Understanding Your Options for Brine Management:

Treatment Technologies and Application in Design

Chapter Meeting
9 October 2018

Presented by:
Alan Bracewell
Kennedy/Jenks Consultants
Staff Engineer
Overview of Today’s Presentation

1. Reasons for Managing Brine
2. Advanced Water Treatment Train
3. Brine Treatment Technologies
 1. Recovery Rates
 2. Pros/Cons
 3. Example Facilities
4. Evaluation of Brine Minimization Technologies
 1. Non-Cost Factors
 2. Cost Factors
5. Take-Aways
Reasons for Managing Brine

• Maximize existing water supply
 ▪ As population increases, water quality and availability decreases
 ▪ Do more with less

• Applicable to multiple source waters
 ▪ Wastewater effluent
 ▪ Ground water
 ▪ Brackish water
 ▪ Ocean desalination
Advanced Water Treatment Train

Secondary or Tertiary Effluent → MF/UF → RO → AOP → Stabilization → Purified Water Equalization → Potable Reuse

Ozone (optional) → MF/UF → RO → AOP → Stabilization → Purified Water Equalization → Potable Reuse

Sewer System → Brine Line
Advanced Water Treatment Train

Secondary or Tertiary Effluent

Ozone (optional)

Sewer System

MF/UF

RO

AOP

Stabilization

Purified Water Equalization

Potable Reuse

Brine Line
Brine Minimization Technologies

1. Two–Stage Reverse Osmosis (No Minimization)
2. Multi-Stage Concentrator
3. Closed Circuit Reverse Osmosis
4. Electrodialysis Reversal
Brine Minimization Technologies

1. Two-Stage Reverse Osmosis (No Minimization)
2. Multi-Stage Concentrator
3. Closed Circuit Reverse Osmosis
4. Electrodialysis Reversal
 - Brine Concentrators
 - Forward Osmosis
 - High-Efficiency Reverse Osmosis (HERO)
 - Capacitive Deionization
 - Vibratory Shear-Enhanced Processing
Brine Minimization Technologies

1. Two-Stage Reverse Osmosis (No Minimization)
2. Multi-Stage Concentrator
3. Closed Circuit Reverse Osmosis
4. Electrodialysis Reversal
 • Thermal Brine Concentrators
 • Forward Osmosis
 • High-Efficiency Reverse Osmosis (HERO)
 • Capacitive Deionization
 • Vibratory Shear-Enhanced Processing

• Zero Liquid Discharge
 ▪ Evaporation Ponds
 ▪ Solar Ponds
 ▪ Crystallizers
 ▪ Spray Dryers
 ▪ Wind-Aided Intensified Evaporation
 ▪ Salt Recovery
 ▪ SAL-PROC
 ▪ Dewvaporation
Two-Stage Reverse Osmosis (No Minimization)

• Recovery: 75-80%
 ▪ 50% each stage

• Pros
 ▪ Low capital cost
 ▪ Low energy usage
 ▪ “Dilute” RO concentrate

• Cons
 ▪ Disposal of large volume of RO concentrate required
 ▪ Low recovery rate
Example Facility for Two-Stage RO: Pure Water Monterey

• 5 MGD Facility (in construction)
 ▪ Feed: 4.94 MGD
 ▪ Permeate: 4.0 MGD (81%)
 ▪ Brine: 0.94 MGD

• Brine to be mixed with WWTP effluent ocean outfall
Example Facility for Two-Stage RO: Pure Water Monterey

- 5 MGD Facility (in construction)
 - Feed: 4.94 MGD
 - Permeate: 4.0 MGD (81%)
 - Brine: 0.94 MGD
- Brine to be mixed with WWTP effluent ocean outfall
Multi-stage Concentrator

• Recovery: 85-90%
 ▪ 50% each stage

• Pros
 ▪ Medium capital cost
 ▪ Increased recovery/reduced brine
 ▪ Familiar technology

• Cons
 ▪ Increased energy usage
 ▪ Requires careful operation to protect 3rd stage RO
Closed Circuit Reverse Osmosis

- Recovery: 75-95%
 - 50% first two stages
 - 50% to 88% at CCRO
- Pros
 - Flexible recovery rate
 - Lower energy consumption
 - Reduced antiscalant usage
- Cons
 - Proprietary technology (Desalitech)
 - Increased capital cost
Example Demonstration Facility for CCRO: Padre Dam

- Planned 12 MGD facility
 - Extra 1 MGD from secondary CCRO discharged to Santee Lakes
- RO waste to be blended with MF waste and sent to sewer system
Electrodialysis Reversal

- Typical recovery: 70-90%
- Pros
 - High recovery rate
 - Reduced particulate fouling
- Cons
 - Only removes cations/anions
 - Does not provide a “physical barrier”
 - Permeate must return to head of plant
High-level Comparison of Brine Minimization Technologies

<table>
<thead>
<tr>
<th>Technology</th>
<th>2-Stage RO (Baseline – No Brine Minimization)</th>
<th>Multi-Stage Concentrator</th>
<th>CCRO</th>
<th>Electrodialysis Reversal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brine Reduction/Recovery (range)</td>
<td>75 - 80%</td>
<td>85 - 90%</td>
<td>75 - 95%</td>
<td>70 - 90%</td>
</tr>
<tr>
<td>Experience, Installations, and Permitting</td>
<td>High</td>
<td>High</td>
<td>Medium</td>
<td>High</td>
</tr>
<tr>
<td>Ease of O&M & Flexibility</td>
<td>Medium</td>
<td>Medium</td>
<td>High</td>
<td>Medium</td>
</tr>
<tr>
<td>Water Quality</td>
<td>High</td>
<td>High</td>
<td>High</td>
<td>Medium</td>
</tr>
<tr>
<td>Footprint and Constructability</td>
<td>High</td>
<td>High</td>
<td>Medium</td>
<td>Low</td>
</tr>
<tr>
<td>Non-Cost Ranking</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>
High-level Comparison of Brine Minimization Technologies

