

Guidance Framework Document for Direct Potable Reuse in Arizona

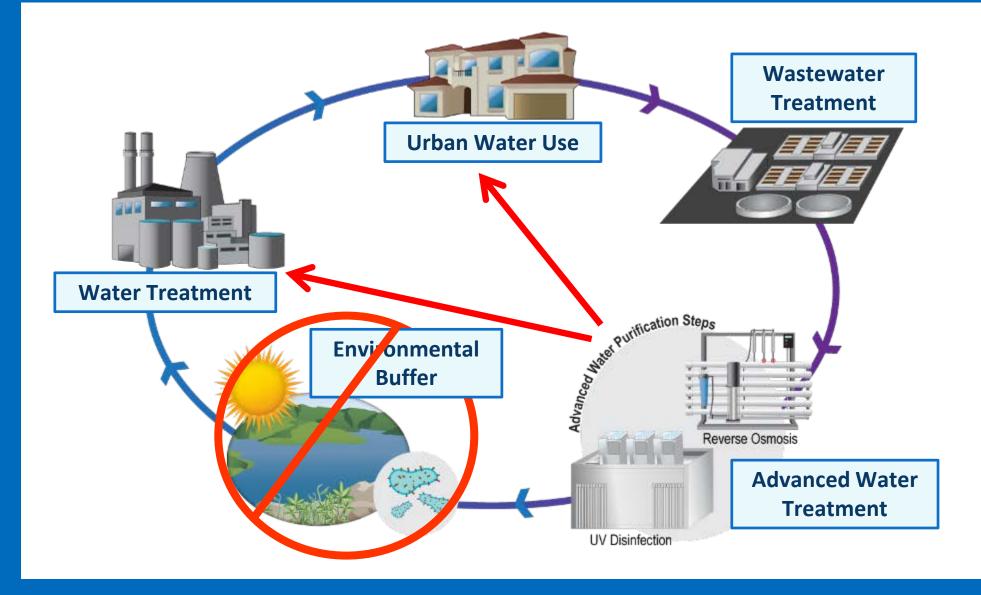
Jeff Mosher

National Water Research Institute jmosher@nwri-usa.org

National Water Research Institute

About NWR

- 501c3 Nonprofit located in Fountain Valley, CA
- Experience with potable reuse
 - White papers
 - Research projects
 - Independent Advisory Panels
- DPR Expert Panel for California State Water Board
 - Feasibility of criteria for DPR


Sponsors: WateReuse Arizona AZ Water

Acknowledgements: Channah Rock – WateReuse AZ President Tim Thomure – AZ Water SCAPR Lisa Culbert – WateReuse AZ Executive Administrator Gina Vartanian – NWRI

Direct potable reuse

Purpose of Report:

Provide recommendations regarding the development of regulations on DPR in Arizona

Scope of Work:

Based on input from stakeholders, develop a document that provides specific recommendations on the range of topics needed for implementing DPR in Arizona

Goals

- Develop science-based recommendations
- Protect public health
- Provide a path for permitting DPR projects in Arizona

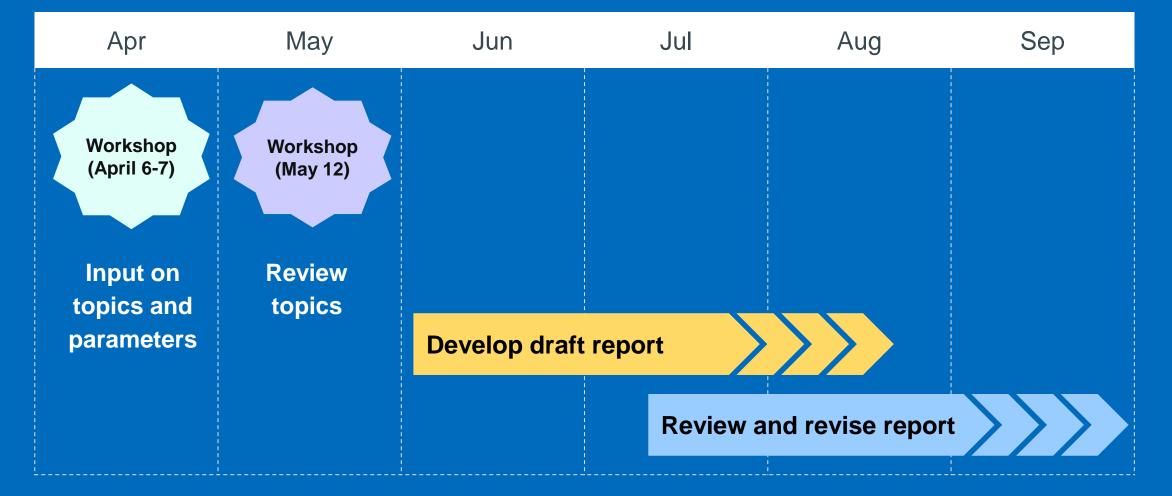
Why now? ADEQ Reclaimed Water Rulemaking

