

Assessment of Selected Methodologies for Monitoring the Integrity of Reverse Osmosis Membranes for Water Recycling

Joseph G. Jacangelo, MWH Stephen Gray, Victoria University

WateReuse Webcast Series © 2015 by the WateReuse Research Foundation

The WateReuse Research Foundation

The WateReuse Research Foundation conducts and promotes applied research on the reclamation, recycling, reuse, and desalination of water.

More Information

www.watereuse.org/foundation

Research Reports

www.watereuse.org/foundation/publications

A Few Notes Before We Get Started...

- ➢ Today's webcast will be 60 minutes.
- > There is 1 (one) Professional Development Hour available.
- A PDF of today's presentation can be downloaded when you complete the survey at the conclusion of this webcast.
- > Links to view the recording and to download the presentation will also be emailed later.
- If you have questions for the presenters, please send a message by typing it into the chat box located on the panel on the left side of your screen.
- ➢ If you would like to enlarge your view of the slides, please click the Full Screen button in the upper right corner of the window. To use the chat box, you must exit full screen.

Today's Presenters

Joseph G. Jacangelo *MWH* Stephen Gray Victoria University

Marlene Cran Victoria University

Introduction and Project Objectives

Project Team

- MWH: Geno Lehman, Eric Bruce
- Victoria University: Marlene Cran
- Johns Hopkins University: Kellogg Schwab, Jason Bishai, Nate Dunkin
- Chesapeake Energy: Arun Subramani

Acknowledgements

- Funding: WateReuse Research Foundation (Project #WRRF- 12-07) Kristan Cwalina (WateReuse Research Foundation); Pentair
- WRRF Project Advisory Committee
- ZAPS Technologies, Inc.
- Nalco
- Membrane Manufacturers: DowFilmtec, CSM Woongjin.
- Water Utilities: OCWD (Tom Knoell), West Basin, City of San Diego, El Paso, Tampa Bay, Coliban Water (Australia), TasWater (Australia), Australian Antarctic Division (Australia), PUB Singapore, Veolia Water, United Water
- University of Nevada, Las Vegas (Daniel Gerrity)

Introduction

- Reverse osmosis (RO) systems are widely used in wastewater recycling and will continue to play an important role in potable reuse.
- RO provides a barrier to salts, dissolved chemicals, particles, and microorganisms.
- There are no integrity monitoring methods for RO systems at fullscale that <u>directly</u> demonstrate microbial removal.
- The true barrier potential not often recognized by regulatory agencies ($\leq 2 \log removal \ credits$).

Introduction (continued)

- The microbial removal capabilities for RO, particularly viruses, have been documented in the gray and peer-reviewed literature. However, there is a paucity of information on monitoring for membrane integrity (particularly on-line techniques) that will demonstrate greater than 2-log removal of an indicator (4 log removal is goal).
- Establishing more efficacious RO membrane integrity monitoring techniques will potentially allow greater credit for virus removal for IPR/DPR applications.

6.7 4.2 Madireddi et al. 1997 2->5.9 <4.8 Gagliardo et al. 1997a; Gagliardo et al. 1997b 3.4 2.7->6.5 4.5->5.7 Adham et al. 1998a 2.7->6.5 Adham et al. 1998b Adham et al. 1998b 3-4.8 Kruithof et al. 2001 Lozier et al. 2004 5.4 Mi et al. 2004 Casani et al. 2005 1.4->7.4 2.9->5.3 >4.7->5.4	Viruses	Bacteria	Protozoa	References
2->5.9 <4.8	6.7		4.2	Madireddi et al. 1997
3.4 2.7->6.5 4.5->5.7 Adham et al. 1998a 2.7->6.5 Adham et al. 1998b 3-4.8 Kruithof et al. 2001 4 Lozier et al. 2004 5.4 Mi et al. 2004 7 Casani et al. 2005 1.4->7.4 2.9->5.3 >4.7->5.4	2->5.9		<4.8	Gagliardo et al. 1997a; Gagliardo et al. 1997b
2.7->6.5Adham et al. 1998b3-4.8Kruithof et al. 20014Lozier et al. 20045.4Mi et al. 20047Casani et al. 20051.4->7.42.9->5.3>4.7->5.4Kumar et al. 2007	3.4	2.7->6.5	4.5->5.7	Adham et al. 1998a
3-4.8 Kruithof et al. 2001 4 Lozier et al. 2004 5.4 Mi et al. 2004 7 Casani et al. 2005 1.4->7.4 2.9->5.3 >4.7->5.4	2.7->6.5			Adham et al. 1998b
4Lozier et al. 20045.4Mi et al. 20047Casani et al. 20051.4->7.42.9->5.3>4.7->5.4Kumar et al. 2007	3-4.8			Kruithof et al. 2001
5.4 Mi et al. 2004 7 Casani et al. 2005 1.4->7.4 2.9->5.3 >4.7->5.4 Kumar et al. 2007	4			Lozier et al. 2004
7 Casani et al. 2005 1.4->7.4 2.9->5.3 >4.7->5.4 Kumar et al. 2007	5.4			Mi et al. 2004
1.4->7.4 2.9->5.3 >4.7->5.4 Kumar et al. 2007	7			Casani et al. 2005
	1.4->7.4	2.9->5.3	>4.7->5.4	Kumar et al. 2007

