your program.

- Establish Water Quality Standards

 Establish water quality standards for each alternate water source and/or end use.
- Identify and Supplement Local Building Practices Integrate your program into local construction requirements and building permit processes.

- Establish Monitoring and Reporting Requirements
 Establish water quality monitoring and reporting requirements for
 ongoing operations.
- Prepare an Operating Permit Process
 Establish the permit process for initial and ongoing operations for onsite water systems.
- Publicize the program to provide clear direction for project sponsors and developers.
- Promote best practices for onsite water systems.
- Grow the Program
 Explore opportunities to expand and encourage onsite water systems.

Guidance Manual for Onsite Water Reuse

CHAPTER 1:

Introduction

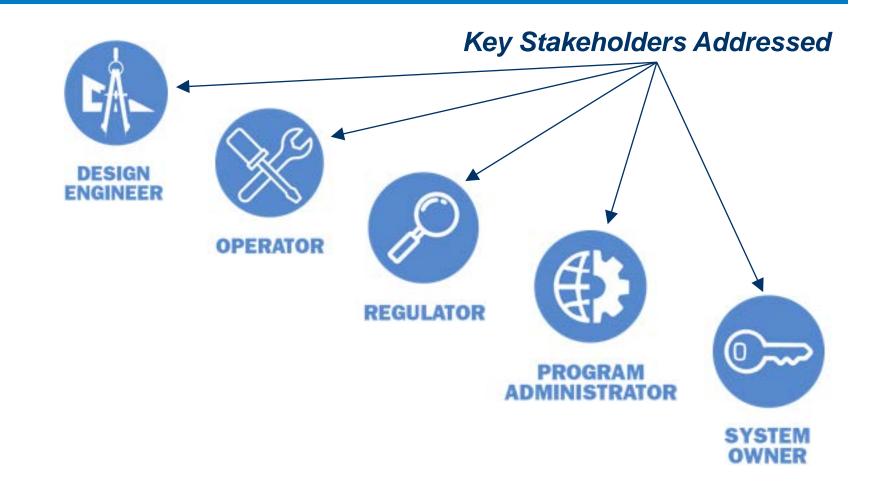
CHAPTER 2:

Public Health Goals

CHAPTER 3:

Treatment Selection and Crediting

CHAPTER 4:


Developing Multiple-Barrier ONWS Systems

CHAPTER 5:

Operations Plan

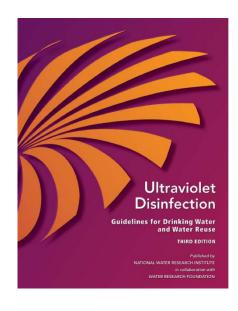
CHAPTER 6:

Regulatory and Permitting Plan

ANTICIPATED RELEASE EARLY 2020

CLEAR DESCRIPTION OF CRITICAL TOPICS

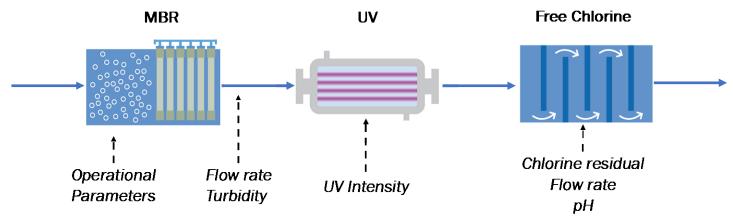
- ✓ Risk-Based Water Quality Standards
- ✓ Basis for Log Reduction Targets
- **✓ Pathogen Crediting Frameworks**


	Enteric Viruses	Parasitic Protozoa	Enteric Bacteria	
Blackwater				
Outdoor use	8.0	7.0	6.0	
Indoor use	8.5	7.0	6.0	
Graywater				
Outdoor use	5.5	4.5	3.5	
Indoor use	6.0	4.5	3.5	
Roof Runoff				
Outdoor use	N/A	N/A	3.5	
Indoor use	N/A	N/A	3.5	
Stormwater				
Outdoor use	3.0	2.5	2.0	
Indoor use	3.5	3.5	3.0	