Revisions Needed

Process to revise AZ rules on reuse of reclaimed water and gray water **New Info Available**

ADEQ last updated its reuse rules in 2001

- Expansion in reuse of treated wastewater
- Research and technology have moved forward
- New uses of reclaimed water have been proposed


ADEQ will rely on stakeholder involvement and expertise in developing the revisions to the reuse rules

NWRI Approach to develop the framework

Identify topics

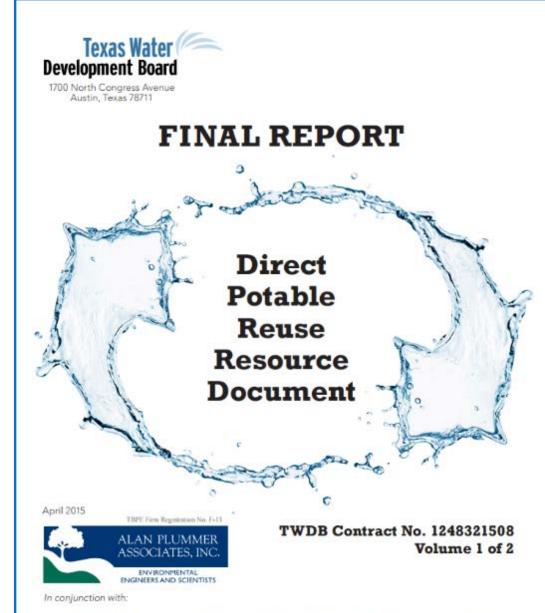
Collect input at stakeholder workshops Review public draft

Framework Activities

sources of information

Framework for DPR

- Published by WateReuse (2015)
- Sponsors: WateReuse, AWWA, and WEF
- Developed by an NWRI Expert Panel
- Available at <u>www.watereuse.org</u>



