

UV-Oxidation: Accomplishing Multiple Objectives in Potable Reuse

Adam Festger Trojan Technologies Arizona WateReuse Conference 2016

GLOBAL WATER SCARCITY

- World population has doubled in last 50 yr
- Drought is common, severe
- Groundwater being depleted at unprecedented rate
- Regulation developing to control groundwater and to facilitate reuse
- 9 states have issued potable reuse guidance (OK, NC, CA...)

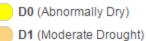
<u>California</u>

- Southern cities (e.g. Los Angeles and San Diego) receive the bulk of their water from the Colorado river and from the northern part of the state
 - Extreme costs associated with transportation
 - 20% of energy used in state is used to move water

D2 (Severe Drought)

D3 (Extreme Drought)

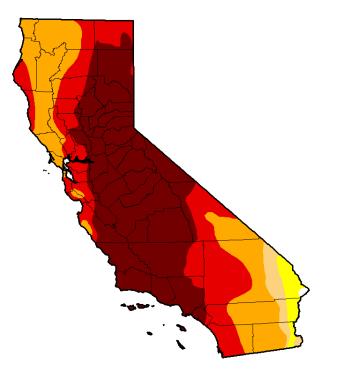
D4 (Exceptional Drought)


As of July 26, 2005

Source: U.S. Drought Monitor (University of Nebraska, Lincoln), 2015

Intensity:

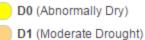
<u>California</u>


- Southern cities (e.g. Los Angeles and San Diego) receive the bulk of their water from the Colorado river and from the northern part of the state
 - Extreme costs associated with transportation
 - 20% of energy used in state is used to move water

D2 (Severe Drought)

D3 (Extreme Drought)

D4 (Exceptional Drought)

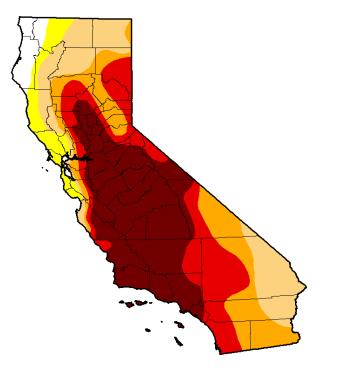

As of August 6, 2015

Source: U.S. Drought Monitor (University of Nebraska, Lincoln), 2015

Intensity:

<u>California</u>

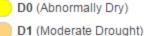
- Southern cities (e.g. Los Angeles and San Diego) receive the bulk of their water from the Colorado river and from the northern part of the state
 - Extreme costs associated with transportation
 - 20% of energy used in state is used to move water


D2 (Severe Drought)

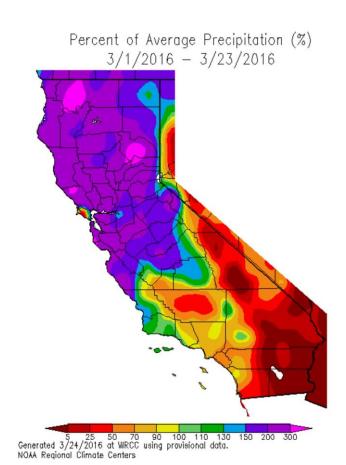
D3 (Extreme Drought)

D4 (Exceptional Drought)

 Drought has eased but mainly in Northern California


As of March 29, 2016

Source: U.S. Drought Monitor (University of Nebraska, Lincoln), 2016



Intensity:

California

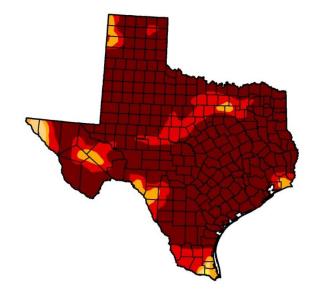
- Southern cities (e.g. Los Angeles and San Diego) receive the bulk of their water from the Colorado river and from the northern part of the state
 - Extreme costs associated with transportation
 - 20% of energy used in state is used to move water
- Drought has eased but mainly in Northern California

Source: NOAA Regional Climate Centers

Intensity:

D0 (Abnormally Dry) D1 (Moderate Drought) D2 (Severe Drought) D3 (Extreme Drought) D4 (Exceptional Drought)

D2 (Severe Drought)


D3 (Extreme Drought)

D4 (Exceptional Drought)

Report from Texas

- Extreme drought conditions caused strain on drinking water sources
- Temporary DPR in Wichita Falls
- Numerous cities began to think about potable reuse

