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'D Leo J. Vander Lans

TE'SQOJ.QEW Advanced Water Treatment

Facility
 LJVWTF began operation in 2005

e Treating 3 million gallons/day
(MGD)

« UV design basis: 1.6-log
reduction of NDMA
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* Why oxidation?
 For:

— Removal of contaminants that ’
pass through MF and RO | -

— 6-log virus disinfection

e California requires an
oxidation step post-RO

 Demonstrated by removing a
basket of contaminants or 0.5-
log 1,4-dioxane
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* Plant expansion to 8 MGD was completed in ‘14
e 2 new trains of UV added
« Hydrogen peroxide injection system was added

e Design: 2.1-log reduction of NDMA and 0.5-
og reduction of 1,4-dioxane

» Site acceptance testing required
« UV/CI, study performed in parallel




LVLWTF UV-Oxidation System
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Advanced Oxidation Processes (AOPs)

* Rely on formation of highly reactive species such as
hydroxyl radicals (¢OH) or chlorine radicals (eCl) which
degrade the chemical contaminants

* UV/H,0, is a well-established AOP in which the OH
radicals are generated through photolysis of hydrogen
peroxide

* UV/CI, AOP relies upon the photolysis of chlorine species
to generate OH radicals and chlorine radicals
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UV-Oxidation
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Approach to UV/H,0O, System Sizing

 Develop an in-depth understanding of all significant
parameters that affect the photochemical kinetics of the
process and create a mathematical model of the process.

. UV Oxidation Rate of OH Formation
UV Photolysis l
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Understanding UV/CI, Requires that we
understand

Free & combined chlorine speciation as a function
of pH

Photochemistry of chlorine species (HOCI, OCI-,
NH,CI, NHCI,, ...)

Reactivity of radical species (Cle and «OH) toward
water micropollutants and chlorine species
Breakpoint reactions: HOCI + NH,ClI, etc.



Agueous Chlorine Speciation as a Function of pH

Source water pH range
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Fig. 1 - Relative distribution of main aqueous chlorine

species as a function of pH at 25 'C and for a chloride
concentration of 5x 10 °M (177.5mgL ).

From Deborde and von Gunten, Wat. Res. 2008.



Absorption Spectra of Chlorine Solution Varies with pH
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Chloramination & Breakpoint Reactions

 Reactions between chlorine and ammonia:
HOCI + NH; — NH,CI (monochloramine) + H,0 (1)
NH,Cl + HOCI — NHCI, (dichloramine) + H,O (2)
NHCI, + HOCI — NCI; (trichloramine) + H,O (3)

o Distribution of these species Is dependent
upon pH, temperature, contact time, Cl,:NH,
ratio and initial chlorine and ammonia
concentrations.



Effect of pH on Chloramine Species
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Photochemistry of Chloramines

e Molar UV Absorbance of monochloramine
€, = 371 Micm-i

 Photolysis of monochloramine:
NH,CI| + hv — eNH, + «C]

o @,;,=0.32-0.580b
* I(NHZCI, oOH— 5.2x108 M1 g-1c

NH, + O, »—NO, + NO,” + N,O + NH,*

aDe Laat et al. 2010; P Soltermann et al. 2014; ¢ Poskrebyshev et al.
2003;



Photochemistry of Chloramines

e Molar UV Absorbance of dichloramine
€, =175 M-icm-ia

 Photolysis of dichloramine:
NHCI, + hv — sNHCI + «C|

* Dppc2=1.064

a Soltermann et al. 2014; P Poskrebyshev et al. 2003;



LVLWTF, Long Beach, CA
UV/CI, vs. UV/H,0O, Study

Full-Scale Test Conditions

e 1,4-Dioxane treatment in RO permeate water

 Moderate levels of chloramines (~2.5 mg/L);

« Electrical Energy Dose (EED) ranged from 0.09 to 0.53 kWh/kgal
 pH (not adjusted) approximately 5.5.