FRAMEWORK FOR DIRECT POTABLE REUSE

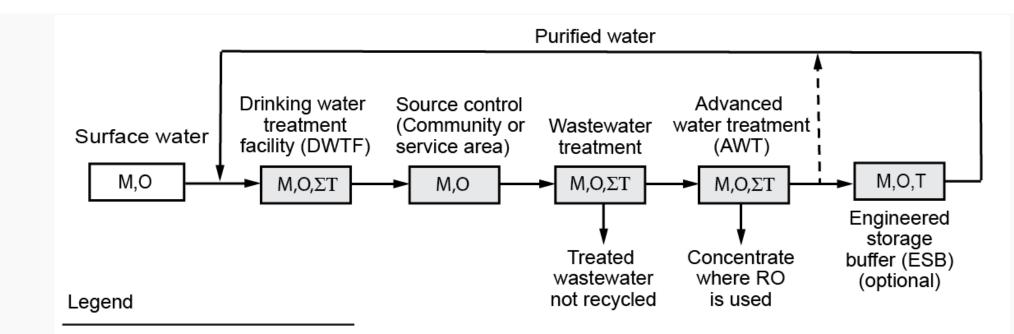
Texas projects

- DPR projects
- Direct Potable Reuse Resource Document

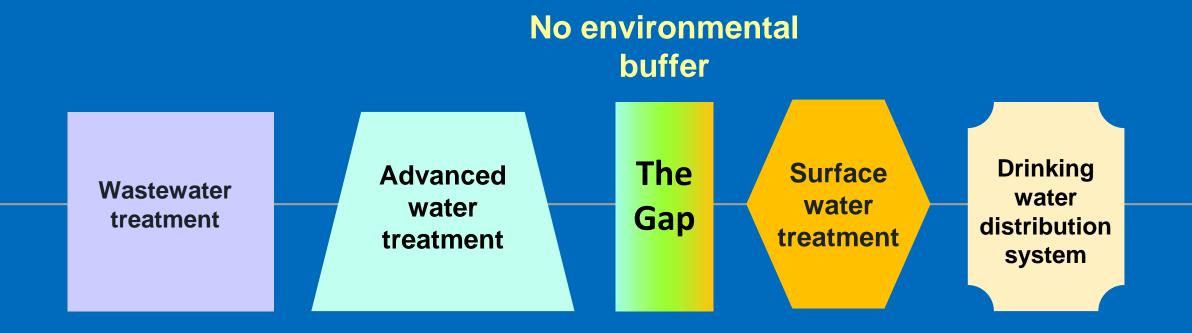
EOA, Inc. • Lloyd Gosselink Attorneys at Law • Nellor Environmental Associates, Inc. • Separation Processes, Inc. • Soller Environmental, LLC • Trussell Technologies, Inc. • Dr. Jörg Drewes, Technical University of Munich • Dr. Steven Duranceau, University of Central Florida • Dr. Desmond Lawler, University of Texas at Austin • Dr. Shane Snyder, University of Arizona • Dr. George Tchobanoglous, University of California at Davis

Evaluation of the Feasibility of Developing Uniform Water Recycling Criteria for Direct Potable Reuse

California State Water Resources Control Board


• Groundwater replenishment (final)

- Surface water augmentation (draft)
- Expert Panel Report on Feasibility of Developing DPR Criteria for Calif. (draft)



Technical, Operational, and Management Barriers

- M = Management barrier
- O = Operational barrier
- T = Technologial barrier
- ΣT = Sum of multiple technical barriers

Direct potable reuse

Important considerations

1. Consistent with current regulations in Arizona	5. DPR lacks an environmental barrier
2. Terms and definitions	6. Multiple barrier approach (drinking water concept) to control pathogens and chemicals
3. Regulations or permitting or guidance	7. Technical, operational, and managerial barriers
4. Regulatory flexibility (alternatives provision)	8. Protective of public health

Draft Guidance Framework Document

Chap. 1: Introduction

overview	studies	organization
Water reuse in AZ	NRC Report 1998	Chapter summaries
Nonpotable reuse	NRC Report 2012	Recommended
Planned potable reuse	Risks from microbial and chemical	resources
Potable reuse	constituents	
• IPR		
• DPR		
Terminology		

Chap. 2: Public Health Considerations

overview	pathogens	chemicals
<section-header><section-header><section-header></section-header></section-header></section-header>	 Pathogen reduction criteria: • CEQ approach • NWRI Expert Panel/WRRF 11-02 approach • Calif. IPR approach 	 Targets: MCLs Trace organics TOC 1,4-dioxane and NDMA DBPs

Chapter 3: Potable Reuse Recommendations

Disclaimer:

Hey, this is all preliminary! And is intended for discussion purposes only! There will be a draft for public comment!

Topics

- 1. Rescind DPR prohibition
- 2. Applications
- 3. Outreach
- 4. Source control
- 5. Water quality classes
- 6. Microbial control
- 7. Log removal targets
- 8. Chemical control
- 9. Wastewater treatment

10. Wastewater optimization 11. Employ BADCT 12. Treatment performance 13. Long-term monitoring **14. Critical Control Points** 15. Facility operations 16. TMF Capacity 17. Other considerations

X. Key

- What? What is the topic.
- Why? Why are we interested in this topic for DPR.
- Specific recommendations:
 - List of specific recommendations for Framework document.

1. Rescind DPR Prohibition

- What? DPR is currently prohibited in Arizona.
- Why? The prohibition needs to be rescinded by the Arizona legislature.
- Specific recommendations:
 - Simple: Rescind DPR prohibition (but do we need to make the case?)