Presentation Objectives

- Update on current and emerging RO integrity monitoring techniques
- Outcomes of workshop on monitoring
- Bench testing findings
- Pilot testing findings
- Feasibility of monitoring techniques evaluated and identify future direction

Questionnaire and Workshop Outcomes

Questionnaire Sent to Utilities on RO Monitoring Techniques

tandard Methods for Integrity Monitoring and On-line Mo	nitoring of NF and RO Membranes		2. MEMBRA	ANE INTEGRITY	
(WateReuse-12-07)		What methods are used to det Uacuum decay test:	ermine NF/RO membrane eler What is t What is the acceptable limit	ment integrity after manufactur the test pressure? t to pass the test?	psi v psi/min v
MWH Melbourne australia	WATEREOSE	Pressure decay test:	What is t What is the acceptable limit	the test pressure?	psi 💌
PROJECT BACKGROUND AND SUR	VEY REQUEST	Other (please provide deta	ails):		
2 goal of this project is to develop a scientifically proven method for integrity fective of the survey is to gather information on NF/RO integrity monitoring t allow evaluation. CAPEX and CAPEX, and CAPE studies. The outcome of the proj allow evaluation. CAPEX and CAPEX and CAPE studies. The outcome of the proj three studies.	monitoring of NF and RO membranes. The schnologies, their performance and water schwill answer several key questions, such as:	 If NF/RO membrane element n specify the stages of manufact glue line addition, etc.). If the NF/RO membrane eleme 	nanufacturing is not fully auto uring that are not automated ents have permeate tube interi	mated, please (for example, locking	
What methods are currently being utilized in full-scale installations for monit	oring integrity?	capability, does this prevent in	tegrity breaches? Please expla	ain briefly.	
what parameters can be monitored in the reed and permeate stream to con more than 4 logs? What are the existing and proposed regulatory requirements to obtain micro What procedures are required for evaluating on-line integrity monitoring mo	bial removal credits?	 In the past, what have been un breaches in NF/RO membrane apply. 	elements? Tick all that	Glue line leaks Damaged O-rings	
What are the CAPEX and OPEX costs for implementing such monitoring meth What are the implementation & operational benefits and challenges?	ods?			Preservative damage Damage due to partic	ulates/foulants
What are the factors that the utilities need to know in order to integrate the technology providers and water utilities participating in this survey will be a pers, conference papers/presentations, webcasts generated from this project	se technologies into their existing plant? cknowledged in any reports, peer-reviewed . Furthermore, a final copy of the report will			Exceeding manufactu conditions (e.g. flux, r System/piping leaks Other (please specify)	rer recommended operating ecovery, feed pressure, etc.)
provided to the participating technology providers. ould you have any questions regarding this project, please feel free to cont	4				P
	 Please describe any large-scale manufacturing issues associated with membrane element integrity. How can this be overcome? 				
	 Please describe any lessons learned during pilot testing stage that was related to NF/RO integrity. 				
	 Please describe any operational issues encountered while testing NF/RO membrane element integrity. How were they rectified? 				
	 Please describe any other issues associated with NF/RO membrane integrity. 				
2					

Causes of Integrity Breaches as Reported by Manufacturers

Cause of Integrity Breach	Manufacturer			
	Α	В	С	
Damaged O-rings	Х	Х	Х	
Glue line leaks	Х	Х	Х	
Oxidant Damage	Х		Х	
Permeate Back Pressure			Х	
System/piping leaks	Х	Х		
Exceeding operating conditions	Х			
Damage due to particulates/foulants	Х	Х	Х	
Preservative damage				

 Major breaches caused by damaged O-rings, glue line leaks and particulate damage.

