

DPR Decision Tool: Nanofiltration Rejection Model for Recalcitrant CECs

Steve Jones, PhD, PE Mike Watts, PhD, PE Zaid Chowdhury, PhD, PE Ranil Wickramasinghe, PhD, PE

Arizona WateReuse Conference July 24-26, 2016

Acknowledgements

🔅 eurofins

Eaton Analytical

Agenda

- IPR vs DPR
- Contaminants of Emerging Concern
- DPR Regulations
- Advanced Barrier Technology for DPR: RO vs NF
- Scope of this Research
- Methods & Results
- NF Rejection Modeling
- Conclusions

What is Potable Reuse?

- The reuse of municipal water resource recovery facility (WRRF) effluent for augmentation of fresh water supply of public water systems (PWS). (Water Environment Federation)
- PWS alternatives when additional fresh water (TDS < 500 mg/L) is not an option:
 - Nothing = rationing, conservation, no growth
 - WRRF reuse (TDS 500 to 1,000 mg/L): readily available
 - Brackish water (TDS > 1,000 mg/L): may be available
 - Seawater (TDS > 35,000 mg/L): coastal option

Indirect vs Direct Potable Reuse in US

- Indirect Potable Reuse (IPR)
 - Environmental buffer separates WRRF from WTP
 - Practiced for years: planned or unplanned planned
 - Examples: El Paso, TX and Fayetteville, AR
- Direct Potable Reuse (DPR)
 - Advanced treatment technology separates WRRF from WTP
 - Operating in US:
 - Big Spring, TX (2013) year-round operation (2.5 MGD)
 - Wichita Falls, TX (2014) seasonal peak-demand operation (5.0 MGD)

Contaminants of Emerging Concern

Defined: Chemical solutes potentially found in surface waters at trace levels, ng/L, that may have an impact on aquatic and animal life (US EPA 2015)

- Over 84,000 chemicals in use today as inventoried by US EPA under the Toxic Substances Control Act (TSCA)
- Approximately 700 new chemicals added each year to the US EPA inventory
- Since the 1976 TSCA, only five chemicals have been banned from manufacturing: PCBs, chlorofluorocarbons, dioxin, hexavalent chromium, and asbestos

Are CECs in Municipal Wastewater Effluent?

CTIVE INGREDIENT salt of 2,4-D-Di

> KEEP OUT OF REACH **OF CHILDREN**

ANGER-PELIGRC

Splenda. Splenda, Splenda, CARBAMAZEPINE مى مى الكرونين المكروني مى المكروني مى المكروني مى المكروني الم Controlled Release Tablets CARBAMAZEPINE USP 400MG 3 Blisters Of 10 Tablets each 400MG BZ RAD 2,4-D AMINE WEED KILLER SELECTIVE BROADLEAF WEED CONTROL NOC 0591-0487-05 CI Estradio Tablets USP Watson

CEC Classifications

Refs: CDPH 2011, NRC 2012, MDH 2015

CECs in WRRF Secondary Effluent

If we consider WRRF primary and secondary treatment as the first barriers for reuse, we must ask

What is the recalcitrant (i.e. non-biodegraded) CEC fraction?

SE Surveys (Drewes, 2006; Behera, 2011; Luo, 2014) have found:

- EDCs, Pharmaceuticals, Pesticides in ng/L
- Sweeteners & Flame retardants in ug/L (most recalcitrant)

Federal CEC and DPR Regulations

US EPA SDWA, as amended in 1996, established:

- UCMR program and NCOD
- CCL update every 5 years
- CCL4 (2015 draft): 100 chemical and 12 microbial contaminants
- To date, NPDWR <u>MCLs for only</u> <u>3 CEC herbicides</u>:
 - Atrazine MCL = 3,000 ng/L
 - 2,4 D MCL = 70,000 ng/L
 - Simazine MCL = 4,000 ng/L

No federal DPR regulations, EPA leaving it to the states ...

