DPR Pilot Testing Results for El Paso's Advanced Water Purification Facility

George Maseeh, P.E., BCEE Arcadis

Gilbert Trejo, P.E. El Paso Water Utilities

2016 Arizona Water Reuse Symposium Flagstaff, AZ

el pasc

Current Drought Conditions in El Paso

Source: NASA

Elephant Butte Reservoir is 10.9% full as of July 24, 2016 - Texas Water Development Board

El Paso's Path

El Paso's Path

Feasibility Study Planning (2014) Pilot Testing

> Construct

Design

Water Quality Goals

- Address regulatory criteria and public concerns for this DPR project
- Meet all primary water quality standards
- Provide multiple barriers for pathogens
- Provide diverse treatment for chemical microconstituents
- Meet EPWU specific goals

El Paso's Path

Feasibility Study Pilot Testing (2015-16)

EL PASO WAY U DE UTILITIES PUBLIC SDELVALOR BOARD

Imagine the result

Planning

El Paso Water Utilities Public Service Board

Advanced Purified Water Treatment Plant – Phase I

Pilot Testing Plan

December 2014

"We find the...pilot study protocol acceptable..." with amendments to include additional data and information in the final pilot study report.

Design

TCEQ Approval Letter April 17, 2015

Construct

Pilot Testing Overview

Pilot Testing Objectives

TCEQ Meet TCEQ requirements for pilot testing

Demonstrate stable and reliable performance

Demonstrate AWPF treatment train meets water quality goals

Test and demonstrate online water quality monitoring for full scale application

Verify major processes and systems for fullscale design

Pilot and Full-Scale Locations

Three Configurations Tested

Ozone Increased Concentrations of Bromate (~60%) and NDMA (~300%)

Ozone System Performance

Objectives of Ozone Testing	Results
Reduce membrane fouling	 Fouling was not reduced TMPs were lower when ozone was not operating
Improve water quality	 Ozone operation increased concentrations of: bromate (regulated carcinogen) NDMA (unregulated probable carcinogen) AOC (membrane fouling agent)
Disinfection	 No additional pathogen inactivation
Improve taste and odor	 T&O compounds non-detect and below thresholds in permeate w/o ozone Odor characterization verified no benefit with ozone

Performance of Core Treatment Train

Pall MF: A Series (no O₃) - TMP

TMP (psid), Turbidity (NTU)

Evoqua UF: Stage 2a - TMP (no O₃)

35 gfd flux

Membrane Filtration: Key Points

- Both Pall and Evoqua systems successfully completed Stage 1-2-3 testing without pretreatment (no ozone or denitrification filters)
- Operation at conservative flux values
- No "irreversible" fouling observed
 - Successful confirmation via Stage 3 testing
- All daily LRVs exceeded 4.0

NF/RO System Overview

- 4"-dia. membrane elements:
 - ESPA2-LD
 - NF90-400/34i
 - ESNA1-LF2-LD
- 2:1 array
- Recovery: 80%

Removed from pilot testing due to poor rejection of nitrate and nitrite

- Flux: **11.7 gfd**
- Pretreatment: acid + scale inhibitor

NF/RO Rejection Summary

Parameter	Units	Feed	Permeate			
			ESNA1 (NF)	NF90 (NF)	ESPA2-LD (RO)	Goal
Chloride	mg/L	285	61	6.9	22	300
Nitrate	mg/L as N	12.0	5.1	1.3	2.2	< 6
Nitrite	mg/L as N	1.06	0.9	0.04	0.04	< 0.6
Sulfate	mg/L	274	5.0	0.9	6.8	300
TDS	mg/L	1,075	174	36	78	900
тос	mg/L	7.51	0.9	0.4	0.4	TBD

ESPA2 and NF90 demonstrated 70-90% rejection of nitrate and nitrite.