As of February 28, 2012

Source: U.S. Drought Monitor (University of Nebraska, Lincoln), 2012

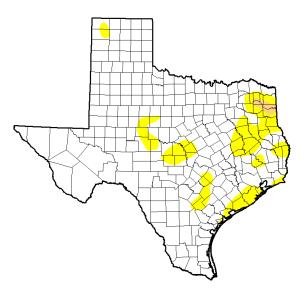
Intensity:

D0 (Abnormally Dry)

D1 (Moderate Drought)

WICHITA FALLS TEMPORARY DPR USED UV

D2 (Severe Drought)


D3 (Extreme Drought)

D4 (Exceptional Drought)

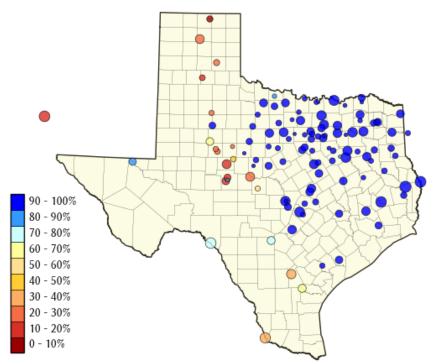
Report from Texas

- Rain has come!
- Projects are slowing down
- Leaders in reuse urging cities to plan for the next drought

As of July 28, 2015

Source: U.S. Drought Monitor (University of Nebraska, Lincoln), 2012

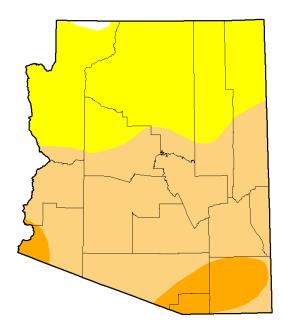
Intensity:


D0 (Abnormally Dry)

D1 (Moderate Drought)

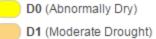
<u>Texas</u>

- Reservoirs are full...in the east
- Western reservoirs are <u>not</u> full



Source: http://waterdatafortexas.org/reservoirs/statewide 2016

<u>Arizona</u>


 "Abnormally dry" to "severe drought" As of July 12, 2016

Source: U.S. Drought Monitor (University of Nebraska, Lincoln), 2012

Intensity:

D2 (Severe Drought) D3 (Extreme Drought) D4 (Exceptional Drought)

WATER STRESS: WHAT ARE THE OPTIONS?

- Reduce Growth
- Conserve
- Develop New Water Sources
- Water Transfer
- Desalination
 - Seawater
 - Brackish Water
- Non-potable Reuse to Offset DW
- Remediate impaired sources
- Indirect or Direct Potable Reuse (IPR/DPR)

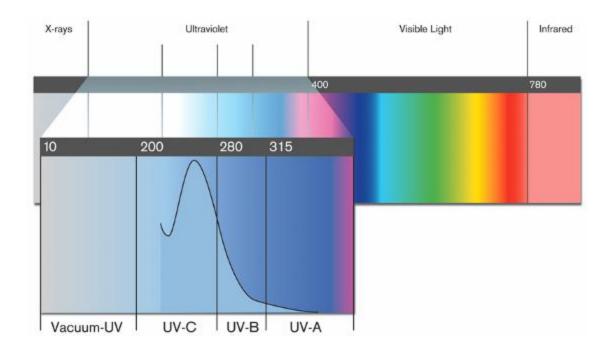
DIRECT POTABLE REUSE – LET'S ADVANCE THE DEBATE

- Provides reliable new source of water
- Has a "buyer" year round (i.e. not dependent on agricultural growing season)
- "Yuck" factor decreases with increasing drought
- Aquifer recharge makes sense in some areas but not in all
- Avoids the cost and challenge of purple pipe distribution
- Environmental benefits (e.g. Reduction in wastewater discharge; Improves beaches/fishing for tourism)

POTABLE REUSE REGULATORY FRAMEWORK

- California requires an oxidation step post-RO
 - Demonstrated by removing a basket of contaminants or 0.5-log 1,4dioxane
 - 12/10/10 Log Reduction of Virus/Giardia/Crypto
 - Max 6-log inactivation per step
- Texas
 - 8/6/4 Log Reduction of Virus/Giardia/Crypto
 - Disinfection according to USEPA

Projects in both states have used UV to meet these objectives...