States & PWS Managers Need Guidance; 5 SDWA Primacy States are developing DPR programs:

California: "If DPR can be demonstrated to be safe and feasible, the State Water Plan goal of reusing 1.8 BGD by 2025 will be achieved." (CDH Title 22) Demonstration piloting recommended with monitoring for 15 CECs (CSWRCB)

Texas:

- 2012 State Water Plan: 1.5 million acft/yr by 2060
- Leading nation with first DPR systems (4 approved by TCEQ)
- 51 CECs recommended for source water monitoring (TWDB)

Oklahoma: in advisory committee

Arizona: in advisory committee

New Mexico: Cloudcroft in construction

Technology Default: Reverse Osmosis

Feds: US EPA 2012 "Guidelines for Water Reuse": BAT = RO

States:

- 2012 CDPH Title 22: FAT = RO
- 2015 TWDB "DPR Resource Document": 6 ABT (5 RO, 1 BAC)
- CA, FL, WA regs for IPR with ASR require RO
- 2016 ODEQ named RO as the "default advanced barrier" for new IPR regulations

Industry: 2015 "Framework for DPR": AWT = RO/AOP (WRA, AWWA, WEF, NWRI)

The Filtration Spectrum

Note: 1 Nanometer (1x10⁻⁹ Meters) = 4x10⁻⁸ Inches

1 Angstrom Unit = 10⁻¹⁰ Meters = 0.1 Nanometers

NF has significant advantages over RO

- Less operating pressure (<100 psi vs >150 psi)
 - Less power cost: 10 MGD = \$137,500/yr savings
 - Less capital cost: standard line class vs high pressure class
- Less waste generated:
 - NF provides equivalent rejection (to RO) of divalent and trivalent ions (Ca, Mg, PO₄, SO₄) – major contributors to TDS
 - NF will pass smaller, monovalent ions (Na, CI)
 - Less salinity in the reject stream
 - Less stabilization required for permeate

NF Rejection of CECs: Research to Date

2014 US EPA 5-year extensive CEC Literature Review:

Found over 400 publications regarding CECs

Less than 100 publications involved membrane treatment

13 bench-scale NF CEC-rejection studies

- All synthetic lab prepared CEC samples
- None with recalcitrant CEC in WRRF effluent matrix

No pilot-scale NF CEC-rejection research

No full scale NF CEC-rejection research

NF Rejection of CECs: Research to Date

... the overwhelming majority of predictive rejection models to date are inadequate because they have been developed with idealized solutions typically containing only 2, 3, or sometimes 4 solutes. If accurate modeling of concentrated multi-solute solutions realistic of reuse processing is to become common place then more effort needs to be placed into modeling systems of real industrial relevance.

> Mohammed, et al. 2015: review of recent advancements in commercial TFC NF membranes for reuse applications

Scope of our Research

Select and characterize a <u>CEC study set</u> of anthropogenic, recalcitrant organic solutes suspected to occur in SE and with broad physical-chemical variability

Collect samples and conduct certified CEC MRL analyses of effluents from 3 typical WRRFs where PWS managers are considering DPR – profile full-scale secondary treatment

Determine SE <u>recalcitrant fraction</u> of CEC study set

Determine rejection efficacy of the recalcitrant CECs by TFC RO and NF (MWCO \leq 200 Da) membranes

Develop and validate a **QSAR-based NF rejection model**

Survey of 96 CECs in OK/TX WRRF Effluents

• Samples taken over multiple weeks in August and September (2014)

WRRF Effluent Sample Sites - Garland

WRRF Effluent Sample Sites - Lawton

WRRF Effluent Sample Sites - Norman

96 CEC Survey

- 10 EDCs
 - MW = 206 to 298 g/mol
- 49 Pharmaceuticals
 MW = 151 to 821 g/mol
- 4 Stimulants
 - MW = 176 to 194 g/mol
- 8 Preservatives
 - MW = 129 to 316 g/mol

- 2 Artificial Sweeteners
 MW = 201 to 398 g/mol
- 18 Pesticides
 MW = 146 to 284 g/mol
- 3 Flame Retardants
 - MW = 285 to 431 g/mol

