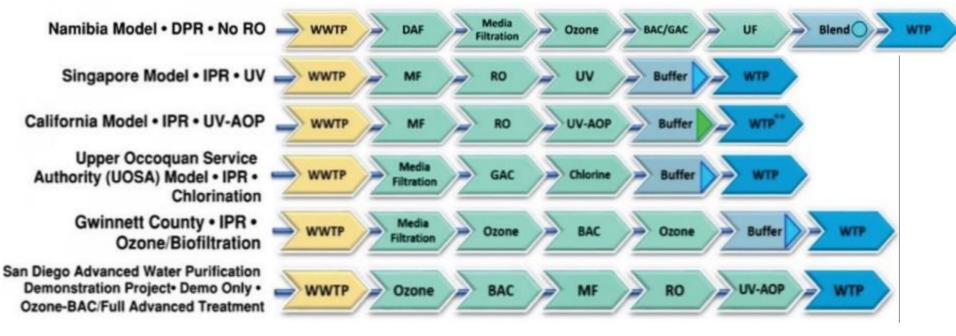


Xylem Reuse Solutions for the Modern Utility

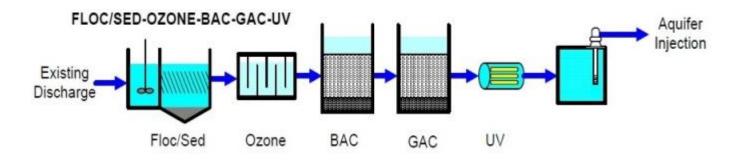
PEDRO GOCHICOA – SENIOR SALES ENGINEER, WEDECO, A XYLEM BRAND STEVE GREEN – BUSINESS DEVELOPMENT MANAGER, XYLEM


Traditional CA Potable Reuse Treatment Train

Source: Troy Walker, Hazen & Sawyer, East is East and West is West - Will the Twain Meet?

Potable Reuse Treatment Train Options

Source: US EPA 2017 Potable Reuse Compendium



Challenges of RO Based PR Treatment Trains

- High Capital & Installation Costs
- Brine Disposal
- High Operational Costs Primarily Due to High Energy Costs from Pumping
- Membrane Performance & Replacement Costs

Alternatives Exist for Potable Reuse Treatment

Source: Troy Walker, Hazen & Sawyer, East is East and West is West - Will the Twain Meet?

Parameter	Floc/Sed & BAF	Ozone	UV	C12	SAT	Total
Enteric Viruses	2	0-3	4	4	0-6	12 - 19
Cryptosporidium	4	0	4	0	0-6	10-14
Giardia	2.5	0-1.5	4	0	0-6	10 - 14

Source: Andrew Newbold, Hazen & Sawyer, Design of an Aquifer Recharge and Advanced Treatment Facility, Table 1

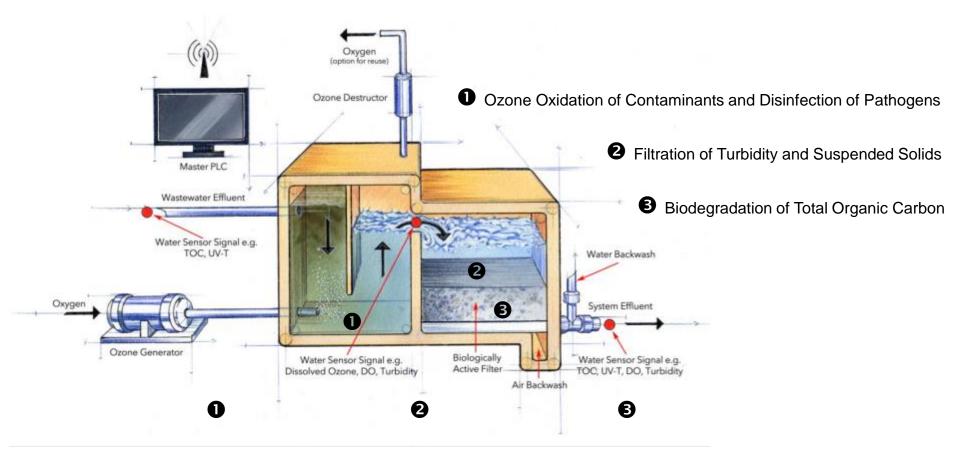
Cost for O₃-BAF vs. RO

"RO-based treatment trains employ mechanically intensive processes, which result in 2.5 times as much electricity as the Ozone-BAF plants..."¹