ENVIRONMENTAL CONTAMINANT TREATMENT

Using UV and an oxidant (hydrogen peroxide or chlorine) to destroy trace organic contaminants in water by:

UV-Photolysis

UV-Oxidation

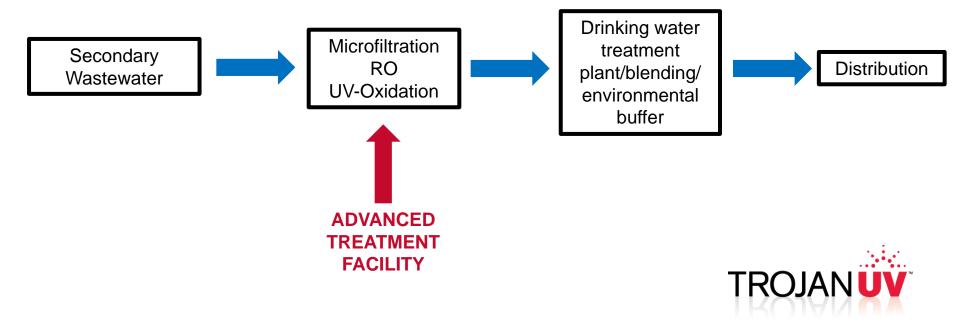
UV-OXIDATION - TRENDS

Orange County Water District GWRS and many other Full Advanced
Treatment (FAT) Plants in successful operation

ORANGE COUNTY – INDIRECT POTABLE REUSE (IPR)

WEST BASIN MUNICIPAL WATER DISTRICT, CA

OXNARD CALIFORNIA'S GROUNDWATER RECOVERY ENHANCEMENT AND TREATMENT (GREAT) PROGRAM



LEO J. VANDER LANS ADVANCED WATER TREATMENT FACILITY

MAKING POTABLE WATER FROM "WASTEWATER"

- Water collected from wastewater treatment plants is "advanced" treated to higher standard allowing this water to be treated again back into drinkable water
- Full Advanced Treatment ("FAT") includes three different treatment technologies:
 - 1. Microfiltration
 - 2. Reverse osmosis
 - 3. UV-oxidation

UV-OXIDATION – TRENDS

- Orange County Water District GWRS and many other Full Advanced Treatment (FAT) Plants in operation
- UV-peroxide proven effective, but when residual chlorine needed...
- UV-chlorine being implemented
 - Demo- and full-scale demonstrations
 - Full scale systems being built
 - But it doesn't work everywhere (ammonia present?)
- Sites using UV today for disinfection and contaminant treatment...how?

TROJANUV

DISINFECTION

CASE STUDY #1: BIG SPRINGS, TX (COLORADO RIVER MUNICIPAL WATER DISTRICT)

- In 2004, the reservoirs used to supply drinking water were at 10% of capacity
 - At lowest, reservoirs were <2%
 - <u>Today</u> two of the three sources of raw water are ~10% capacity

ELECTED TO BUILD PERMANENT DPR – WHY?

- Local aquifers don't recharge well
- Other surface water too far away
- Non-potable reuse (NPR) inconsistent
- NPR required extensive distribution and RO anyway due to high TDS
- DPR consists of blending highly treated water into source supply to WTP

BIG SPRINGS PLANT DESIGN DETAILS AND CA PRECEDENT

- MF/RO/UV for Full Advanced Treatment
- Precedent aided in Public Acceptance
- UV-oxidation serves multiple purposes
 - Treatment of NDMA and 1,4-Dioxane
 - Treatment of pharmaceuticals and endocrine-disrupting chemicals not removed by MF or RO
 - Additional disinfection barrier of 4-log virus credit

Raw Water Production Facility Design Parameters

Design Flow:	1.8 MGD
Target Contaminants:	NDMA 1,4-Dioxane
Design NDMA Reduction:	1.2 - Log
Design 1,4-Dioxane:	0.5 - Log
Oxidant:	H_2O_2
Disinfection Method:	UV Light

