Novel Application of the Membrane Technology for High End Reuse

Zeynep K. Erdal, PhD, PE

February 12, 2013

WateReuse LA Chapter Meeting West Basin Municipal Water District

Outline

- Goals
- Technology Options
- Pilot Testing Conditions
- Progress and Status
- Q&A

Goals

- Produce recycled water for use in
 - Cooling tower makeup water
 - Boiler makeup water
 - Irrigation
- Recycled water quality to be suitable for
 - Direct use non-detectable ammonia N
 - Use as RO feed
- Waste streams to be
 - In compliance with discharge requirements
 - Minimized to reduce disposal costs

Nitrification Technologies

Suspended growth

Attached growth

Attached Growth

• Clay or polystyrene media

 Rope, chip, disks, sponges, etc. media

Membrane Bioreactors (MBRs)

- Uses low-pressure membrane filtration system (e.g., microfiltration or ultrafiltration) and eliminates the need for clarifiers and filtration for solid-liquid separation
- Higher MLSS in smaller footprint
- To clean the exterior of the membranes, backpulsing and air scour is used
- Tertiary application is relatively new (Hamilton, Canada, CH2M HILL)

Membrane Bioreactors (MBRs)

<u>Advantages</u>

- Superior effluent quality
- Handle WQ variability
- Eliminates separate solids/liquid separation and tertiary filtration
- Pretreatment for NF/RO

<u>Disadvantages</u>

- Additional cleaning chemicals such as citric acid over other conventional technologies
- Proper maintenance of membranes required
- T-MBR new concept

T-MBR Pilot Testing Goals

- Provide proof of concept for use of a membrane bioreactor for nitrification on a tertiary treated wastewater.
- Verify the biological system capability to produce less than 1 mg/L ammonia nitrogen.
- Define and optimize the process design criteria.
- Take the system to failure and/or test the ability for recovery from failure.

T-MBR Feed Water Quality

	Average Feed	Product Water
Parameter	Values	Requirements
pH, SU	6.8	6.5-7.5
Temperature, °C	20	
BOD, mg/L	1	
TOC, mg/L	12	
TSS, mg/L	3	
Turbidity, NTU	1.3	<0.2
Ammonia-N, mg/L	53	<1
Nitrate-N, mg/L	11	
Alkalinity, mg/L CaCO ₃	230	
Ortho Phosphate-P, mg/L	0.1	
TDS, mg/L	1,560	Monitored

Product water is to be also suitable for use as RO feed.

Ammonia Oxidation Basics

- Nitrification (*Nitrosomonas* and *Nitrobacter*): $NH_4^++ 2 O_2 \rightarrow NO_3^- + 2H^+ + H_2O$ $1.02NH_4^+ + 1.89 O_2 + 2.02 HCO_3^- \rightarrow 0.021 C_5H_7O_2N + 1.06$ $H_2O + 1.92 H_2CO_3 + 1.00 NO_3^-$
- Breakpoint chlorination: $2NH_4^++ 3 Cl_2 \rightarrow N_2(g) + 8H^+ + 6Cl^-$

What does the MBR Mixed Liquor Look Like?

MBR System MLSS

Next Steps

- Continue monitoring under steady state conditions
- Conduct challenge tests
- Develop design criteria for the 12-mgd full scale system

Zeynep.Erdal@ch2m.com