"Management of RO concentrate is a limiting factor for locations where sewer or ocean outfall options for brine disposal were not possible; concentrate handling and disposal significantly impacted the cost of the full advanced treatment alternative and approximately doubles the cost of providing treated water."²

Process Cost/Impact		Full advanced treatment with RO Concentrate Disposal			
		Ocean Outfall	Mechanical Evaporation	Evaporation Ponds	
Capital Cost (millions)		\$120	\$172	\$303	
Annual O&M Cost (millions)		\$5.9	\$10.9	\$6.3	
Annual Environmental Costs (millions)		\$1.6	\$6.3	\$2.2	
Total TBL NPV (millions)		\$267	\$533	\$512	
\$/AF	\$386	\$596	\$1,190	\$1,143	
\$/1000 gal	\$1.18	\$1.83	\$3.65	\$3.51	
\$/m ³	\$0.31	\$0.48	\$0.96	\$0.93	
Power Consumption (MWh/year)		16,000	65,400	22,000	
Chemical Consumption (dry tons/year)		1,860	3,020	1,860	
CO ₂	2,900	13,400	44,200	17,200	
Other	11	30	150	49	
	(millions) \$/AF \$/1000 gal \$/m ³ /ear) tons/year) CO ₂	\$91 \$91 \$4.2 (millions) \$0.4 \$173 \$/AF \$386 \$/1000 gal \$1.18 \$/m ³ \$0.31 /ear) 4,400 tons/year) 1,770 CO2 2,900	Ozone-BAF Ocean Outfall \$91 \$120 \$91 \$120 \$4.2 \$5.9 (millions) \$0.4 \$1.6 \$173 \$267 \$/AF \$386 \$596 \$/1000 gal \$1.18 \$1.83 \$/m ³ \$0.31 \$0.48 (rear) 4,400 16,000 tons/year) 1,770 1,860 CO ₂ 2,900 13,400	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	

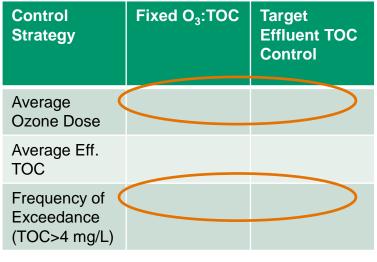
Table 11-1. Cost of alternative treatment trains for a 20 MGD facility (adapted from WRRF, 2014d)



¹²Source: US EPA Potable Reuse Compendium

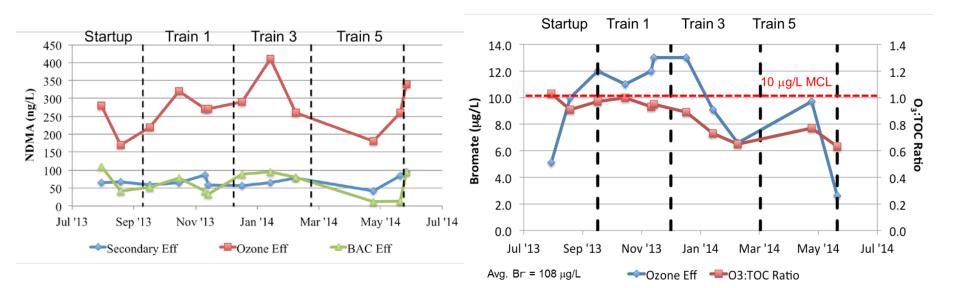
OxeliaTM Integrated Ozone-BAC System

Can I Integrate These Processes?


Comparison of O₃:TOC Ratio vs. TOC Effluent Control

O3+BAF	Oxelia [™] Control
Constant O ₃ :TOC	Adjust O3:TOC ratio based on effluent TOC