Analytical Methods

- WRF Project 4167 (2012) identified LC/MS/MS-ESI analytical method as most reliable for trace CEC detection in water
- Eurofins Eaton Analytical, EEA (Monrovia, CA) was the test lab for WRF Project 4167, and a developer of the LC/MS/MS-ESI approach (based on EPA Method 539)
- EEA is a certified laboratory by US EPA and 46 states for Method 539 and the UCMR program
- All 3,456 discrete analytical even from the reported work were were by EEA

C	Compound	MRL (ng/L)	Analytical Mode	Compound Class
	Gemfibrozil	5	ESI -	Lipid Regulator
2	PIPPIS	10	ESI -	Analgesic-NSAID
y	Iohexol (Iohexal)	10	ESI -	X-ray Contrast Agent
	lopromide	5	ESI -	X-ray Contrast Agent
٦r	licoutylparaben	5	ESI -	Preservative
41	Isoproturon	100	ESI +	Herbicide
P	Ketoprofen	5	ESI +	Anti Inflammatory
K	etorolac	5	ESI +	Anti Inflammatory
Li	idocaine	5	ESI +	Analgesic
Li	ncomycin	10	ESI +	Antibiotic
Lit	nuron	5	ESI +	Herbicide
Lop	pressor (Metoprolol)	20	ESI +	Beta Blocker

TFC Membranes Tested

- 1st layer: polyester backing
- 2nd layer: polysulfone UF membrane
- 3rd layer: proprietary to establish surface charge (zeta)
- 4th layer: polyamide NF/RO membrane

Test Membrane	MWCO (Da)	Zeta Potentialª (mV)	Contact Angle (degrees)	
AG Series RO	100	-20	23	
DK Series NF	200	-12	20	

Sources: GE Osmonics, NSF MAST Research Center at University of Arkansas

^a Zeta Potential at neutral pH

NF/RO Rejection Methods - Apparatus

CECs Detected in WRRF Effluents

- 82 CECs were detected above MRL in the PE samples
 - 14 CECs either did not exist at measurable level or were effectively removed by primary treatment
- 18 CECs were 100% removed by the WRRF biological processes (i.e. secondary treatment)
- 64 CECs were found to be <u>recalcitrant</u> above MRL in the SE
 - This group of CECs was the "focus set" of the membrane rejection research

Recalcitrant CECs

- 3/10 EDCs (2 artificial and 1 natural)
- 36/49 Pharmaceuticals:
 - 19 neutral
 - 17 ionic
- 4/4 Stimulants (all HL-N)
- 3/8 Preservatives
- 2/2 Artificial sweeteners (all HL-N)
- 3/3 Flame retardants (all HB-N)
- 13/18 Pesticides

NF Rejection Model Approach

Determine CEC-specific molecular properties that are relevant to known NF rejection mechanisms

Ouantitative Structural Activity Relationship (QSAR) properties

Differentiate NF Rejection Mechanisms (as cited in literature)

- Steric (Size) Exclusion
- Electro-Static (Ionic) Exclusion
- Dipole-Dipole (Hydrophobic) Sorption

 How useful are QSAR properties in modeling the rejection of recalcitrant CECs in simulated NF rejection for water reuse?
 Central Question

Predictive Parameters Tested

Parameters		Relevant Rejection Mechanisms
Phase Partitioning	K _{ow} K _{aw} K _{oa}	Dipole-Dipole Sorption (Hydrophobicity)
Water Solubility	Solubility (S)	Dipole-Dipole Sorption (Hydrophobicity)
Surface Charge	Molecular Charge at Neutral pH (+/-)	Electro-Static Exclusion
	Molecular Weight (MW)	Steric (Size) Exclusion
Molecular Size	Polar Surface Area (PSA)	Steric (Size) Exclusion
	Polarizability (α)	Dipole-Dipole Sorption

Libraries of Chemical Data (all 96

CECS)	Parameter	Source
	K _{ow} , K _{oa} , K _{aw}	EPA EPI Suite v.4.11
	Solubility (S)	EPA EPI Suite v.4.11
	Molecular Weight (MW)	chemicalize.org
	Polar Surface Area (PSA)	chemicalize.org
	Polarizability (α)	chemicalize.org
	Molecular Charge at Neutral pH (+/-)	chemicalize.org

