

Integrated Ozone Enhanced Biofiltration for Water Reuse

Abigail Antolovich

WateReuse AZ Conference 2016 Flagstaff, AZ

Potable Reuse Overview

Advanced Treatment for Water Reuse

Performance Data

The Evolution of Potable Reuse

Potable Reuse Benefits and Challenges

Benefits

- Relieves Water Stress
- Less Energy Compared to Desalination
- Lower Capital Cost than Non-Potable Reuse
- Drought-Resistant
- Point of Waste = Point of Use
- Smarter Resource Management

Challenges

- Trace Organic Contaminants (TOrCs)
- Pathogens
- Public Perception
- Lack of Regulations
- Capital Cost of Advanced
 Treatment

Advanced Treatment is Needed to Address Water Quality Challenges

Ozone for Potable Reuse Applications

✓Trace Organics Contaminants (TOrCs)

- Ozone is considered best available technology for destroying many emerging contaminants
- Ozone addresses both regulatory uncertainty and public perception of TOrCs

Benefits of Ozone for Reuse

✓ Improves aesthetics

✓Ozone or ozone + biologically active filtration (BAF) may eliminate/minimize need for downstream reverse osmosis (RO)

- reduces membrane fouling
- enhances biologically active filtration
- increases UVT

Treatment Process Evaluation

Oxelia[™] is Greater Than The Sum of Its Parts...

Ozone Oxidation

- Disinfects (i.e. virus inactivation)
- Removes color and odor
- Reduces trace organic contaminants
- Increases biodegradability of recalcitrant organic carbon
- Supersaturates water with dissolved oxygen

Ozone-BAF

- "Free" biology
- Destroys recalcitrant
 organic carbon
- Generates biologically stable effluent
- Eliminates toxicity
- Increases UVT
- Provides multiple-barrier

BAF Fixed-Film Biological Reactor

- Removes ammonia
- Removes TSS
- Reduces trace organic contaminants including NDMA
- Reduces oxidation byproducts

Treatment Goals

Microbial Criteria	
--------------------	--

•

Chemical Criteria

- 12-log virus removal E
- 10-log Cryptosporidium removal
- 9-log total coliform removal
- Drinking water regulations Trace organic chemicals
- Disinfection byproducts

Unit Process	Pilot Evaluation Criteria				
Secondary Biological Treatment (CAS)	N/A				
Ultrafiltration (UF)	Total coliform				
Microfiltration (MF)	Total coliform				
Ozone (O ₃)	TOrCs, bromate, NDMA, MS2, total coliform				
Biologically Active Filtration (BAF)	TOrCs, bromate, NDMA				
Reverse Osmosis (RO)	TOrCs, bromate, NDMA				
Ultraviolet Photolysis (UV)	TOrCs, NDMA, MS2				
Advanced Oxidation Process (AOP) (UV/H_2O_2)	TOrCs, NDMA, MS2				
Free Chlorine (Cl ₂)	Chlorate, THM, HAA, MS2				

TOC Removal Results

Avg. Transferred O_3 Dose = 5.1 mg/L Avg. O_3 :TOC Ratio = 0.88 Avg. EBCT = 15.2 min

- TOC removal ~40% after 4-6 weeks of operation
- Utilized exhausted GAC for study to eliminate adsorption impacts
- Increased UV Transmittance (UVT) from ~76% to ~89%

CEC Removal Results

	Analyte	Units O)zone Effluen	t BAC Effluent	% Removal
With 0./BAC 28/31 (90%) of CECs	TCEP	ng/L	170	15	91.2%
removed to below MRI	TCPP	ng/L	800	<100	>87.5%
Average removal of 272% (2.0 E log) based	TDCPP	ng/L	280	<100	>64.3%
an MDLs	Iohexal	ng/L	760	480	36.8%
OTIMRLS	Sucralose	ng/L	5800	4000	31.0%

NDMA Mitigation

NDMA formed by Ozone is removed by BAF

Ref: WRRF 11-02 Pilot Project

Bromate Minimization

Downstream Efficiency Improvement

Ref: Trussell Technologies IOA-PAG Dallas 2015

Downstream Efficiency Improvement

- O3-BAF reduces organic fouling of membranes
- ~ 3x reduction in Transmembrane Pressure (TMP) Drop
- Reduces energy costs, cleaning and replacement frequency, and improves overall performance

Ref: WRRF 11-02 Pilot Project

Ozone/BAF Integrated Solution

Integrated on-line monitoring / controlling system to achieve optimized operation at an economic cost

Consistent organics removal, optimized ozone dose and energy consumption

OxeliaTM System Ozone Optimization

The Oxelia system can partially reduce the effluent TOC fluctuation and achieves lower effluent TOC value

Conclusions

O₃/BAF Demonstrated the Following:

- Consistently achieved **40% removal of TOC**
- Mitigated the formation of NDMA by incorporating BAF downstream of O₃
- **Decreased the potential for bromate formation** via targeted ozone dosing based on influent TOC levels
- Reduced TMP across downstream membrane process by approximately three-fold
- Improved overall efficiency of downstream treatment processes
- Reduced toxicity of RO brine discharge stream
- Integrated system results in optimized ozone dose and improved energy efficiency

Acknowledgements

- •Keel Robinson (Xylem)
- Tony Zhang (Xylem)
- Aleks Pisarenko (Trussell Technologies)
- City of San Diego
- Fred Gerringer (Trussell Technologies)
- WateReuse Research Foundation
- Los Angeles County Sanitation District
- Andy Salveson (Carollo Engineers)

Thank You

Questions?