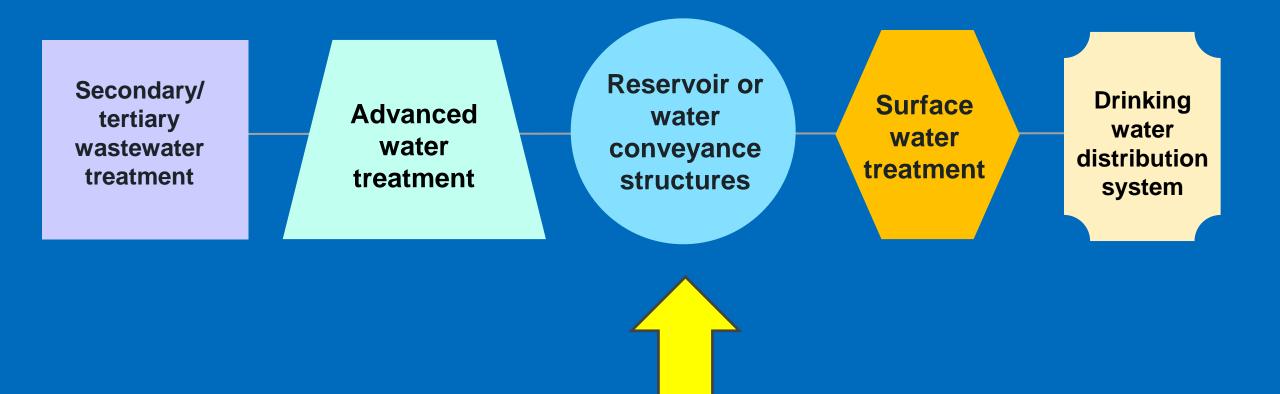
R18-9-704 General Requirements

G. Prohibited activities.

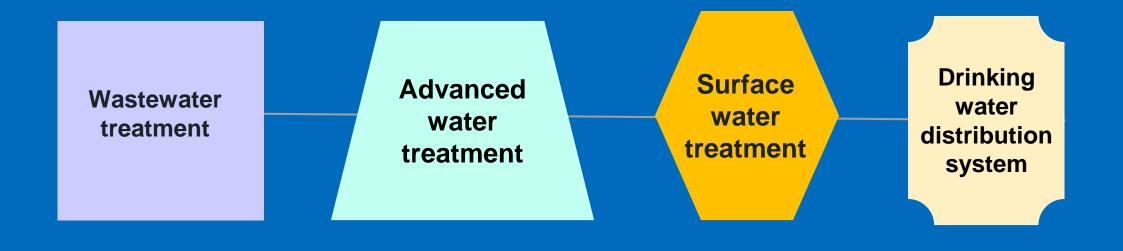
1. Irrigating with untreated sewage;

- 2. Providing or using reclaimed water for any of the following activities:
 - a. Direct reuse for human consumption;
 - b. Direct reuse for swimming, wind surfing, water skiing, or other full-immersion water activity with a potential of ingestion; or
 - c. Direct reuse for evaporative cooling or misting.

2. Potable reuse applications


Direct Potable Reuse

- With a surface water treatment plant (produces advanced treated water)
- Without a surface water treatment plant (produces finished drinking water)


Surface Water Augmentation

- Reservoirs, lakes, and water conveyance structures
- See AZ Administrative Code R18-9-601 (open water conveyance and pipeline conveyance)

Surface water augmentation

Direct potable reuse (first type) producing advanced treated water

Direct potable reuse (second type) producing finished drinking water

Wastewater treatment

DPR facility: Advanced water treatment that meets SDWA requirements for Surface Water Treatment Plant

Drinking water distribution system

3. Outreach

- What? Outreach programs are strategic, transparent, and thorough.
- Why? Public confidence and support is critical to the implementation of potable reuse projects.

Regulation

Permit

Guidance

- Specific recommendations:
 - Not the role of regulators.
 - Start early. Continue throughout project. Terminology is important.
 - Use proven techniques. Develop consistent messages.
 - Use of a communications plan. Prepare for tough questions.
 - Build relationships.