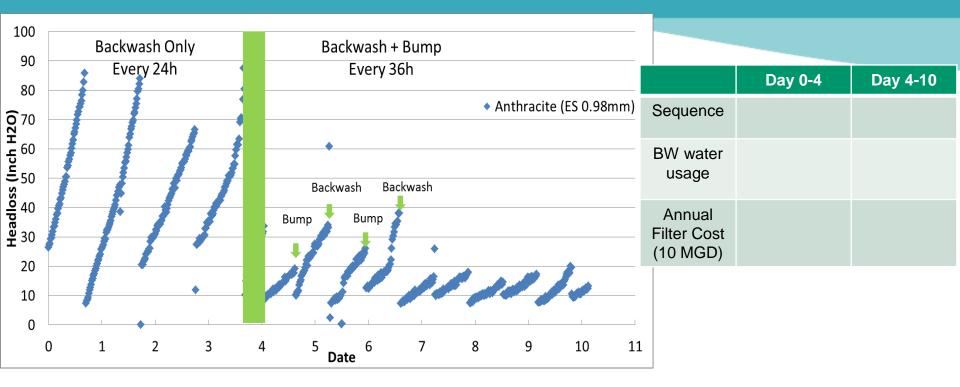
Comparison of O₃:TOC Ratio vs. TOC Effluent Control



~25% Ozone Savings

- Fixed O3 dose has higher possibility for ineffective TOC or TOrC removal.
- With Effluent TOC control, Ozone/BAF effluent has more reliable TOC reduction

Oxelia Mitigates DBP Formation Concerns


NDMA formed by Ozone is removed by BAF

Ozone Dose Optimization Limits Bromate Formation

Ref: WRRF 11-02 Pilot Project

Optimized Filter Backwash & Bump

- Normal backwash sequence: Air scour + High rate water + Low rate water
- Bump: gentle water only backwash to breakdown cake layer at filter top and remove air
- Bump is proven to reduce headloss and extend filter runtime.
- Save 28% of Filter OPEX

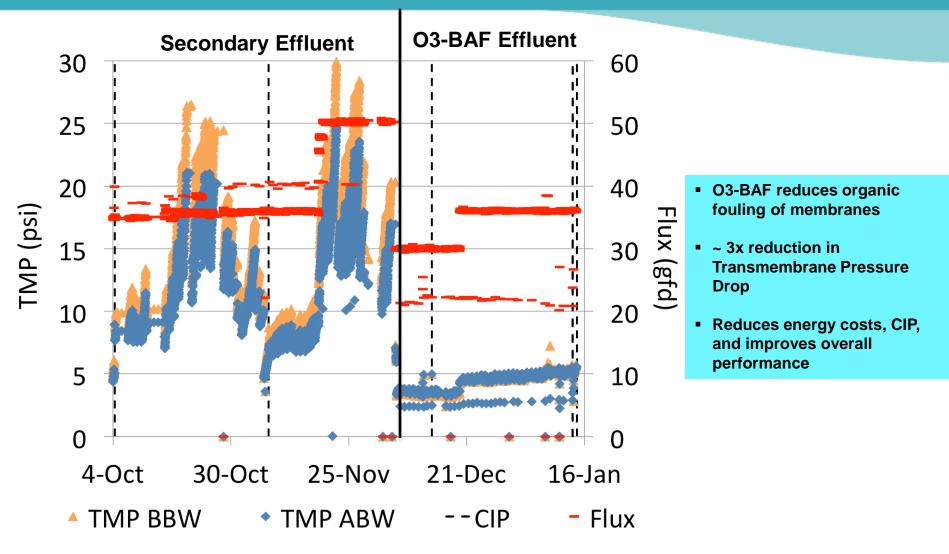
An Ozone-BAF system with integrated on-line analytical and advanced control can be designed to achieve:

Better effluent quality control to achieve:

- More Consistent TOC at effluent
- Proven DBP control
- Reliable CEC removal
- Pathogen Log Reduction Credit

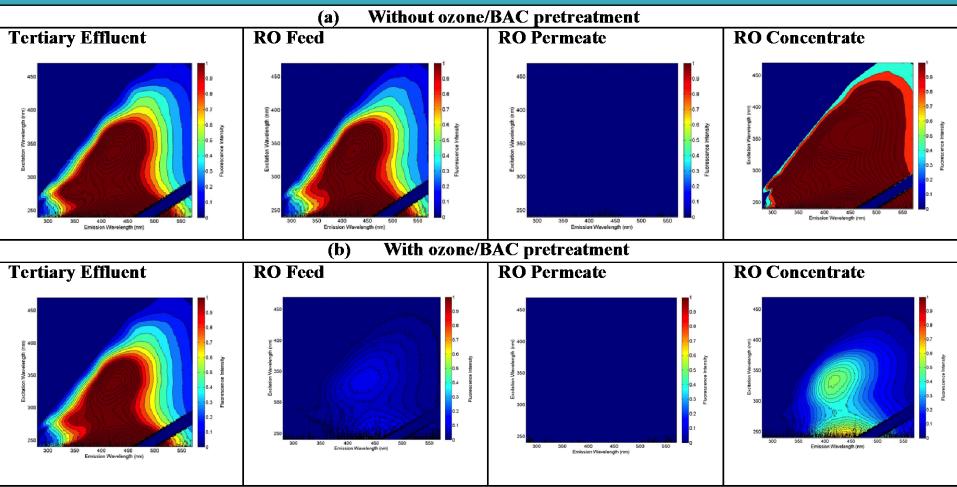
Lower operational cost:

- > To save applied Ozone dose based on influent vs. effluent water quality
- To reduce backwash frequency



Example OpEx Savings with Oxelia Control

Flow Rate	2 MGD	10 MGD	25 MGD	100 MGD
Ozone Dose with Decoupled Solution	7 mg/L	7 mg/L	7 mg/L	7 mg/L
Power Consumption with Decoupled Solution	40 kW	155 kW	435 kW	1,590 kW
Ozone Dose with Oxelia	5.3 mg/L	5.3 mg/L	5.3 mg/L	5.3 mg/L
Power Consumption with Oxelia	30 kW	130 kW	325 kW	1,275 kW
Power Savings for Your Facility	10 kW	25 kW	110 kW	315 kW
20-Year Present Worth of Savings	\$109,169	\$272,922	\$1,200,857	\$3,438,819


O3-BAF Benefits OpEx of Membranes

Ref: WRRF 11-02 Pilot Project

O3 BAF Reduces RO Brine Toxicity

With O3-BAF pretreatment, RO concentrate shows less fluorescence than the feed water (tertiary effluent) and contains ~40% less TOC

Ref: Trussell Technologies IOA-PAG Dallas 2015

Reuse Installations

HRSD SWIFT Facility: Oxelia – Integrated Ozone & BAF + UV

Winner of US Water Prize 1 MGD Design Flow Oxelia System:

- 2 x SMOevo 610 Ozone Generators at 200 PPD Each
- 4 x Filter Cells with XA Underdrain
- UV System:
- 2 x Spektron 2000e for 4-Log Virus Inactivation

Pure Water Monterey

- Groundwater Recharge Project
- 5 MGD
- O3 and UV/AOP Provided by Xylem
 - 2 x PDOevo 900 Ozone Generators
 - Ozone Dose of up to ~20 mg/L

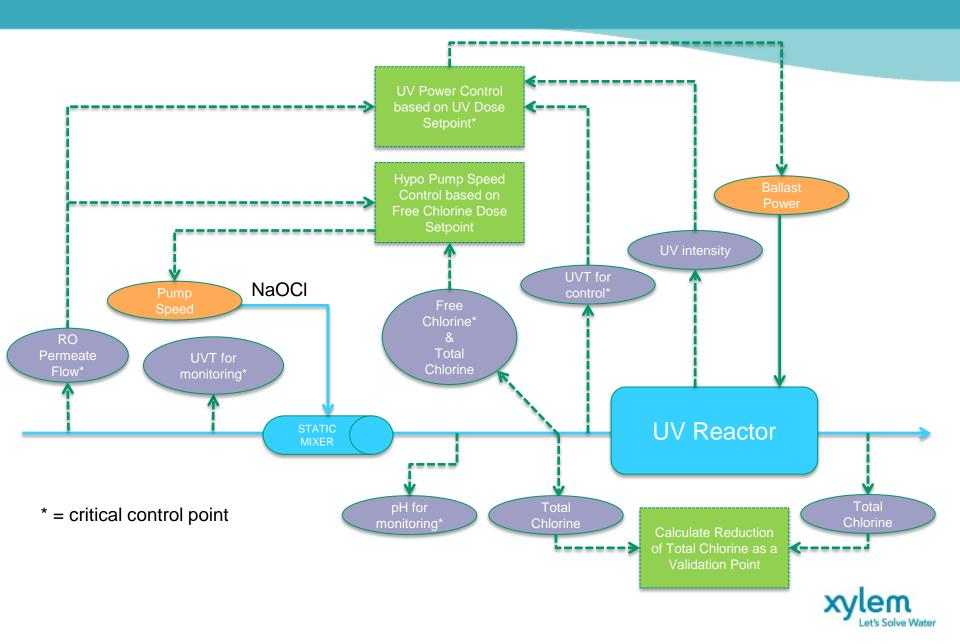
WWTP

Effluent

- 6 x LBX 1500e UV Reactors with H₂O₂
 - UV Dose of 1,600 mJ/cm² and H₂O₂ Dose of up to 6 mg/L
- 2015 WateReuse Agricultural Project of the Year
- 2017 WateReuse CA Annual Conference Community Outreach and Public Education Project of the Year
- First indirect potable reuse project in Northern CA
- Installation in 2018 and Commission in 2019

