

From Coast to Coast

- Project Drivers for Reuse
- Examples of Reuse from Different States
 - University of Connecticut, Storrs, CT
 - > Water Conserv II, Orlando, FL
 - > Victorville, CA

When Does Water Reuse Make Sense?

A. Water scarcity

- Limited water sources
- Frequent droughts & weather variability
- Sustainability goals limiting usage

But also ...

B. Economics

- Increased potable water cost
- Investment in development
- Grant opportunities/funding

And...

C. Regulations

- Permitting limits on discharge
- State reuse pathway

When Does Water Reuse Make Sense?

A. Water scarcity

- Limited water sources
- Frequent droughts & weather variability
- Sustainability goals limiting usage

But also ...

B. Economics

- Increased potable water cost
- Investment in development
- > Grant opportunities

- 2005 drought: Uconn's wellfield desiccated a section of Fenton River
 - State mandates UConn reduce water withdrawal rates by 1/3
- Occurred during a period of rapid campus growth and major investment by the state in their university system

- No state regulations for water reuse
 No pathway
- But there was **political will**
 - The campus and the state worked together to allow reuse to move forward without regulations
- No irrigation allowed
 - State limited water reuse limited to indoor use in campus cooling towers

- Recycled Water Demand
 - > 0.25 to 0.45 MGD
 - Up to 40% of peak season potable demand
- RW to Central Utilities Plant
 > 1.0 MGD MF/UV Treatment
- Potential to expand recycled water system to irrigation as regulations develop

- Growing population around north of Orlando
- State requirement to eliminate treated effluent discharge to Shingle Creek by 1988
- ~3,000 acres of citrus with irrigation needs

- No regulations for using recycled water on food crops for human consumption
- Agreement forged in 1983 precipitated new State regulations
- Operations began in 1986
- First reuse project in FL to irrigate crops for human consumption

- This project is BIG!
 - > 50 mgd with peak of 75 mgd
 - > 90 miles of pipelines
 - 59 agricultural customers, plus golf courses, industrial users, and residential irrigation
- Excess water recharged to aquifer via rapid infiltration basins (RIBs)

- Average rainfall 3.2 inches per year
- City's Economic Development Mission
 - > \$500M investment in infrastructure
 - Multi-modal transportation hub with ground, rail, air
 - Southern California Logistics Airport 2nd longest commercial runway in US
 - > 100 miles from Ports of LA/Long Beach
- Dr. Pepper Snapple Group bottling plant wastewater need to discharge high-strength industrial wastewater

- Collection system for high-strength industrial wastewater separate from domestic wastewater
- Industrial WW pre-treatment to reduce BOD: anaerobic sludge blanket
- Domestic wastewater from:
 - > Businesses
 - > Residences
 - > Prison
- Fast-track schedule 23 months

- Design flow 2.45 mgd
 - ≻ 40% Industrial
 - ➢ 60% Municipal
- Existing flow 1.7 mgd
- Unused RW to percolation basins
- Potential customer: High Desert Power
 Plant 830 MW

- High Desert Power
 Plant Conceptual
 Study
- Cooling TowersUp to 4,000 AFY
- TDS < 450 mg/L > RO
 - Brine concentration
 - No brine line brine evaporation ponds

Project Drivers Summary

	UConn		Conserv II		Victorville	
Water Scarcity	Reduced supply Increased demand		Reliable ag supply need Water source for growth		Limited, variable supplies Reduced quality	
			\checkmark		\checkmark	
Economic Conditions	State (university) funding		Strong ag economics Local growth		Water/WW management for economic growth	
	\checkmark		\checkmark		\checkmark	
Regulations	No reuse regulations		Discharge prohibition	No reuse regulations	CA reuse regulations	
		×			\checkmark	
Political Will	\checkmark		\checkmark		\checkmark	

Questions / Discussion