4. Source control

- What? Control of the discharge of constituents (chemicals) into a wastewater collection system that:
 - 1. Can impact wastewater treatment.
 - 2. Are difficult to treat.
 - 3. May impair the water quality entering an advanced treatment facility.

Regulation

Permit

Guidance

• Why? Beneficial, efficient, and cost effective strategy for managing chemicals by keeping them out of the wastewater system.

• Specific recommendations:

- Understand the sewershed and sources of chemicals.
- Minimize discharge of harmful or difficult to treat chemicals.
- Improve wastewater water quality. Provide public with confidence.

5. Public health protection

What? Demonstrate public health protection through appropriate pathogen and chemical control based on treatment technologies, treatment performance, and monitoring.

Why? Potable reuse involves a highly impaired source – wastewater. Regulators require that a certain level of risk protection is achieved and the public will need confidence.

Specific recommendations:

- Pathogen control (viruses, protozoa, and bacteria)
- Chemical control (regulated and unregulated)
- Treatment technologies and monitoring (indicators and surrogates)

5. Water quality classes

- What? Base DPR criteria on level of wastewater treatment.
- Why? The level of wastewater treatment, and the resulting water quality, varies by class in AZ.
- Specific recommendations:
 - Not using RO: require A+ or B+ (+ refers to NDN)
 - Using RO: can use A, B, A+, or B+
 - The pathogen log removal credits provided for the different classes may vary.
 - The pathogen log removal targets for the advanced treatment may vary based on class.

6. Microbial control

- What? For DPR, public health protection requires that pathogens in wastewater be removed or inactivated.
- Why? Pathogens in recycled water include bacteria, viruses, and protozoan parasites. Pathogenic microorganisms present significant acute risks to the consumer and are the most important design and operating <u>concern</u> for DPR systems.
- Specific recommendations:
 - An appropriate goal is 1 in 10,000 annual risk of infection.
 - A log removal target approach (including a log removal credit system) is needed since it is not possible to measure directly.

7. Log Removal Targets

- Comply with the following <u>minimum log removals</u> (including SWTR credits for the PSW) starting from the raw wastewater (California):
 - 12-log reduction of enteric virus,
 - 10-log reduction of Giardia cysts, and
 - 10-log reduction of *Cryptosporidium* oocysts
- Log removals <u>can be adjusted</u> based on an approved pathogen removal study of the wastewater treatment plant that assigns conservative log reduction credits (Texas)
- Apply credits to wastewater facility, advanced water treatment facility, and drinking water facility based on regulatory review.

8. Log Removal Credits

- CA has assigned maximum credits at unit processes at IPR projects.
- Specific unit processes with LRVs are (V/C/G):

Wastewater	(2/1/1)
Microfiltration/ultrafiltration	(0/4/4)
Reserve osmosis	(1.5/1.5/1.5)
• AOP	(6/6/6)
Chlorination	6/3/0)

• Process monitoring is needed for verification.

DPR Log₁₀-Reduction Values (WRRF 11-02)

Microbial Group	Criterion (log ₁₀ reduction)	Possible surrogates	Source used to develop criteria
Enteric virus	12	MS2 bacteriophage	SWTR (U.S. EPA, 1989a); CDPH (2011); NRC (2012); NRMMC–EPHC–NHMRC (2008)
Cryptosporidium spp.	10	Latex microspheres, AC Fine Dust, inactivated <i>Cryptosporidium</i> oocysts, aerobic spores	Interim ESWTR (U.S. EPA, 1998); LT2 ESWTR (U.S. EPA, 2006); CDPH (2011); NRC (2012); NRMMC–EPHC– NHMRC (2008)
Total coliform bacteria	9	NA°	Total Coliform Rule (U.S. EPA, 1989b); NRC (2012) risk assessment for salmonella

Example Pathogen Log Reduction Credits (Tchobanoglous et al., 2015)