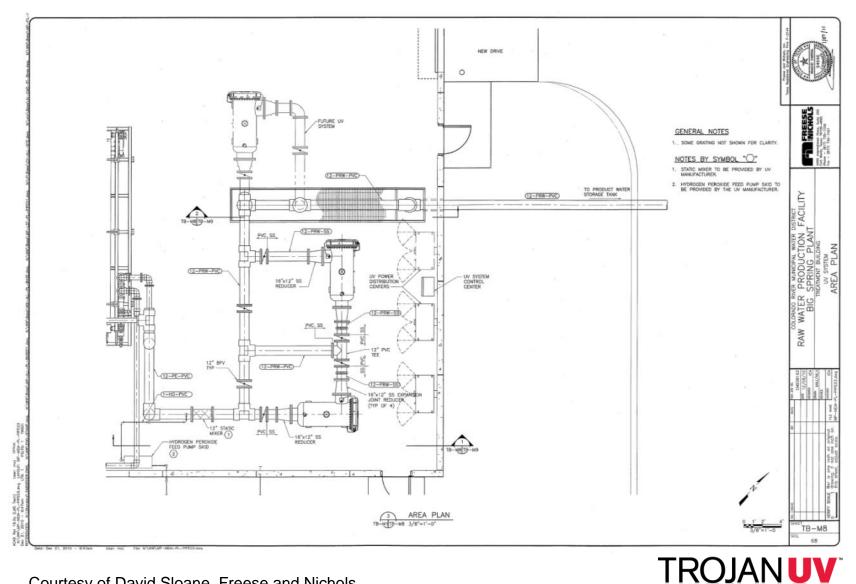
UV DOSE

- Design Requirement for UV are stated in terms of "Dose"
- UV Dose is equivalent to CT for chlorine
- CT = Residual concentration (mg/L) x Contact Time (minutes)

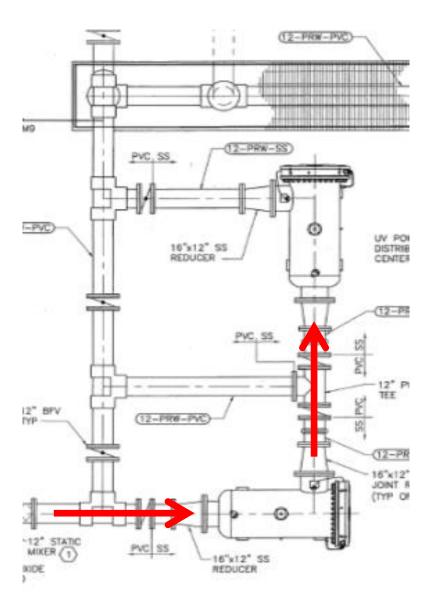
• UV Dose = UV Intensity (mW/cm²) x Exposure Time (seconds)

LOG INACTIVATION CREDITS AND UV DOSE – SET BY EPA

Table 1.4. UV Dose Requirements – millijoules per centimeter squared (mJ/cm ²) ¹									
Target	Log Inactivation								
Pathogens	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	
Cryptosporidium	1.6	2.5	3.9	5.8	8.5	12	15	22	
Giardia	1.5	2.1	3.0	5.2	7.7	11	15	22	
Virus	39	58	79	100	121	143	163	186	
¹ 40 CFR 141.720(d)(1)									



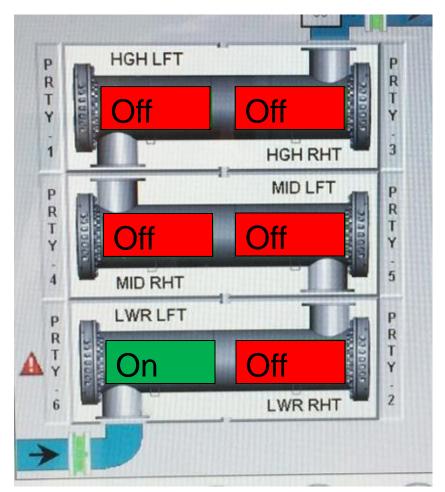
BIG SPRING PLANT



BIG SPRING PLANT LAYOUT

Courtesy of David Sloane, Freese and Nichols

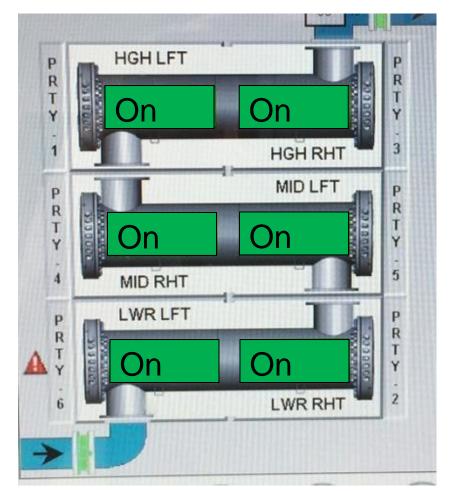
BIG SPRING PLANT LAYOUT LEADS TO VALIDATED UV DOSE


- Each reactor delivers a validated dose of 100 mJ/cm² for 2-log virus
- Added together, they accomplish 4-log virus
- Parallel operating critical control points: EEO and UV dose

