

Sodium Chloride Removal

July 2015

Where we are TODAY

Many utilities' ability to reclaim water for irrigation is being adversely impacted by elevated sodium and chloride levels.

Local Urban Water/Salt Balance

City of Phoenix

Comparison of Potable and Reclaimed Water

Major Anions and Cations (mg/L)

Traditional Treatment Approach

Traditional Treatment Approach

Benefi	t	Challenge
	Reliable, well understood process	Recovery limited by precipitates of carbonates, sulfates, phosphates and silica
	Good removal of ions	Must add chemical or blend to re-stabilize product water
	Good removal of organics, including emerging contaminants	High TDS concentrate stream that is difficult to treat

What could be...

Alternative treatment configurations that:

Reduce sodium and chloride levels

Reduce cost of concentrate management

Hybrid NFRO

Pilot Test of NF

Salt Passage Characteristics

Take advantage of different rejection of multivalent vs. monovalent ions in NF membrane

Enrich waste with sodium and chloride

2

ß

Retain hardness, sulfates for re-blending

From DOW Technical Manual Form 609-020501-1004

Pilot Study Set Up

Membrane B Results

Good variability of salt passage with recycle

Trends are similar to model results but lower

Membrane C Results

Membrane C Cation Salt Passage

Provides adequate sodium and chloride passage but **Calcium** and Magnesium passage higher than expected

Average Concentrations

Constituent	Feed	Permeate		
		Α	В	С
ТОС	2.3	< 0.5	<0.5	<0.5
TKN	2.3	1.2	1.3	1.5
Ammonia	1.4	0.86	0.62	0.88
Nitrate	4.0	4.2	1.2	4.4
Silica	14.9	12.2	3.4	14.2
Sulfate	214	ND	ND	0.03
Orthophosphate	1.1	<0.2	<0.2	<0.2

Trace Organics

Analysis

Model NFRO Schematic

Benefits

Improve Water Quality

Reduce Chemical Consumption

	RO + Blend	NF-RO
Sulfuric acid, ppd	188	0
Threshold inhibitor, ppd	13.3	11.5
Lime, ppd	220	49
Chemical Cost Per year	\$47,545	\$45,374

- ✓ 700 gpm feed each
- ✓ 88% overall recovery

Comparison of Concentrate Quality

Concentrate Quality

✓ 40% less TDS

- \checkmark The balance is conserved in the blended product
- \checkmark Very low total organic carbon
 - <2.5 ppm versus 16 ppm
- \checkmark Little to no phosphate
 - None detectable in NF permeate or NFRO concentrate
 - 29.6 ppm in 'traditional' RO concentrate

Comparison of ZLD Capital Cost

System Cost: \$9.2M

Comparison of ZLD Operating Costs

Item	RO/BC/FCC	NFRO/HERO/FCC	Savings
Power	\$431,000	\$216,000	\$215,000
Chemicals	\$202,000	\$130,000	\$72,000
Other	\$22,000	\$16,000	\$6,000
Total	\$655,000	\$362,000	\$293,000

ZLD Simple Payback

Challenges

Hybrid NFRO Challenges

Higher pumping energy	Recover hydraulic energy with ERD
More membrane required (+25%)	Low NF recovery and high quality feed to RO likely to result in less cleaning and replacement
Threshold inhibitor in product	Most products are NSF certified
Little removal of trace organics and TOC	Not regulated for non-potable reuse Use alternate processes for potable reuse

Options for Potable Reuse Scheme

Hybrid NFRO Benefits		
Feature	Benefit	
Reduces sodium and chloride	Improves Sodium Adsorption Ratio; Reduces Chloride Toxicity	
No acid addition, less scale inhibitor Retains multivalent ions	Lower overall chemical cost	
Concentrate contains low sulfate, phosphate and TOC	Lower cost concentrate treatment	
Plug-and-Play into a direct reuse or potable reuse scheme	Versatility	