PhysProp Previou	Get User Save User CAS Input CALCULA	TE ClearInputField What's New
ter SMILES:		
meLookup		
enry LC (atm-m3/mole):	Wat Sol (mg/L):	MP:
	Vap Pr (mm Hg):	BP:
	River: Lake: Log Kow:	- Output
/ater Depth (meters):		Summary
/ind Velocity (m/sec):	s 0.5	🔎 Full
urrent Velocity(m/sec):	0.05	
CHITED STATES - LONG	The Estimation Programs Interface (EPI) Suite Protection Agency's Office of Poliution Prevention and SEG1. It is a screening-tere tot and accenant be used tools, it is intended for use in screening level applicat release potential, and "bin" chemicals by priority for fu used when experimental (measured) values are available limportant information on the performance, de	¹⁹⁴ was developed by the US Environmental I Toxics and Syracuse Research Corporation for all chemical substances. Like other such ions such as to quickly screen chemicals for dure work. Estimated values should not be ble. welogment and application of the individual the land/ Curid.

atrazine	draw upload	rties Viewer
Name to Structure Do you know how chemicalize.org converts chemic ChemAxon's Name to Structure!	cal names into structures? Meet Document to Structures on this v capabilities. Learn more	e vebsite were built using Document to Structure's text mining el
Manage calculations - + Open All - Close All	Layout: Medicinal Chemist 👻	L Download resul
CH ₃ N	Names and Identifiers ? × Common names: strazine IUPAC: 6-chioro-N2-ethyl-N4-(propan-2-yi)-1.3,5-triazine-2,4-diamine Smiles: CCNC1=NC(CI)=NC(NC(C)C)=N1 InDh: SIC28142(NS(c1-4-10-7-12-6(8))3-8(14-7))11-5(2)3/054(4+2,1-34-3,142,10-11)(2,13,14) InDh: SIC28142(NS(c1-4-10-7-12-6(8))3-8(14-7))11-5(2)3/054(4+2,1-34-3,124),42(2)40-45-6,12797-72-7,39400-72-1,15971-31-6,12404-45-6,12797-72-7,39400-72-1,09571-31-6,12404-45-6,12797-72-7,39400-72-1,09571-31-6,12404-45-6,12797-72-7,39400-72-1,09571-31-6,12404-45-6,12797-72-7,39400-72-1,09571-31-6,12404-45-6,12797-72-7,39400-72-1,09571-31-6,12404-45-6,12797-72-7,39400-72-1,09571-31-6,12404-45-6,12797-72-7,39400-72-1,09571-31-6,12404-45-6,12797-72-7,39400-72-1,09571-31-6,12404-45-6,12797-72-7,39400-72-1,09571-31-6,12404-45-6,12797-72-7,39400-72-1,09571-31-6,12404-45-6,12797-72-7,39400-72-1,09571-63-16,09516-39-8	Major Microspecies t ? + 3 Major microspecies at pH=7.4:
IogP ? x IogP:2.20 Polar Surface Area ? x	Elemental Analysis : ? x Formula: CgH14CIN5 Isotope formula: CBH14CIN5 Composition: C (44.55%), H (6.54%), Cl (16.44%), N (32.47%) Isotope composition: C (44.55%), H (6.54%), Cl (16.44%), N (32.47%) Mass: 215.683	H ₃ C H ₃ C Cl Geometry ! ? + γ Dreiding energy = 22.33 kcal/mol Volume = 190.90 Å ³

Predictor Collinearity (Pearson Correlation)

Predictor Variables <u>without</u> Collinearity

- Log(K_{oa}) vs Polar Surface Area
 - $Log(K_{ow})$ vs $Log(K_{oa})$
- $Log(K_{ow})$ vs Charge at pH = 7
- Log(K_{oa}) vs Polar Surface Area

Charge at pH = 7 vs Polarizability

All Potential Predictor Variables for a Multivariate Model

Collinearity is a phenomenon in which two predictor variables in a regression model are highly correlated, meaning that one can be linearly predicted relative to the other with a high degree of accuracy (Weisberg, S. 2005)

Steric Exclusion: Molecular Weight

Rejection Coefficient

Clear *molecular weight cut-off* at 330 g/mol:

- CECs with MW > 330 g/mol → 100% rejection by NF
- CECs with MW < 330 g/mol → significant variability in observed NF rejection

Ionic Exclusion: Molecular Charge at Neutral pH

- Both positively and negatively charged CECs at pH 7 are highly rejected
- Significant variability in rejection of CECs with no surface charge at pH 7

100% Rejection Observed for Negatively Charged CECs

	R
1 st Quartile	1.0
Median	1.0
3 rd Quartile	1.0

100% Rejection Also Observed for Positively Charged CECs

	R
1 st Quartile	1.0
Median	1.0
3 rd Quartile	1.0

Hydrophobic Sorption: log (Kow/Kaw)

Log(Kow/Kaw)

Can a deterministid multivariate model explain the remaining rejection coefficient variation?

If we separate the observed 100% CEC rejection events from Bin 4...

... There are two predictor variables that can explain a significant amount of the remaining variation in observed CEC rejection: Mean StdDev Confid

Log(K_{ow}/K_{aw})
Polar Surface Area (PSA)

Coefficient	Mean Value	StdDev (+/-)	Confidence p-value	
β ₁	0.05301	0.01520	0.0011	
β ₂	0.16502	0.07720	0.0380	

$$\textbf{Rejection} \geqslant R = \begin{cases} \beta_1 \log(\frac{K_{ow}}{K_{aw}}) + \beta_2 \log(PSA), & \log\left(\frac{K_{ow}}{K_{aw}}\right) \le 17 \leftarrow \textbf{Bin 4} \\ & \ge 99\%, & \log\left(\frac{K_{ow}}{K_{aw}}\right) > 17 \end{cases}$$

Validation with Observed Bin 4 Data

Model Bin 4 Eqn Verification: Independent NF Rejection Dataset

Bin Classification of 96 CEC Studyset

Research Conclusions

- CEC control for DPR applications:
 - WRRF secondary treatment proved a significant barrier for CEC control in reuse applications
 - NF proved a suitable FAT alternative barrier to RO for CEC control
 - RO proved an absolute barrier for CEC control
- NF rejection & QSAR modeling:
 - For MW > 330 g/mol, R = 100%
 - For MW = 130 to 330 g/mol:
 - Ionic charged (I), R = 100%
 - HB-N, R = 100%
 - HL-N, R = 0.05301 log(Kow/Kaw) + 0.16502(PSA)
 - QMPM was validated and proved portable as a decision tool for the selection of NF as an effective barrier technology for DPR

Conclusions: Barrier FOS for the SDWA Regulated CECs

CEC	Max WRRF SE	Max NF Permeate	NPDWR MCL	FOS WRRF / NF
2,4-D	280 ng/L	34 ng/L	70,000 ng/L	250 / 2,058
Atrazine	610 ng/L	27 ng/L	3,000 ng/L	4.9 / 111
Simazine	210 ng/L	31 ng/L	4,000 ng/L	6.7 / 129

How does the NF permeate compare to suggested NWRI risk-based protection levels?

CEC	Min. (ng/L)	Mean (ng/L)	Max (ng/L)	NWRI Criterion (ng/L)	NF FOS
Ethinyl Estradiol	Not	t Detected in F	PE	5	
17–β-estradiol	Not	t Detected in S	SE	5	
Cotinine	ND	ND	ND	1,000	100
Primidone	ND	ND	ND	10,000	2,000
Dilantin	ND	ND	ND	2,000	100
Meprobamate	ND	<5	9	200,000	22,222
Atenolol	ND	<5	27	4,000	148
Carbamazepine	5	12	19	10,000	526
Estrone	ND	ND	ND	320	64
Sucralose	ND	<100	160	150,000,000	937,500
TCEP	ND	92	160	5,000	31
DEET	ND	<5	21	200,000	9,524
Triclosan	ND	9	35	50,000	1,429

DPR Decision Tool: Nanofiltration Rejection Model for Recalcitrant CECs

Steve Jones, PhD, PE Mike Watts, PhD, PE Zaid Chowdhury, PhD, PE Ranil Wickramasinghe, PhD, PE

Arizona WateReuse Conference July 24-26, 2016