O₃

RO


Terminal Island UV-Chlorine AOP

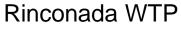
- 2017 Best of the Best Water/Environment Project
- Terminal Island WRP Owned and Operated by LASAN
- Indirect Potable Reuse
- 1st Greenfield MiPRO UV/Cl₂ AOP
 - Incl 2 x K143 12/17 UV Reactors
- 12 MGD Design Flow
- Partnered with LASAN, Trussell & Carollo to pilot test all AOP options and select the AOP which offered the best performance and cost.

Xylem Approach to UV/Chlorine AOP Control

Xylem's Partnership with SCVWD - Reuse

- Silicon Valley Advanced Water Purification Center (AWPC)
- Non-Potable Reuse for Silicon Valley Users
- Winner of 2015 Water Reuse Project of the Year
- 12 x LBX 1000e UV Units
- Variable Design & Control to Treat MF or RO effluent

Xylem's Partnership with SCVWD - Reuse



RO Brine Management at SCVWD

Xylem's Partnership with SCVWD - Potable

Penitencia WTP

Santa Teresa WTP xylem et's Solve Water

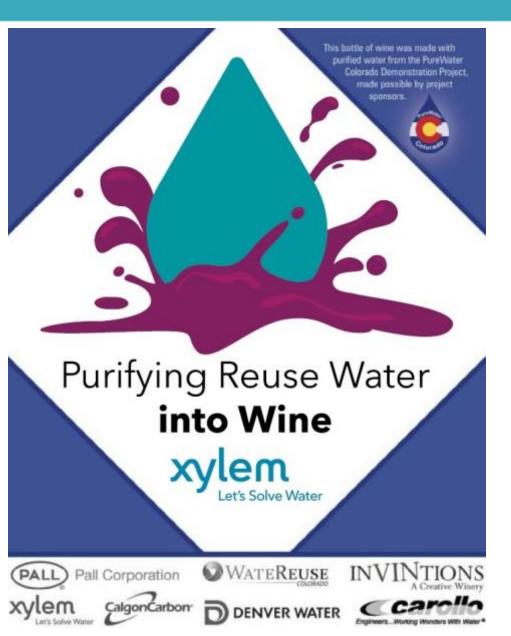
Pilot & Bench Scale Capabilities

- Typical Flow Rates of
- UV doses up to XXX mJ/cm²
- Ozone doses up to XX mg/L
- Hydrogen Peroxide doses up to XX mg/L
- Ability to link MiPRO AOP Process with Xylem Filter Columns for O₃ + BAF
 *Note the information provided above is typical, but pilots can be configured for site specific conditions

Come See Us at the WateReuse Symposium!

Kevin Flis, Sunday, September 9^{th} 1:30 – 3 PM Moderator for Session 1, Track 3

Jens Scheideler, Sunday, September 9th 1:30 PM Speaker for Session 1, Track 3, Presentation Title, "*UV AOP Study at Singapore NEWater Factory*"


Patrick Decker, Monday, September 10th 8 – 10 AM Panelist for Plenary Discussion Title, "*Business Thought Leaders on Water Reuse*"

Lucinda Jooste, Monday, September 10th 1:45 PM Speaker for Session 1, Track 4, Presentation Title, "*Day Zero – The End or Beginning?*"

Come See Us at WEFTEC!

- Purified Water from WRCO Potable Reuse Demonstration into Wine
 - Distributed by Xylem at WEFTEC 2018
- Additionally, Xylem is Official Sponsor of the Biergarten
 - Biergarten will be Distributing Beer Made from Purified Water Monday & Tuesday Afternoon at WEFTEC

Thank you!

For questions please contact

Steve Green 503.396.2695 steve.green@xyleminc.com Pedro Gochicoa 980.312.1365 pedro.gochicoa@xyleminc.com