Process	Monitoring	Log Reduction Credits		Credits	Notes
		V	G	С	
Secondary treatment	Study needed	0 - 1.9	0 - 0.8	0 - 1.2	"0" is the default.
MF or UF	Daily PDT	O ^a	4.0	4.0	Pressure decay test (PDT) should be done daily to verify proper performance.
RO	Online EC	1.5	1.5	1.5	Electrical conductivity (EC) should be monitored in RO influent and effluent. Log reduction in system control must be based upon measured values.
UV-AOP	Intensity sensors	6	6	6	UV sensors should be calibrated per U.S. EPA (2006).
ESB with free chlorine, CL ₂ ,	Online Cl ₂	6	3	0	System control is based on maintaining a minimum free residual of 0.4 mg/L.
Total		13.5	14.5	11.5	

8. Chemical Control

- What? Chemicals in wastewater must be removed to appropriate levels.
- Why? Chemicals in recycled water include both regulated and unregulated chemicals. Chemicals are typically chronic (nitrate is a notable exception). Trace organics (e.g., CECs) are often discussed.
- Specific recommendations:
 - Meet all MCLs and any additional state requirements (regulated chemicals)
 - Meet relevant health criteria established for unregulated chemicals.
 - Monitor for surrogates and indicators of treatment (performance monitoring) and water quality (verification monitoring).
 - Possibly use TOC as a measure for unknown chemicals.

8. Chemical Control

A tiered approach for chemical criteria based on the type of monitoring:

- Tier 1: Regulated chemical constituents, including DBPs
 - MCLs, other state requirements
- Tier 2: Unregulated chemical constituents with public health interest
 - Including CECs based on public health
- Tier 3: Unregulated chemical constituents that provide information on the effectiveness of treatment
 - Including CECs
 - Detected frequently and at sufficient concentrations to make them useful measures of the removal of health-significant organic chemicals

8. Chemical Control - Salinity

- What? TDS and individual constituents.
- Why? Salinity is not a public health issue, but salinity must be managed to maintain acceptable aesthetics and for recycled water quality. Individual constituents (chloride, bromide, etc) are also important.

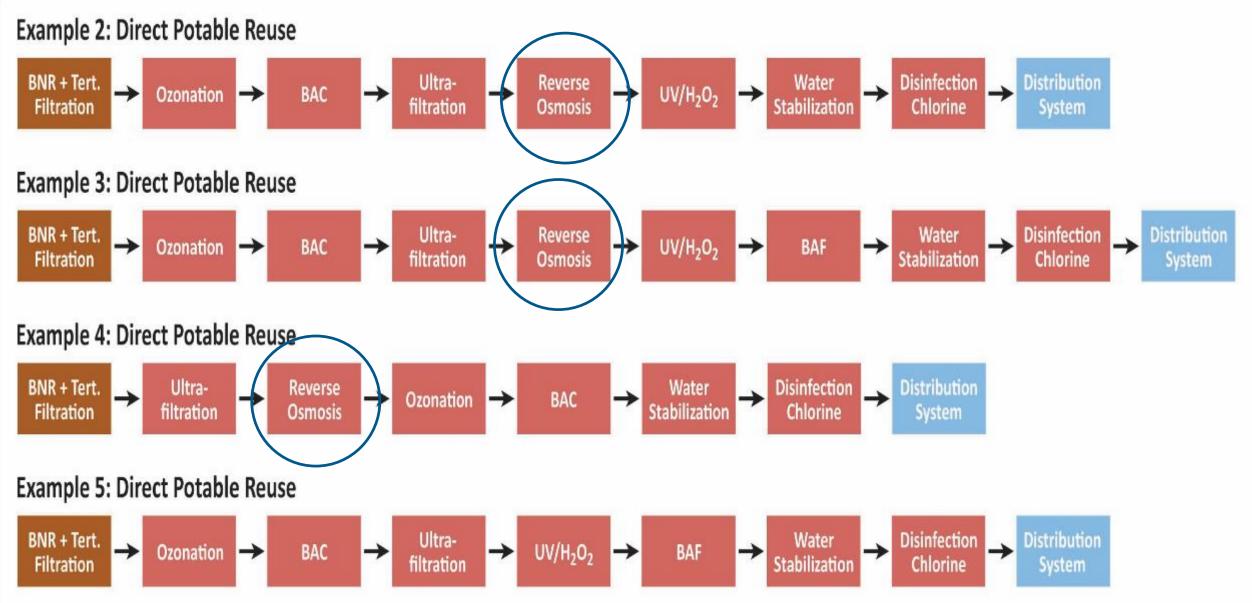
• Specific recommendations:

- Salinity is often a regional issue.
- Include salinity as a consideration in planning and design.
- Understand the long-term changes in salinity.
- Removing salinity requires advanced treatments such as RO.