 Overview and detailed discussion of pathogen crediting

 Existing crediting frameworks to streamline implementation

Online monitoring



EXAMPLETREATMENT TRAINS

Blackwater Treatment Train

	Unit Process Pathogen Credits			Total Log	LRTs for
	MBR	UV	Free Chlorine	Removal	Blackwater
Virus	1.5	3.5	5.0	10.0	8.5
Protozoa	2.0	6.0	0.0	8.0	7.0
Bacteria	4.0	3.5	5.0	12.5	6.0

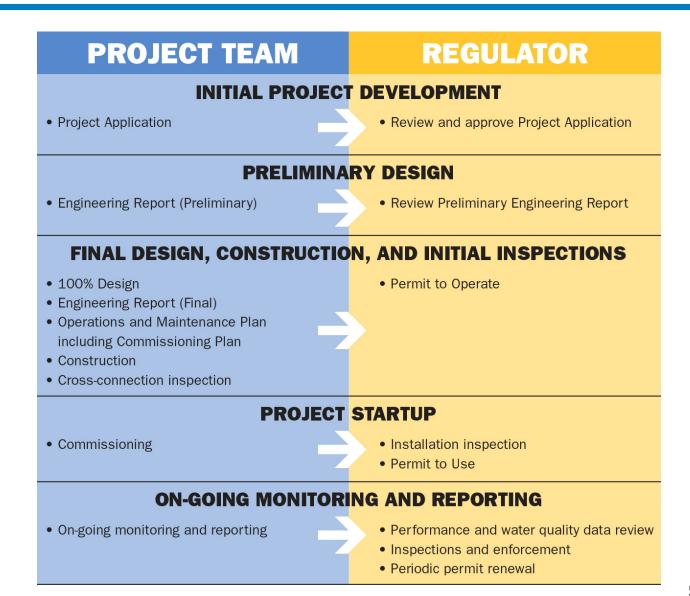
STAKEHOLDER-SPECIFIC TIPS AND KEY MESSAGES

The **Design Engineer**should evaluate source
water quality to determine
the size, or combination of
sizes, of pretreatment
screen to select.

Successful implementation of the Operations Plan will require that that necessary resources—personnel, training, funds, information, infrastructure—are available.

COMMISSIONING AND OPERATIONS GUIDANCE

Example Commissioning Plan Checklist


Commissioning Test Plan Checklist Set up system to ensure all treatment processes receiving pathogen credit can be sampled Ensure treated water can be discharged safely, e.g. to sewer Ensure adequate chemicals and consumables are available Notify relevant agencies about test plan and schedule Verify system controls are effective for ensuring LRT compliance, for example: Low UVT alarm Low chlorine residual alarm High turbidity alarm Other critical LRT compliance alarms Provide results to relevant agencies

Types of System Alarms

PROGRAM IMPLEMENTATION AND REGULATORY GUIDANCE

National Blue Ribbon Commission Future Research Priorities

- Expand risk-based framework to address new sources (e.g. condensate) and end uses (e.g. cooling tower make-up)
- Develop onsite water system operator certificate/certification program
- Develop bacterial log removal crediting frameworks for commonly used treatment processes in onsite water systems
- Define pathogen log removal credits for natural treatment systems (e.g. wetland treatment systems)

Collaboration Leads to New Opportunities

- Consensus among public health regulators and utilities to move towards risk-based approach
- EPA Water Reuse Action Plan highlights fit-for-purpose and national framework for risk-based targets
- Consistent standards nationwide increases market demand and can lead to more cost effective and energy efficient technologies with reduced footprint
- Future activities: pursue funding for research priorities, plumbing codes, NSF, US Green Building Council to align with address risk-based approach

National Blue Ribbon Commission for Onsite Non-potable Water Systems

Thank you

pkehoe@sfwater.org

sfwater.org/np www.watereuse.org/educate/national-blue-ribbon-commission-for-onsite-non-potable-water-systems

