

Drinking the Los Angeles River

Patrizia Hall, P.E. | Dian Tanuwidjaja, Ph.D., P.E. | Christopher Pincherli, P.E.

Water Reuse Association – Los Angeles

April 10, 2018

LBWD Existing Recycled Water System

LA River Project Overview

Where Long Beach Gets Water

LA River Watershed

Dry Weather Flow:

- 75 MGD
- Permitted discharges from 3 large Publicly Owned Treatment Works (82%)
- Dry weather runoff (18%)
 - Other permitted industrial discharges
 - Misc. wastes groundwater dewatering, swimming pools, groundwater seepage
 - Two municipal stormwater permits

LA River

Now

Pilot Site Location

River Sampling During Design

Raw Water Sampling

Particle Size (µm)

Para	Cumulative percent	Particle Diameter,
Turbidity		micron
	8.7%	1000
Alkalinit	26.0%	250
TSS	44.3%	100
VSS	65.8%	50
	85.0%	25
Settlead	97.4%	5

 \bigcirc

Parameter	Units	Range
urbidity	NTU	2.5 - > 9.99
Ikalinity	mg/ L as CaCo3	127 - 184
SS	mg/L	6.4 - 92.0
/SS	mg/L	17 - 60
Settleable Solids	mL/ L	0.1 - 0.5

9

Treatment Process

 \land

View from Outside

View from Inside

Equipment

Dry Weather Flow Conditions

Storm Flow Conditions

Qualitative Analyses – Samples Collection

Samples collected during storm event.

Samples collected during dry weather flow.

Project Timeline

Data and Summary at AWWA ACE18

ANNUAL CONFERENCE & EXPOSITION INNOVATING THE FUTURE OF WATER

JUNE 11-14 | EXPOSITION: JUNE 12-14 | MANDALAY BAY CONVENTION CENTER | LAS VEGAS | USA

Thursday, June 14, 2018 at 9:30AM Session: THU15 – Resiliency in Water Resource Planning Title: Drinking the Los Angeles River

Participants in this session will learn about the feasibility of capturing some of the flow in the Los Angeles River as a potential new source of reliable, sustainable and economical water supply for Long Beach Water Department. This abstract will be of interest to other water agencies as we are presenting an innovative look at water supply challenges.