8. Wastewater treatment

- What? Provide a consistent, high-quality effluent.
- Why? As a source water for DPR, WWTPs should produce an effluent optimized for further processing by AWTP.
- Specific recommendations:
 - Source control
 - Wastewater should be B+ or A+ (NDN), unless full-stream RO is used for advanced water treatment.
 - Assignment of log removal credits (different between B+ and A+)
 - There are <u>benefits with using a higher quality effluent</u> in a potable reuse treatment train. As a result, enhancements should be considered.

9. Wastewater optimization


Possible measures to improve performance and enhance reliability:

- Enhanced screening process and, possibly, fine screening.
- Influent flow and load equalization.
- Elimination (or equalization) of untreated return flows.
- Operational mode for biological treatment process to improve reliability and produce an effluent of consistent quality.
- Improved disinfection while preventing DBP formation.
- Post-treatment filtration (suspended solids can present a major challenge to AWTF processes, such as RO and AOP).
- Improved online and offline process monitoring.

10. Advanced water treatment (AWT)

- What? Involves unit processes (a range exists) for treating wastewater effluent to produce a drinking water source of supply.
- Why? Must meet regulatory review (pathogens and chemicals) and public scrutiny.
- Specific recommendations:
 - Define the objectives (pathogen log removals and chemical control).
 - Do not list specific treatment trains (avoid the notion of prescribed trains).
 - Instead, provide lists of advanced treatments and the capabilities.
 - Use of pilot testing and/or demonstration studies.
 - Final water quality will vary based on the treatments employed.
 - Track research and field experience. Understand reliability (performance of treatment).
 - Role of "environmental storage buffer"

Example treatment trains

From the draft Expert Panel Report on the Feasibility of Developing DPR Criteria for Calif. (2016)

11. Employ BADCT

- What? ADEQ has stringent APP technology standards for WWTPs (Best Available Demonstrated Control Technology or BADCT) that involves:
 - Engineering controls, processes, operating methods or other alternatives, including site-specific characteristics, to manage chemicals/pathogens.

Regulation

Permit

Guidance

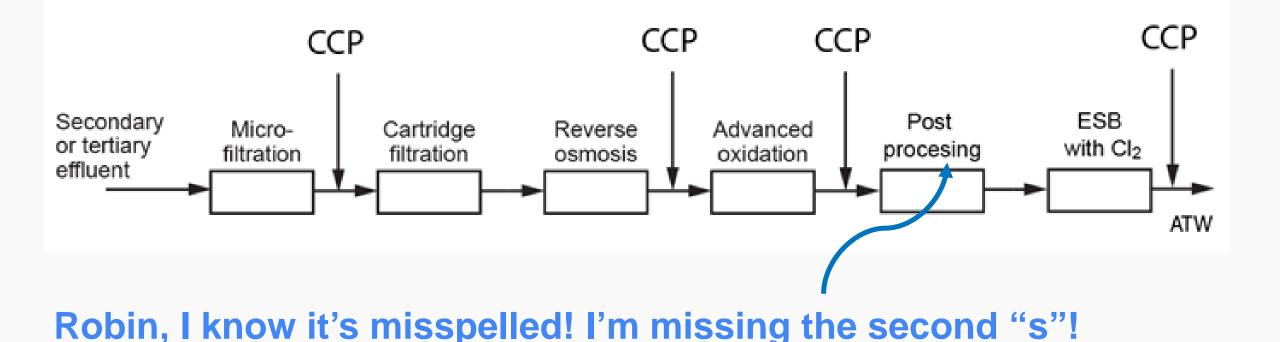
- Why? Expanded use of this approach may provide design criteria and validated technologies for DPR.
- Specific recommendations:
 - Use BADCT in the design, construction and operation of DPR.
 - Use of "prescriptive approach" (pre-approved demonstrated technologies) and "individual process" (performance based)