RO Permeate Monitoring Techniques as Reported by Utilities

Permeate Monitoring		W	ater Uti	lity	
Technique	Α	В	С	D	Ε
Turbidity	Х			Х	
Total Organic Carbon (TOC)			Х	Х	
Conductivity	Х	Х	Х	Х	Х
Sulfate					
Particle Counting					
UV254			Х	Х	

- Several monitoring tests employed.
- Conductivity the most common.
- Overview of plant performance, not necessarily for membrane integrity.

RO Challenge Testing as Reported by Utilities

Challenge Test at	Water Utility				
Full-scale	A	В	С	D	Ε
Conductivity probing		Х			
Rhodamine WT					
MS2 virus				Х	
None	Х		Х		Х

- Most utilities do not perform membrane integrity challenge tests at full-scale.
- Test not undertaken as no microbial credits claimed.

Lessons Learned As Reported by Utilities

- Some water utilities reported no integrity breaches.
- Damaged, degraded and rolled O-rings were the major cause of integrity breach.
- Some water utilities reported MS2-phage virus testing. Others report no challenge testing is performed.
- Cost for installing (CAPEX) reported was \$8,000 \$100,000 and operating cost (OPEX) reported was \$1,500 \$25,000.
- Online monitoring of combined permeate can be misleading.
- Conductivity should be performed on individual stages periodically.
- Fouling/scaling can also present higher conductivity which resolves after chemical cleaning.
- Online TOC has lower sensitivity than lab-scale instruments and not as reliable as conductivity, UVT.
- Issues can arise from online TOC due to maintenance, calibration and consumables/reagent packs.

Monitoring Techniques

Criteria for Ideal Integrity Monitoring Systems

Category	Criteria	Requirement(s)		
Capital &	Capital cost	Reasonable capital investment.		
	Installation/integration	The ability to be fully integrated into existing systems as well as new systems.		
Equipment	quipment Operation S	Should require minimal training for operators.		
	Operation costs	Reasonable operation costs.		
	Test type	Test should be real-time and online.		
Tachnique	Sensitivity	High sensitivity at low challenge species concentration.		
lechnique	Selectivity	Challenge species should be representative of pathogens of concern.		
	Output	Test should deliver minimum LRV of 4+.		

Direct Integrity Monitoring Techniques

- Pressure-based tests: vacuum, pressure decay
- Primarily a screening test

RO Indirect Integrity Monitoring Techniques

- Particle monitoring limited to relatively large particles (0.5 micron).
- Turbidity monitoring low sensitivity.
- Sulfate monitoring online systems expensive.
- Conductivity monitoring low resolution, probing more effective.
- TOC monitoring similar capability as conductivity.
- Periodic testing combination of other tests, higher sensitivity
- Multi-parameter monitoring measures multioptical parameters at one time.

Challenge Testing to Assess RO Integrity

- Dye Testing RWT (566 MW), Uranine (376 MW), Traser (610 MW); <1 nm
- Biological Surrogates MS2 bacteriophage (3.6-3.87 x 10⁶ MW; 15 nm)
- Fluorescent Microspheres low sensitivity
- Pulse Integrity Testing used for factory integrity testing
- Nanoparticles food grade, novel detection, IP protection (WaterRA)

On-line Pathogen Detection Techniques

Quantum Dots (QDs)	 Nanocrystals of semiconducting material that have "tunable" properties, biocompatible, highly flurorescent, easy to synthesize and can be formed in a range of sizes (20 – 30 nm).
Fiber Optic Biosensors	• Laser derived evanescent wave is excited over sample and fluorescence measured.
Electrochemical Biosensors	• Immobilization of antibodies onto biofunctionalized electrodes (gold).
Resonance Biosensor	• Visible or near IR radiation via a hemispherical prism. Electromagnetic waves generated and detected.
Whispering Gallery Microlasers	• Label-free detection of single viral pathogens using evanescent wave (acoustic) sensor.
	Fluorescence and scattering from same particles

using UV laser light source – Rion Co. Japan

Bench-Scale Work

LRV Using Water Quality Parameters

Plant/location	Details
1 / Regional Victoria	Wastewater treatment plant, primarily industrial water
2 / Metropolitan Melbourne	Wastewater treatment plant, domestic
3 / Metropolitan Melbourne	Wastewater treatment plant, small volume, domestic
4 / Metropolitan Melbourne	Wastewater treatment plant, high volume, domestic
5 / Regional Victoria	Seawater, pretreated for aquaculture
6 / Metropolitan Melbourne	Wastewater treatment plant, domestic