Oxidant Levels

« Hypochlorite injection: 0 — 5.2 mg/L
 Free chlorine: 0 — 3.7 mg/L

e H,0,:1.0-3.5mg/L




Byproduct Formation in the UV/CI, AOP

Bromate ion (BrO5~) in bromide-containing waters.
Bromate is regulated in drinking water at 10ug/L

Chlorite 1on (CIO,") from hypochlorite photolysis with
polychromatic light. Chlorite is regulated in drinking
water at 1 mg/L

Chlorate ion (ClO5™) from free chlorine photolysis at
253.7 nm. Not regulated in drinking water; on
Candidate Contaminant List 3

Chlorinated organics including DBPs, potentially
responsible for water genotoxicity




Pilot-Scale UV/CI, AOP at a CA Water
Reclamation Plant - Byproduct Formation
e Avery limited number of UV/CI, effluent samples

were analyzed for potential byproducts: Chlorite,
perchlorate, TOX, DBPs — non-detect.

Chlorine INF (mg/L) pH Bromide [Bromate/ ug/L Chlorate/ ug/L
total free ug/L INF EFF INF EFF
1.02 0.3 6.65 77 ND ND ND ND
1.84 0.75 6.05 73 ND ND 470 500
6.00 5 7.2 61 ND 15 1400

Bromate DW MCL - 10ug/L
Chlorate — no DW regulation; on CCL3.
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Chlorine Species at UV Influent/Effluent
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Chlorine Species at UV Influent/Effluent

7

Run No.

O Hypo Injected B [CI2]TOTAL Influent B [CI2]FREE Influent
@ NH2Cl Influent B NHCI2 Influent X [CI2]TOTAL Effluent
N [CI2]FREE Effluent NH2Cl Effluent > NHCI2 Effluent



EEQO as a Function of Free Chlorine

EEO for 1,4-Dioxane, kWh/kgal/order
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Full-Scale UV/H,0, & UV/CIl, AOP
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Full-Scale UV/H,O, & UVICI, AOP

Log Reduction of 1,4-Dioxane

UV/H,0, Model for 98.2%T
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Cost Implications

e Assumptions

— $0.95/gal bulk (12.5%) hypo

— $750/ton gas chlorine

— pH=5.5

— Chlorine and peroxide
dosed at 3 ppm

Conclusions

— UV-CI, is ~12% cheaper if
guenching is required
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Cost Implications

e Assumptions

— $0.95/gal bulk (12.5%) hypo

— pH=6.5

— Chlorine and peroxide
dosed at 3 ppm

— UV-CI, leads to higher
electrical cost (higher EEO)

Conclusions

— UV-CI, Is actually more
expensive if pHis 6.5 and
guenching is not required
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Full-Scale UV/CI, & UV/H,0, AOP Study:
Conclusions

The UV/CI, AOP is a highly complex, pH dependent
process

Following hypochlorite injection in RO permeate there
are several chlorine species present simultaneously with
potentially changing concentrations

These chlorine species absorb UV 3 to 6 times stronger
than H,0O, and are significantly consumed in the UV
reactor

UV/CI, AOP efficiency for 1,4-dioxane treatment in RO
permeate with pH~5.5 appears to be higher than that of
UV/H,O, but corrected for UVT the difference is slight

Few byproducts measured

UV-CI has the potential to lead to lower O&M costs if
removal of residual peroxide is required and if pH is low
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1,4-Dioxane Treatment: Pilot Runs (1)

Experimental Conditions:

o Swift BO3 reactor: 3 LPHO lamps with a total power of 0.462 kW.
o Water source: GAC & IX — filtered London City water.
o0 The UV system run in flow-through mode, at three flowrates:
o 15-18 GPM; '
o 28 -31 GPM,;
o 48 -50 GPM
o Water pH adjusted with phosphoric acid.
o 1,4-Dioxane concentration: ~300 ug/L.

= UVICL;:
— 2.3 -3.4 mg/L free chlorine
= UV/H,0,:




Water Quality and Oxidant Concentrations

GAC & IX - filtered water (prior to pH adjustment)
pH 7.53

alkalinity (as CaCO3) mg/L

%T (254nm, 1cm) 99.3%

nitrate (NO3-) 0.8 mg/L

[Oxidant, M] x¢ (M*cm™)

UV/Cl, UV/H,O,
Set 1 1.98E-03 1.71E-03
Set 2 2.36E-03 1.72E-03
Set 3 2.32E-03 1.80E-03

Set4 2.87E-03 1.78E-03




1.,4-Dioxane Treatment: Pilot Results
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