Data are average values ND: Not Detected TBD: To Be Determined

Granular Activated Carbon

Disinfection

Disinfection

Total Culturable Virus (MPN/L)

Date	Secondary Clarifier Effluent	UV AOP Effluent
6/10/2015	0.25	ND
7/8/2015	0.46	ND
8/6/2015	0.403	ND
9/14/2015	0.09	ND
10/7/2015	0.575	ND
10/28/2015	0.48	ND
11/30/2015	0.4	ND
12/28/2015	0.299	ND
1/13/2016	0.21	ND
1/18/2016	0.197	ND

Pathogen Removal Requirements and Preliminary Results

	Anticipated Log Removal / Inactivation Credits					
Unit Process	Crypto	Giardia	Viruses			
Pretreatment	0	0	0			
MF/UF	4	4	0			
NF/RO		Anticipated removal requirements				
UV AOP		achieved through AWPF unit processes without secondary effluent chlorination				
GAC	0	0	0			
Cl ₂	0	3	4			
Total	8-10	11-13	8-10			
Projected Requirement	5.5	6	8			

CEC Removal

CEC Sampling Overview

- Conducted monthly sampling of SC Eff and UV AOP Eff
- Conducted two special sampling events to evaluate removal of CECs across treatment train
 - 96 CECs
 - 1,4-dioxane
 - Perfluorinated compounds (e.g., PFOS and PFOA)
 - 16 a-hydroxyestradiol (estriol) and equilin

Removal of CECs Across Treatment Train

Key Findings from Special CEC Sampling Events

- 95% reduction in total measured concentrations of CECs between pilot influent and UV AOP effluent
- At least 89 or more of 96 CECs measured were "nondetect" in the NF/RO permeate samples
- UV AOP further reduced concentrations of the CECs detected in NF/RO permeate
 - At least 93 or more of 96 CECs measured were "non-detect" in the UV AOP treated samples
- Ultra-low concentrations are difficult to track through the downstream processes

Pipe Loop Testing

Pipe Loop Testing / Corrosion Control

- Assessed corrosivity of NF/RO permeates
- Galvanized steel and copper pipes harvested from distribution system
- Monitored iron, copper, lead
- Testing conditions included stabilization by:
 - pH adjustment
 - Alkalinity adjustment (calcite contactor)
 - Corrosion inhibitor addition
 - Groundwater blending

Testing demonstrated successful stabilization methods

- Purified water metals concentrations were lower than baseline tap supply in pipe loops
- Post-treatment stabilization resulted in lower metals concentrations
- Preliminary approach for full-scale treatment:
 - Finished water quality targets:
 - CCPP between 4-10 mg/L as CaCO₃
 - LSI > 0
 - pH between 7.5-8.0
 - Multiple options for stabilization

No notable challenges for introducing purified water into the distribution system

Critical Control Points

Pilot-Scale Online Monitoring

Recap of Pilot Testing Objectives

TCEQ Meet TCEQ requirements for pilot testing

Demonstrate stable and reliable performance

Demonstrate AWPF treatment train meets water quality goals

Test and demonstrate online water quality monitoring for full scale application

Verify major processes and systems for fullscale design

Beneficial Outcomes Demonstrated by Pilot Testing

Clear path to TCEQ approval of AWPF process

Stable operation meeting all water quality goals

Denitrification filter and ozone pretreatment not needed

Cost projection reduced by \$25 million (capital) and \$38 million (life-cycle)

Acknowledgements

- El Paso Water Utilities:
 - John Balliew
 - Fernie Rico
 - Carlos Dominguez
 - Aide Zamarron
- Arcadis
 - Corin Marron
 - Sanaan Villalobos
 - Caroline Russell
 - Dan Olson
 - Chelsea Francis
- NWRI Independent Advisory Panel
- University of Texas at El Paso
- Texas Commission on Environmental Quality

Questions?

George Maseeh

Arcadis

george.maseeh@arcadis.com (520) 975-4625