LRV following UF and RO treatment (RO at lab scale for some plants)

Parameter	LRV
EC (µs)	1.39 - 1.98 (3.12)
TDS (ppm)	1.22 - 1.45 (3.12)
TOC (mg/L)	1.06 -1.88
TN (mg/L)	0.40- 1.09
Turbidity (NTU)	0.30 - 1.38
UV254 (Abs)	1.26 - 2.33
fDOM (AU,	0.35 - 2.08
330/425, 310/350,	
360/382)	

Variables Evaluated for Dye Testing at Bench-Scale

Screening variable	Conditions
Temperature	10-30°C
рН	5-8 (adjusted with HCl and NaOH)
Salts	NaCl - up to 16000 ppm
	$CaCl_2$ - up to 8000 ppm
Disinfectants	Hypochlorite – up to 1 ppm
	Chloramine – up to 3 ppm
UV light	UVA (dose to be confirmed), 0-9 h
RO feedwater	Spiked sample of dye in colored water

Impact of Selected Variables on Three Dyes

	Relative effect		
Screening variable	RWT	UR	TR
Sensitivity			
Temperature			
рН			
NaCl			
CaCl ₂			
Hypochlorite			
Chloramine			
UV light			
RO feedwater			

Key:	
Excellent/no effect	
Good/minimal effect	
Average/moderate effect	
Poor/significant effect	

Summary:

- TR and RWT the most stable under test conditions.
- In some cases, application of specific calibrations can be used.
- An insertion scratch in the permeate channel was implemented.

Continuous versus pulse dosing

Continuous	Pulse
Cost of dye	Intermittent addition of dye, lower cost
Provides continuous online monitoring	Intermittent testing, higher doses possible
Potential for dye adsorption, fouling	Lower risk, adsorbed dyes flushed between tests
Result one-dimensional, not time specific	Can be calibrated with time, detect known defects
No need for extensive data/peak evaluations	Need ability to probe pressure vessels to account for dilution effects

Continuous versus pulse dosing

- C/t plot of pulsed dose of TR at 10 mg/L for 60 s on intact membrane.
- Peak value of 0.12 ppb corresponds to an LRV of 4.91.
- Slightly higher than LRV of 4.59 obtained via continuous dosing at 1 mg/L.
- Can correlate peak shape to known defects.

Average LRV of Dyes Based on Different Dosing Experiments

Dye	Continuous dose	Pulse dose
RWT	4.19 ± 0.13	4.77
UR	3.96 ± 0.10	4.04
TR	4.59 ± 0.18	4.91

Continuous dosing at 1 mg/L and pulse dosing at 5 mg/L $\,$

Emission Excitation Matrices (EEMs)

Water Recycling Plant, Victoria

- EEM is used for organic matter finger printing.
- EEM combined with size exclusion chromatography (SEM) can be used for NF/RO integrity (Pype et al., J. Membr. Sci., 2012).
- EEM more sensitive than conductivity measurements with quantification of DOM rejection > 99.9% (Pype et al., J. Membr. Sci., 2012).

WATEREUSE

1000 800

600

400 200

Nanoparticle challenge tests

- Synthesis of non-labelled nanoparticles of similar size as smallest virus.
- Unique optical/light scattering properties.
- New technique under development based on light scattering.
- Has shown LRV > 7 with relatively low feed concentration in bench scale trials, consistently ~5 LRV at pilot scale.
- Exploring IP protection.

Pilot Work

Orange County Water District, California Hobart, Australia

Piloting – Orange County Water District

- 2:1 Array
- 4 inch pressure vessels
- DowFilmtec
 BWRO
- 14 gfd
- FWR 20-30%

Size Distribution of MS2 Bacteriophage Stock Solution by Dynamic Light Scattering after 0.1 um Filtration

Courtesy of N. Dunkin and K. Schwab, JHU, 2015

Types on Membrane Impairment

- Surface scratches created by rubbing pin across the membrane leaf.
- Point source leak created near glue line with a pin.
- Insertion point leak created with pin at the intersection of the scroll face and end cap.
- Element exposed to chlorine (5,000 ppm, 24 hrs, pH 11).
- Cut o-ring (manual cut).

Impairments confirmed

by vacuum pressure decay

tests.