CASE STUDY #2 – ORANGE COUNTY DISINFECTION

- To meet 6-log microbial inactivation (max allowed for a single step)
- Testing demonstrated >5-log virus (MS2) reduction in one reactor zone
- Operating minimum of 4 reactors zones of 6 delivers 6-log

Validation Condition

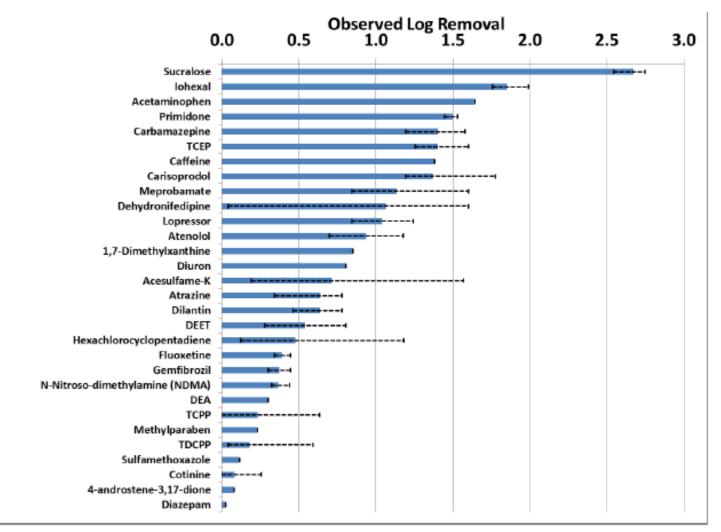


CASE STUDY #2 – ORANGE COUNTY DISINFECTION

- To meet 6-log microbial inactivation (max allowed for a single step)
- Testing demonstrated >5-log MS2 reduction in one reactor zone
- Operating minimum of 4 reactors zones of 6 delivers 6-log
- Critical control point: Minimum EEO, which is a dynamically-calculated as a function of UVT/flow rate
- NWRI dose of >100 mJ/cm²

Operating Condition

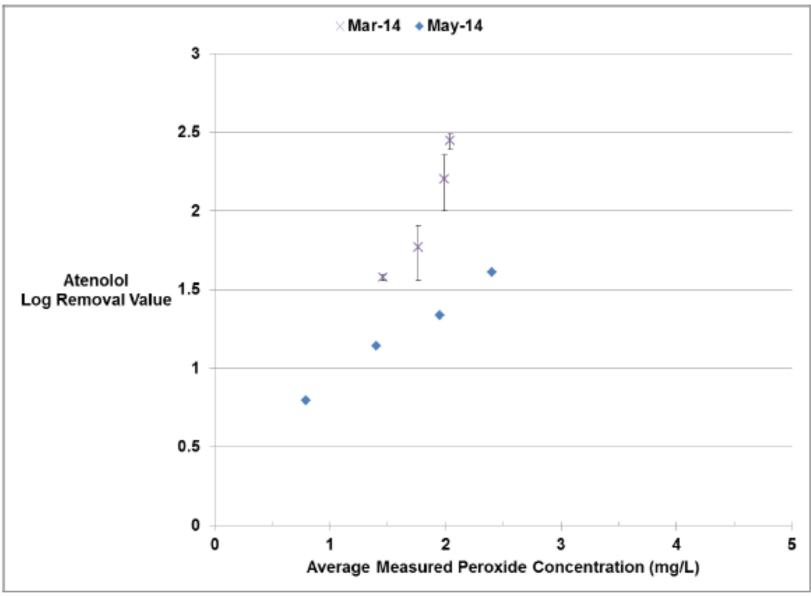
CONTAMINANT TREATMENT


CASE STUDY #3: CLEARWATER FLORIDA POTABLE REUSE

- FAT (UF/RO/UV) for contaminant treatment and disinfection
- Recharge to Floridan Aquifer
- 3 MGD
- Clearwater pilot tested FAT for one year
- The treatment train consistently purified water to all drinking water standards

and State treatment standards

OBSERVED LOG REMOVAL – CLEARWATER PILOT



Bars show average, min, and max LRV of five sampling events

Courtesy David MacNevin, Tetra Tech

FOLLOW-UP TESTING ON ATENOLOL

Courtesy David MacNevin, Tetra Tech

UV-CHLORINE: A BETTER ALTERNATIVE?

