Hazen

Using Dashboards to Optimize Plant Performance

Watereuse Los Angeles Chapter August 14th, 2018

Proactive vs Reactive Operations

Reuse System Operations Challenges

- How do we monitor Critical Control Points (CCP)
- How do we best control fouling?
- How do we plan chemical cleaning?
- How do we optimize pretreatment?
- What is the remaining useful life?
- Is our system reliable and robust?
- Are we meeting customer demand?
- Are we meeting regulatory requirements?
- Can we produce water more efficiently?

Optimizing Processes by Operating Proactively

Creating Dashboards to assist making critical decisions

Overview of KPIs

Frequency of Measurement

Process Audits develop useful KPIs

- Investigate opportunities to improve operations and optimize plant
- Identify and review Key Performance Indicators (KPIs)

ID	Train	Parameter	Units	Historian Tag
D1	1	Feed Temperature	°F	W75.TEM_001_SCL.23H
D2	1	Feed Conductivity	μS/cm	W75.CON_001_SCL.23H
D3	1	Train 1 – Stage 1 Permeate Flow	gpm	W75.FLO_101_SCL.23H
D4	1	Train 1 – Stage 2 Permeate Flow	gpm	W75.FLO_201_SCL.23H
D5	1	Train 1 – Combined Permeate Flow	gpm	W75.FLO_301_SCL.23H
D6	1	Train 1 – Concentrate Flow	gpm	W75.FLO_500_SCL.23H

Membrane Maintenance – CIP Triggers

Facility Reports

Normalized Differential Pressure

W 21/22 Last Clean Dates: Train 1: 12/21/2015 4:00:00 PM Train 2: 4/11/2016 3:00:00 PM Train 3: 2/17/2016 9:00:00 AM

Normalized Permeate Flow

Normalized Flux

Normalized Salt Passage

Example – Irvine Ranch Water District Graphical User Interface

Project Example – Beverly Hills

	Operating Costs Target (\$/wk)
2500	
⊋ 2000	
¥ 1500	
2000 1500 1000 500	
8 ₅₀₀	
0	
	galant thorine gashit armonia gallant hubite treated
anti	start therine sustitutions should head the treet

TREATED WATER QUALITY		Target	Mon	Tues	Wed	Thurs	Fri	Sat	Sun
			6/1	6/2	6/3	6/4	6/5	6/6	6/7
Arsenic	mg/L	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.09
Chlorine	mg/L	3	3.5	4	1.8	1.8	1.9	2.0	2.1
H2S	ppm	0.1	2	0.5	0.5	0.5	1	2	3
Fluoride	mg/L	0.7	1	1	1	1	1	1	1

Total Chemical Cost (wk)	\$ 3,807
Total Energy Cost (wk)	\$ 6
Cost per MG of water produced	\$ 53.70

Project Example – West Basin

Key Benefits

- Data 'on demand' to make quick decisions.
- Help manage data from complex reuse systems Normalization of RO Data, log removal values, large arrays of data.
- Save hours of engineering time by automating data handling.
- Remove potential for erroneous values.
- Information focused and tailored to all levels of operations management, engineering and operations.

Thankyou

Nathan Boyle, PE

Principal Engineer
Hazen and Sawyer – Los Angeles, CA

nboyle@hazenandsawyer.com