12. Treatment performance

- What? Process control and monitoring
- Why? Document system performance and monitor chemical and pathogen reduction or measure specific criteria.
- Specific recommendations:
 - Automated system control
 - Start-up performance
 - Performance monitoring (long-term monitoring; surrogate and indicator monitoring)
 - Frequency, locations, regulatory vs. process, online vs. periodic
 - Use of <u>Critical Control Points</u>

13. Long-term monitoring

- What? Performance monitoring.
- Why? Demonstrate continuous production of high-quality water protection of public health.
- Specific recommendations:
 - Online where possible.
 - Rapid surrogate measures.
 - Assure log-removal targets are met.
 - Develop periodic sampling requirements.
 - Use of alarms, shutdowns, and flow diversions.


Performance Monitoring: Example Online and Calibration Sampling (Tchobanoglous et al., 2015)

Process	Test	Type and Frequency of Sampling
Secondary effluent	Turbidity and microbial indicators	Turbidity: online (continuous) and grab (weekly); microbial: grab (weekly)
	Ammonia, TSS, and BOD	Grab (weekly)
MF or UF	PDT	Offline testing (daily)
	Turbidity	Online (continuous) and grab (weekly)
RO	Influent and effluent EC and TOC	Online (continuous) and grab (weekly)
	UV sensors	Online (continuous) and verification (weekly)
UV-AOP	Influent UVT	Online (continuous) and grab (weekly)
	Influent and effluent chloramine	Online (continuous) and grab (weekly)
ESB with free chlorination	Effluent free chlorine residual	Online (continuous) and grab (weekly)

14. Critical Control Points

- What? Point in the treatment train (i.e., a unit treatment process) that is designed to reduce, prevent, or eliminate a human health risk and for which controls exist to ensure the proper performance of that process.
- Why? Systematic approach to inform the <u>effective operation</u> of AWTF through performance-based monitoring (augment end-of-pipe monitoring)
- Specific recommendations:
 - Steps:
 - Identify hazards
 - Identify CCPs
 - Identify monitoring procedures
 - Identify corrective actions and procedures

Example: Control Control Points

From the draft Expert Panel Report on the Feasibility of Developing DPR Criteria for Calif. (2016)

15. Facility operation

- What? Operation and maintenance (O&M) for DPR system to operate consistently and reliably.
- Why? Appropriate O&M is needed to ensure that all public health objectives are met.
- Specific recommendations:
 - Commissioning and initial start up
 - Shutdown plan
 - O&M Plan (critical item)
 - Operator Training and Certification
 - Reporting

Components of an O&M Plan for a DPR System (Tchobanoglous et al., 2015)

Staffing (i.e., for daily operations and emergencies)

Operator training and certification

Checklists for operations procedures (daily, weekly, and monthly)

Routine maintenance

of equipment

Critical spare parts and failure training

Control system (e.g., SCADA, shutdown procedures, and alarms)

Process monitoring and control

Regulatory compliance

Frequency of monitoring

Distribution System

Response time to treatment failures or non-compliant water quality

RegulationPermitGuidance

16. TMF Capacity

- What? Technical, Managerial, and Financial Capacity ability of a water utility to provide safe and dependable water (required by SDWA)
- Why? Regulators can assess a utilities potential or existing weaknesses to provide safe and reliable advanced treated water.
- Specific recommendations:
 - Build on existing capacity develop program for PWSs
 - Expand current TMP program to address DPR
 - Ability to review small systems

17. Other considerations

- Inter-agency coordination
- Blending water into drinking water supply
- Bioassays
- Antibiotic resistant bacteria and genes
- Reliablity, robustness, resilency, and redundacy
- Managing concentrate from RO
- Research

- Develop draft document for review (August)
- Revise document public review draft (August)
- Finalize document (September)

Thank You!

Jeff Mosher jmosher@nwri-usa.org www.nwri-usa.org