Emission Excitation Matrices (EEMs)

Rhodamine WT (RWT)

- RWT $C_{29}H_{29}N_2NaO_5$; 480.55 Da; 2.01 nm hydrodynamic diameter
- Non toxic
- Commercially available
- Insensitive to UV light

LRV	Reference(s)
3.5-5.3	(<u>Kitis et al. 2003a</u>)
3.9	(<u>Kitis et al. 2003b</u>)
2.7-3	(<u>Lozier et al. 2003</u>)
2-5	(<u>Lozier et al. 2013</u>)
2.6	(<u>Lozier et al. 2011</u>)
>4	(<u>Ostarcevic et al. 2013</u>)
	LRV 3.5-5.3 3.9 2.7-3 2-5 2.6 >4

*type: C = continuous, P = pulse

RWT Source: UCLA, WRRF-09-06b

<u>This study</u>

- Pulsed feed (10 mg/L)
- Continuous feed (10 mg/L) for microbial seeding studies

Measurement of RWT in RO Permeate Using an Intact Membrane

Intact Membrane ----- Start of 30 Minute Pulse Rhodamine WT 50 0.016 45 0.014 40 0.012 35 0.01 30 mg/L CFU 25 0.008 20 0.006 15 0.004 10 0.002 5 0 0 5 70 20 25 30 75 35 \$0

Hours

W

Measurement of RWT in RO Permeate with Surface Scratch Impairment

5

Measurement of RWT in RO Permeate with O-Ring Impairment

39

Impact of Impairment Type on Membrane Specific Flux

Impact of Membrane Impairment Type on Removal of MS2 Bacteriophage

Impact of Impairment Type on Removal of MS2 Virus and Conductivity

Impact of Membrane Impairment Type on Removal of MS2 Bacteriophage, Conductivity and RWT

TRASAR®

- Fluorescent compound coupled with an anti-scalant (PC-191T)
- Currently approved by NSF up to 15 mg/L feed concentration.
- Capability to feed and monitor online continuously.
- Proprietary detector to measure ultra-low concentrations.

<u>This study</u>

- Continuous feed over course of virus seeding runs.
- Concentrations evaluated: 4 to 100 mg/L.

Impact of Membrane Type and Concentration on Removal of TRASAR

Impact of Membrane Impairment Type on Removal of MS2 Bacteriophage, Conductivity and TRASAR

Piloting - Australia

Australian Antarctic Division pilot plant

- 3 challenge tests performed:
- Nanoparticle test ($\sim 2 \text{ mg/L}$)
- Mixed dye test (1 mg/L each dye)
- MS2 test ($\sim 3 \times 10^6$ PFU/mL)

WATEREUSE

Pilot Plant Experimental Set-Up

- System operated at 70% recovery.
 - Feed/permeate sampling points and conductivity monitoring for each element.
 - Concentrate from element n = feed for element n+1.
 - Element 5 was compromised.
 - Initial attempts to damage the O-ring were unsuccessful.
 - An insertion scratch in the permeate channel was implemented.

Removal of Mixed Dyes by RO Elements

- At ~1 mg/L, all intact elements achieved >4 LRV for each dye.
- RWT most sensitive dye.
- All dyes passed through defect with significant reduction in LRV.

Removal of MS2, Nanoparticles, RWT by RO Elements

- Relatively high error for
- nanoparticle detection.

Removal of Conductivity by RO Elements

Most conservative test, least sensitive.

Online conductivities

each challenge test.

<1.8 LRV for all tests.

had minimal effect on

conductivity.

measured concurrently with

Addition of challenge species

Summary and Concluding Work

Summary and Future Direction

- There are several new and emerging technologies that have the potential to be employed for RO membrane integrity monitoring in the future but are not yet developed to the point for full-scale application.
- Several on-line techniques can be effective at full-scale to evaluate process performance (traditional monitoring, zero-angle photospectroscopy). Other techniques, while not on-line, can also be applied to provide insights into process integrity (EEMs).
- Pulse testing of selected constituents (nanoparticles, RWT) provide the potential to achieve ≥ 4 log sensitivity for RO membrane integrity monitoring. However, they need to be conducted off-line on a periodic basis.
- TRASAR has the capability to monitor for membrane integrity on a real-time, continuous basis.
- <u>FINAL REPORT</u>: To include full-scale application protocol and costs.
- <u>FUTURE WORK</u>: Full-scale, long-term trials of pulse and continuous monitoring techniques.

Contact Details

Joseph G. Jacangelo: joe.g.jacangelo@mwhglobal.com

Stephen Gray: <u>stephen.gray@vu.edu.au</u>

Marlene Cran: <u>marlene.cran@vu.edu.au</u>

