

Not Just a Better Mousetrap: Outside-the-Box Thinking in Concentrate Management

Brent Alspach ARCADIS

Authors

Brent Alspach, PE, BCEE Senior Environmental Engineer ARCADIS Carlsbad, CA

Dr. Kerry Howe, PE, BCEE, PhD

Associate Professor Department of Civil Engineering University of New Mexico Albuquerque, NM

Presentation Overview

- The Necessity of Desalination
- "Conventional" Concentrate Management
- The Problem of Contemporary Rodents
- Attributes of Innovative Strategies
- Case Studies
- The Future of Concentrate Management

What water treatment applications require desalination?

What water treatment applications require desalination?

What water treatment applications require desalination?

- Brackish groundwater
- Seawater

What water treatment applications require desalination?

- Brackish groundwater
- Seawater
- Non-potable reuse

General recycled water for irrigation, industrial use, etc.

What water treatment applications require desalination?

- Brackish groundwater
- Seawater
- Non-potable reuse
- Indirect potable reuse

OCWD Groundwater Replenishment System: 92 MGD

What water treatment applications require desalination?

- Brackish groundwater
- Seawater
- Non-potable reuse
- Indirect potable reuse
- Direct potable reuse

Coming soon in Texas... •Colorado River MWD •City of Brownwood

What water treatment applications require desalination?

- Brackish groundwater
- Seawater
- Non-potable reuse
- Indirect potable reuse
- Direct potable reuse
- Saline surface water

Average TDS of Colorado River water imported to SoCal: 650 mg/L

What water treatment applications require desalination?

- Brackish groundwater
- Seawater
- Non-potable reuse
- Indirect potable reuse
- Direct potable reuse
- Saline surface water
- Produced water

Produced water salinity can exceed 400,000 mg/L

Limiting Factors

Cost

Concentrate

Less an issue of *ability* to overcome as <u>willingness</u> to overcome

May not be feasible to overcome

Limiting Factors

Cost

Concentrate

Less an issue of ability to overcome as willingness to overcome

May not be feasible to overcome

What are the five commonly cited management strategies?

Surface Water Discharge

Deep Well Injection

Evaporation Ponds

Land Application

Zero Liquid Discharge (ZLD)

"Conventional" Options

Surface Water Discharge

Deep Well Injection

Evaporation Ponds

Land Application

Zero Liquid Discharge (ZLD)

"Conventional" Options

Surface Water Discharge*

Deep Well Injection

Evaporation Ponds

Land Application

Zero Liquid Discharge (ZLD)

* Includes transfer to WWTPs

- Environmental permitting
- Availability of suitable receiving bodies
- Impact on downstream water supplies

"Conventional" Options

Surface Water Discharge

Deep Well Injection

Evaporation Ponds

Land Application

Zero Liquid Discharge (ZLD)

- Environmental permitting
- Potential for inducing earthquakes

"Conventional" Options

Surface Water Discharge

Deep Well Injection

Evaporation Ponds

Land Application

Zero Liquid Discharge (ZLD)

- Environmental permitting
- Available area
- Capital cost

"Conventional" Options

Surface Water Discharge

Deep Well Injection

Evaporation Ponds

Land Application

Zero Liquid Discharge (ZLD)

- Environmental permitting
- Available area
- Capital cost

"Conventional" Options

Surface Water Discharge

Deep Well Injection

Evaporation Ponds

Land Application

Zero Liquid Discharge (ZLD)

Issues / Limitations

EXAMPLE:

- 4 MGD BWRO plant
- 80% recovery
- Evaporation rate = 160"/yr (~ Death Valley)

~84 acres required

"Conventional" Options

Surface Water Discharge

Deep Well Injection

Evaporation Ponds

Land Application

Zero Liquid Discharge (ZLD)

- Environmental permitting
- Distribution
- Requires salt-tolerant crops
- Micropollutant toxicity
- Increase in soil salinity

"Conventional" Options

Surface Water Discharge

Deep Well Injection

Evaporation Ponds

Land Application

Zero Liquid Discharge (ZLD)

Issues / Limitations

COST

"Conventional" Options

Surface Water Discharge

Deep Well Injection

Evaporation Ponds

Land Application

Zero Liquid Discharge (ZLD)

Issues / Limitations

- Very high operating cost (~\$2 - \$25 / kgal recovered)*
- Only one (?) municipal application

* Bond & Veerapaneni, JAWWA, Sept. 2008

Building a Better Mousetrap

"Conventional" options are getting better

- ZLD is getting cheaper (in theory...)
- More salt-tolerant crops are being grown
- Engineered wetlands are being developed
- ...etc.