<table>
<thead>
<tr>
<th>Technology</th>
<th>2-Stage RO (Baseline – No Brine Minimization)</th>
<th>Multi-Stage Concentrator</th>
<th>CCRO</th>
<th>Electrodialysis Reversal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brine Reduction/Recovery (range)</td>
<td>75 - 80%</td>
<td>85 - 90%</td>
<td>75 - 95%</td>
<td>70 - 90%</td>
</tr>
<tr>
<td>Experience, Installations, and Permitting</td>
<td>High</td>
<td>High</td>
<td>Medium</td>
<td>High</td>
</tr>
<tr>
<td>Ease of O&M & Flexibility</td>
<td>Medium</td>
<td>Medium</td>
<td>High</td>
<td>Medium</td>
</tr>
<tr>
<td>Water Quality</td>
<td>High</td>
<td>High</td>
<td>High</td>
<td>Medium</td>
</tr>
<tr>
<td>Footprint and Constructability</td>
<td>High</td>
<td>High</td>
<td>Medium</td>
<td>Low</td>
</tr>
<tr>
<td>Non-Cost Ranking</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>
Example Life Cycle Costs and Cost Ranking
7.4 MGD Facility with Brine Line

<table>
<thead>
<tr>
<th>Technology</th>
<th>2-Stage RO (Baseline – No Brine Minimization)</th>
<th>Multi-Stage Concentrator</th>
<th>CCRO</th>
<th>EDR</th>
</tr>
</thead>
<tbody>
<tr>
<td>RO + Brine Minimization Equipment Capital Cost¹ ($M)</td>
<td>$2.7</td>
<td>$3.4</td>
<td>$3.7</td>
<td>$3.9</td>
</tr>
<tr>
<td>Brine Line Diameter (in)</td>
<td>12</td>
<td>8</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>12 Mile Brine Line Capital Cost ($M)</td>
<td>$13.5</td>
<td>$9.8</td>
<td>$7.6</td>
<td>$7.6</td>
</tr>
<tr>
<td>Annual O&M Costs³ ($M)</td>
<td>$0.9</td>
<td>$0.6</td>
<td>$0.4</td>
<td>$0.7</td>
</tr>
<tr>
<td>Brine Discharged (AFY)</td>
<td>870</td>
<td>440</td>
<td>180</td>
<td>220</td>
</tr>
<tr>
<td>Life Cycle Unit Cost ($/AF)</td>
<td>$790</td>
<td>$490</td>
<td>$360</td>
<td>$470</td>
</tr>
<tr>
<td>Cost Ranking</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

¹ Includes equipment purchasing only for RO and brine minimization systems.

² Energy, chemicals and equipment replacement costs plus brine discharge fees.
Example Life Cycle Costs and Cost Ranking
7.4 MGD Facility with Brine Line

<table>
<thead>
<tr>
<th>Technology</th>
<th>2-Stage RO (Baseline – No Brine Minimization)</th>
<th>Multi-Stage Concentrator</th>
<th>CCRO</th>
<th>EDR</th>
</tr>
</thead>
<tbody>
<tr>
<td>RO + Brine Minimization Equipment Capital Cost¹ ($M)</td>
<td>$2.7</td>
<td>$3.4</td>
<td>$3.7</td>
<td>$3.9</td>
</tr>
<tr>
<td>Brine Line Diameter (in)</td>
<td>12</td>
<td>8</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>12 Mile Brine Line Capital Cost ($M)</td>
<td>$13.5</td>
<td>$9.8</td>
<td>$7.6</td>
<td>$7.6</td>
</tr>
<tr>
<td>Annual O&M Costs³ ($M)</td>
<td>$0.9</td>
<td>$0.6</td>
<td>$0.4</td>
<td>$0.7</td>
</tr>
<tr>
<td>Brine Discharged (AFY)</td>
<td>870</td>
<td>440</td>
<td>180</td>
<td>220</td>
</tr>
<tr>
<td>Life Cycle Unit Cost ($/AF)</td>
<td>$790</td>
<td>$490</td>
<td>$360</td>
<td>$470</td>
</tr>
<tr>
<td>Cost Ranking</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

¹ Includes equipment purchasing only for RO and brine minimization systems.

² Energy, chemicals and equipment replacement costs plus brine discharge fees.
Overall Ranking
7.4 MGD Facility with Brine Line

<table>
<thead>
<tr>
<th>Technology</th>
<th>2 Stage RO (Baseline – No Brine Minimization)</th>
<th>Multistage Concentrator</th>
<th>CCRO</th>
<th>EDR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Cost Ranking</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Cost Ranking</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Overall Ranking</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>
Key Take-Aways

• Each technology has its own strengths/weaknesses
• Costs are very site dependent
 ▪ Access to brine line or ocean outfall
 ▪ Water needs of the service area
 ▪ Available land for construction
• Numerous emerging/niche technologies

• Never too early to consider brine minimization
 1. Feasibility level: consider non-cost and cost factors
 2. Demo best technologies during drafting of preliminary design report (PDR)
 3. Apply learnings from demonstration plant for final design
• Never too late!
Thank you.

Questions?

Presented by:
Alan Bracewell
949.567.2102
alanbracewell@kennedyjenks.com
Kennedy/Jenks Consultants
Staff Engineer