The Unexpected Consequences of Water Conservation on Water Reuse Facilities

Linda Sawyer

Linda Sawyer 925.210.2536 LSawyer@brwncald.com

WateReuse Northern California | December 8, 2017

Water Conservation and Water Reuse

- Decreased Flows and Flow Projections
- Treatment Process Loading Capacity
- Alkalinity Limitations
- Effluent Quality
- Recycled Water Flows

Decreased Flows and Flow Projections

Drought Led to Water Conservation

- Water conservation measures include
 - Drought tolerant landscaping
 - Outdoor water restrictions
 - Low-flow toilets
 - Low-flow shower heads
 - Faucet aerators
 - Water conserving appliances
 - Greywater recycling
 - Not flushing as often
 - Shorter showers

Water Conservation Results in Lower Wastewater Flows

Summer flow is July through September

Water Conservation Results in Lower Wastewater Flows

Summer flow is July through September

Water Conservation Results in Lower Wastewater Flows

Water Conservation Results in Lower Wastewater Flows

Water Conservation Results in Lower Wastewater Flows

Letters indicate different plants. Flow range is permitted flow. Ratios based on summer flow (average of July through September).

Water Conservation Results in Lower Wastewater Flows

Letters indicate different plants. Flow range is permitted flow. Ratios based on summer flow (average of July through September).

Flow Projections and Decreased Flows

- Often developed with collection system planning
- Biggest concern is conveying peak flows

Flow Projections Conservatively High

Treatment Process Loading Capacity

Loadings Have Increased at Some Plants

Loadings Have Increased at Some Plants

Influent Concentrations Have Increased

Average Flow is Typically Used to Rate Capacity

What Really Limits Plant Capacity?

Brown and Caldwell

Example of Plant Capacity Change

Plant designed in the 1970s: 12 mgd at 120 gal/capita-day 20,000 lb BOD/day at 0.2 lb BOD/capita-day Population: 100,000

Per Capita Flows Have Decreased

Loading Capacity Exceeded at Design Flow

Treating design flow in 2015: 12 mgd at 120 60 gal/capita-day 20,000-40,000 lb BOD/day at 0.2 lb BOD/capita-day Population: 100,000 200,000

Flow Capacity Reduced at Design Loading

Treating design loading and population in 2015: 12 mgd 6 mgd at 120 60 gal/capita-day

Flow and Capacity

- Loading is key to capacity
- Equivalent flow capacity now is probably less than it used to be
- Less flow does NOT mean spare capacity

Alkalinity Limitations

Alkalinity is needed for nitrification

Case Study – El Estero Plant in Santa Barbara

- Process includes primary clarifiers and activated sludge
- Flow decreased 12%
- Converting to nitrification

Reference: Sawyer et al, "Planning for Future Droughts – Lessons Learned at Water Resource Recovery Facilities, WEFTEC 2016,

El Estero Influent Ammonia Increased 35%

Alkalinity Concentration Only Increased 6%

Changes in Potable Water Source May Exacerbate the Problem

Alkalinity Supplementation Needed

	2012	2014	Projected with desalination
Average alkalinity, mg CaCO ₃ /L	385	402	309
Average Ammonia, mg N/L	39	52	52

- Before drought, alkalinity was sufficient
- Based on 2014 data, alkalinity supplementation was needed
- Source water changes can exacerbate the problem
- Monitor alkalinity and add chemical if needed

Effluent Quality

Plant C Effluent Nitrate has Increased

Year

Plant C Effluent Phosphorus has Increased

Year

Process Models Predict Nutrient Concentration Increases

Planning for Effluent Concentration Increases

- Additional chemicals or improved processes may be needed
- Consider loading-based limits instead of concentrationbased limits in permit negotiation
 - Attractive if strict discharge limit, but expect reduced discharge flow due to recycling.

Recycled Water

Less Water Available Due to Conservation

- Excess capacity (stranded assets)
- Insufficient water to meet demands
- Revenue impacts

Planning Conservatism

Brown and Caldwell

Complete Reuse is Challenging

Recycled Water – Challenges

- Less water available for recycling
- Peak reuse demand is often in a different season and year than peak influent flow
- IPR and DPR demands are year-round, but brine disposal is required

Planning for Water Conservation

Planning for Future Water Conservation

- Expect less flow that is more concentrated
- Understand the conservatism of flow projections
- Less flow may not mean spare treatment capacity
- Anticipate possible alkalinity limitations
- Expect increased effluent concentrations
- Plan for variations in recycled water supply and demand