Building a Better Mousetrap

"Conventional" options are getting better

- ZLD is getting cheaper (in theory...)
- More salt-tolerant crops are being grown
- Engineered wetlands are being developed
- ...etc.

Building a Better Mousetrap

"Conventional" options are getting better

- ZLD is getting cheaper (in theory...)
- More salt-tolerant crops are being grown
- Engineered wetlands are being developed
- ...etc.

Characteristics of modern mice

More numerous

Bigger

Genetically diverse

Smarter

Characteristics of modern mice

More numerous

Bigger

The number of desalination / concentrate management applications is growing quickly.

Genetically diverse

Smarter

Characteristics of modern mice

More numerous

Bigger

Genetically diverse

Smarter

Desalination plants are getting larger.

Characteristics of modern mice

More numerous

Bigger

Genetically diverse

Non-traditional desalination applications are both increasing and increasingly important.

Smarter

Characteristics of modern mice

More numerous

Bigger

Genetically diverse

Smarter

Desalination applications are more challenging and complex.

Characteristics of modern mice More numerous Truly innovative concentrate Bigger management strategies are needed. **Genetically diverse** Smarter

Attributes of Innovative Strategies

Applicability

- More focused / limited...
- ...but part of toolbox

Economy

- Economical vs. affordable
- Cost vs. "no water" option

Feasibility

- Similar to conventional options
- Site- / application-specific

Scalability

- Matches scale of application
- Batch vs. continuous flow

Sustainability

- Environmentally friendly
- Neutral impact is positive

Synergy

- Ideally characteristic
- Represents dual solution

Attributes of Innovative Strategies

Applicability

- More focused / limited...
- ...but part of toolbox

Economy

- Economical vs. affordable
- Cost vs. "no water" option

Feasibility

- Similar to conventional options
- Site- / application-specific

Scalability

- Matches scale of application
- Batch vs. continuous flow

Sustainability

- Environmentally friendly
- Neutral impact is positive

Synergy

- Ideally characteristic
- Represents dual solution

Case Studies

Case Studies: Overview

Important considerations

- Good concentrate management options, but imperfect
- Not intended to be an endorsement
- Focus should be less on these specific cases and more on their innovative characteristics and approach

Case Studies: Overview

Important considerations

- Good concentrate management options, but imperfect
- Not intended to be an endorsement
- Focus should be less on these specific cases and more on their innovative characteristics and approach

<u>Goals</u>

- Provide examples of alternative approaches
- Stimulate innovative thinking!

Case Studies: Overview

Important considerations

- Good concentrate management options, but imperfect
- Not intended to be an endorsement
- Focus should be less on these specific cases and more on their innovative characteristics and approach

<u>Goals</u>

- Provide examples of alternative approaches
- Stimulate innovative thinking!

<u>Case Study #1</u>: Calera MAP Process

Overview

- "Mineralization via Aqueous Precipitation"
- Combines saline water and CO₂ emissions to produce cement
- Piloted at Moss Landing (Monterey) on seawater and power plant flue gas
- Could concentrate from proposed SWRO plant improve the process...?
- Profiled by NY Times (2011), Scientific American (2008), and other sources

Source: www.calera.com

Applicability

- Theoretically deployable at almost any power plant or carbon-emitting industrial operation
- Broadens benefits of co-location
- Potential for wide applicability from SWRO to inland BWRO
- Use as a concentrate management option depends on both salinity and ionic composition

Economy

ARCADIS

- No detailed economic analysis has been released
- Magnitude of cost would be site-specific and vary widely
- Potential to be less expensive than other concentrate management alternatives
- Generation of "green cement" as a saleable product
- Sequesters flue gas, reducing the cost of power plant emissions scrubbing
- Not a ZLD process, so there is still a cost for managing less saline residual stream

Feasibility

- ✓ Minimal infrastructure integration
- Tests are needed
- Limited by:
 - Proximity to source of CO₂ emissions
 - Means to manage residuals stream
- ? Acceptance of "green cement" by conservative building industry
- ? Linking concentrate management strategy to demand for a commodity (permitting?)

Scalability

- No theoretical limitations identified
- Low concentrate flow may yield adverse economy of scale
- Scale dependent on market for usable product ("green cement")

Sustainability

ARCADI

Reduces global warming

- Demonstrated 86% CO₂ capture
- Offsets non-green concrete mfr.
- Negative carbon footprint
 (-1,000 lbs. CO₂ / yd³ concrete mfrd.)
- Removes flue gas pollution
 - SO₂ (>95% capture demonstrated)
 - Mercury
- Does not eliminate concentrate
- Waste stream composition...?