Understanding UV-chlorine requires understanding:

- Free & combined chlorine speciation as a function of pH & retention time following hypo injection
- Breakpoint reactions: HOCI + NH_2CI , etc.
- Degradation of chlorine as it passes through the UV system
- pH effects
- Photochemistry of chlorine species (HOCI, OCI⁻, NH₂CI, NHCI₂, ...)
- Reactivity of radical species (CI
 and
 •OH) toward water micropollutants and chlorine species

AQUEOUS CHLORINE SPECIATION AS A FUNCTION OF PH

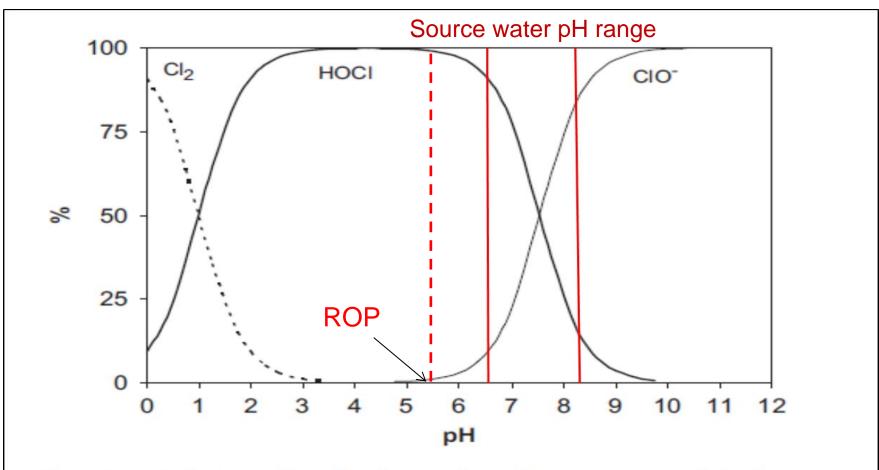
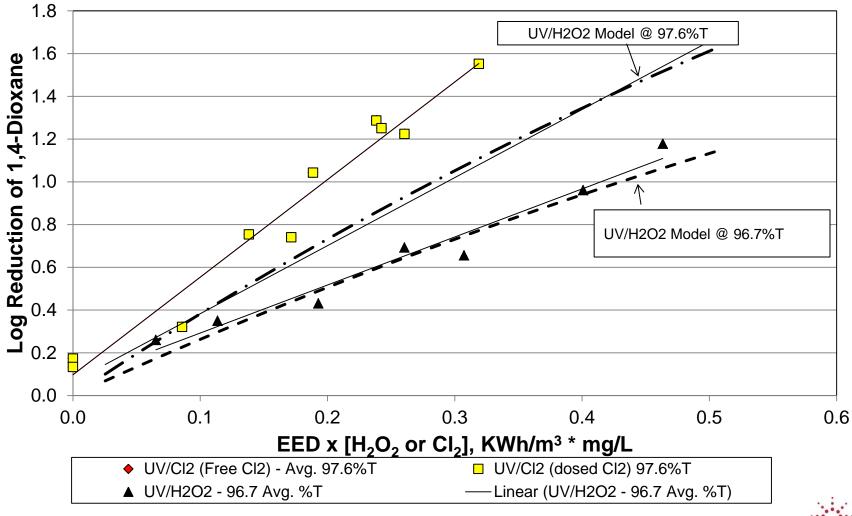



Fig. 1 – Relative distribution of main aqueous chlorine species as a function of pH at 25 °C and for a chloride concentration of 5×10^{-3} M (177.5 mg L⁻¹).

TROJANUV

From Deborde and von Gunten, Wat. Res. 2008.

CASE STUDY #4 – FULL SCALE TESTING AT WRD LEO VANDER LANS $UV/H_2O_2 \& UV/CL_2 AOP$

TROJAN

ACKNOWLEDGEMENTS

- Alan Royce, Steve McDermid, Mihaela Stefan; Trojan Technologies
- David MacNevin, Tetra Tech
- City of Clearwater, FL
- David Sloane, Freese and Nichols
- Colorado River Municipal Water District
- Greg Wetterau, CDM Smith

Thank You

Adam Festger afestger@trojanuv.com 520-297-3637