The Advisory Panel on Emerging Contaminants (APEC): A Progress Report

Arizona Water Reuse 2016 Symposium Tuesday, July 26, 2016

> Daniel R. Quintanar, Project Manager, Tucson Water Chair APEC Outreach and Education Committee

Chuck Graf, Principal Hydrogeologist, Arizona Department of Environmental Quality APEC Panel Liaison

APEC's Origin

- State should examine the presence of pharmaceuticals and personal care products in Arizona's water
- Expand education & outreach programs
- Expand drug take-back programs
- Promote research

Department of Water Resources

Blue Ribbon Panel on Water Sustainability Final Report

Forming APEC: From Recommendation to Action

June 2012 Arizona Department of Environmental Quality (ADEQ) takes lead in forming group

APEC Objectives

- Use open forum to determine approaches
- Guidance identifying & managing emerging chemical and microbial contaminants
- Identify research and funding opportunities
- Offer guidance on effective communication with each other & the public
- Advise ADEQ/water utilities on emerging chemicals & pathogens that threaten water safety
- Seek to become an influential voice

Formed Committees

Chemical Emerging Contaminants Microbial Emerging Contaminants

Outreach and Education

Launched Website

Draft Report

Final Report Will Identify

110 emerging contaminants found in Arizona water **Organic chemicals Inorganic chemicals Microorganisms** That are present at quantifiable levels in **Colorado River and CAP Canal** Other surface waters Treated wastewater & reclaimed water Groundwater **Drinking water**

APEC Recommendations

ADEQ to create a APEC Research Committee to identify research topics, projects & funding sources to continue research on

- Antibiotic resistant genes & antibiotic resistant bacteria
- Cost-effective water & wastewater treatment technologies
- Inexpensive laboratory methods for utility labs
- Emerging contaminants in harvested rainwater
- Emerging contaminants in bottled water
- Expand pharmaceutical take-back collaboration

Observations

Emerging chemical and microbial contaminants are extremely complex

15,000 new chemicals/day

water based pathogens vs. water-borne pathogens

risk communication challenge

Societal needs impact contaminants

Used as fertilizer

pharmaceutical (USGS)

WATEREUSE

Struggling with terminology and language & grappling with definitions

- "emerging contaminants"
- "unregulated emerging contaminants"
- "unregulated microbial contaminants"
- "emerging pathogens"
- "micro organic compounds"
- "contaminants of emerging concern"
- "microconstituents"
- "trace organic contaminants"
- "Endocrine Disrupting Compounds, EDCs"
- "Pharmaceuticals and Personal Care Products, PPCPs"
- "Pharmaceuticals in the Environment, PIEs"
- "Trace Organic Compounds, TORCs"

Complex regulatory process

These contaminants are regulated and are considered emerging contaminants Atrazine: MCL = 3ppb

Legionella: MCLG = 0

Ever changing and growing list

1,4-Dioxane **Estrone** EE2 Ibuprofen 1,2,3-TCP **NDMA** DEET TCEP Naproxen **Sucralose**

PFOS and PFOA

Perchlorate **Hexavalent Chromium Microbeads** lopromide Naegleria fowleri Legionella pneumophila **Sulfamethoxazole** Atrazine **Triclosan Bromomethane**

Emerging contaminants vary by location & region

Credit: U.S. Dept. of Defense

Flagstaff Antibiotic Resistant Bacteria

Phoenix Metro Area Hexavalent Chromium

Emerging contaminants vary by location & region

Lakes Mead, Mojave and Havasu Cyanotoxins

Tucson 1,4-Dioxane

carexcanada.cs

Are there "cry wolf" contaminants?

<section-header><section-header><image><image>

20 years

290 years

Years to ingest one therapeutic dose, drinking 2 liters of treated wastewater per day, containing the highest concentration of the drug reported in Arizona

► Are we overlooking "legacy" contaminants?

Lead Fluoride Arsenic Nitrate

► Which one is the priority?

Understanding the impact of low concentration levels over the long term

Zero is no longer a viable number

New equipment and methodologies means we are detecting and treating new contaminants and compounds

sophisticated analytical instrumentation

UV reactor chamber - AOP

How to develop outreach tools for different audiences to communicate safety level

Next Steps

Questions or Comments?

Professionals Dedicated To Arizona's Water