Synergy

- Could facilitate desalination in locations with no other viable concentrate management options
- Reduces pollution
- Reduces global warming
- Generates salable product

Outlook

• Unproven

- More data / study is needed
- Promising for SWRO and some inland BWRO applications

Could set the standard for outside-the-box concentrate management

...if viable

Case Study #2:

Upstream Oil & Gas Application

Overview

ARCADIS

- Booming unconventional production
- Potential for significant water demand
- Some applications allow or *require* saline water; examples include...

Kill fluid

- Prevents outward flow from well
- Requires brine

Completion fluid

- Protects hardware from damage
- Typically comprised of brine

Fracking fluid

- Fractures subsurface formations
- Increasingly comprised of saline water

Overview

Example: Kill Fluid

- Fluid is use as passive, non-mechanical means of preventing fluid flow
- Solution must be heavier than the force exerting upward pressure

Water Supply	Weight	Column Pressure (per 100 ft.)
Fresh Water	8.3 lbs/gal	43.3 psi
Seawater ¹	8.6 lbs/gal	44.7 psi
Saturated Water ²	10 lbs/gal	52.0 psi

Variable concentration not significant for the purposes of this analysis
 "Ten pound brine"

Overview

Example: Kill Fluid

- Fluid is use as passive, non-mechanical means of preventing fluid flow
- Solution must be heavier than the force exerting upward pressure

Water Supply	Weight	Column Pressure (per 100 ft.)
Fresh Water	8.3 lbs/gal	43.3 psi
Seawater ¹	8.6 lbs/gal	44.7 psi
Saturated Water ²	10 lbs/gal	52.0 psi

1 Variable concentration not significant for the purposes of this analysis

2 "Ten pound brine"

20% heavier than fresh water

Applicability

- Only viable in areas with areas with ongoing O&G sector activity (?)
- Production is expanding widely and rapidly, and so is water demand

US expected to rival Saudi Arabia in hydrocarbon production in 2013

• Use of concentrate avoids the need to compete for other limited water supplies

Applicability

Example: Kill Fluid

- Confidential operator of a produced water desalination system sells all of its concentrate for use as kill fluid (Eagle Ford shale play in Texas)
- Operator <u>adds</u> salt to increase the salinity for its customer
- Recycles water within the shale play

Economy

ARCADIS

- Competition for water resources could make desalination concentrate a valuable commodity
- Possible financial windfall for desalination plant owner (rare!)
- Shifts ultimate concentrate disposal cost to end user

Feasibility

ARCADIS

Governed by three factors:

1. Presence of significant market

- Proximity of desal plant to O&G plays
- Supply vs. demand
- 2. Logistics of conveyance
 - Economics
 - Environmental impact
 - Permanent vs. temporary facilities
- 3. Water quality
 - Concentrate compatibility with use
 - Requirements vary by application

Scalability

 Matching scale of concentrate flow to demand may be the most limiting factor

- Strategy best suited for areas with significant O&G activity
- Significant considerations include:
 - Number of O&G wells / sites / pads
 - Well depth
 - Temporary nature of operations
 - Development of new technology / procedures with different quality and quantity requirements

Sustainability

- Reduces some or all of the desal plant residuals
- Eases competition for better quality supplies
- Allows increased environmental flows
- Concentrate could be used multiple times (**but**...reduces demand)

Disadvantages:

- Likely transport by truck
- Ultimate disposal of saline waste laced with hydrocarbons

Synergy

- Reduces supplier waste...
- ...meets purchaser need
- Mutual <u>economic</u> benefit for supplier and purchaser
- Mutual <u>permitting</u> benefit for supplier and purchaser

Outlook

ARCADIS

• Opportunities expanding:

- Booming O&G production
- Increasing need for desalination
- Most significant impediments:
 - Variable demand
 - Shifting customer base as O&G operations evolve

Increasingly important option to consider

Summary

Four Fundamental Factors

Potential for economic benefit Existing market demand, uniquely (or more efficiently) satisfied Significant sustainability advantages Synergistic solutions

The Future of Concentrate Management

The Situation

- "Conventional" strategies will remain the core viable options
- New strategies must be developed to facilitate increased use of desalination in diverse applications and geographies
- Innovation cannot be limited to simply variations on conventional ideas
- Increasing shift to toolbox approach

The Future of Concentrate Management

Our Commission

- Truly think "outside-the-box"
- Investigate other industries and their water and resource needs to identify markets and synergies
- How can we solve the concentrate problem?

The Future of Concentrate Management

Our Commission

- Truly think "outside-the-box"
- Investigate other industries and their water and resource needs to identify markets and synergies

solve the concentrate problem?

What problem(s) can

concentrate solve?

Questions?

Brent Alspach ARCADIS brent.alspach@arcadis-us.com (760) 602-3828

TTUT.