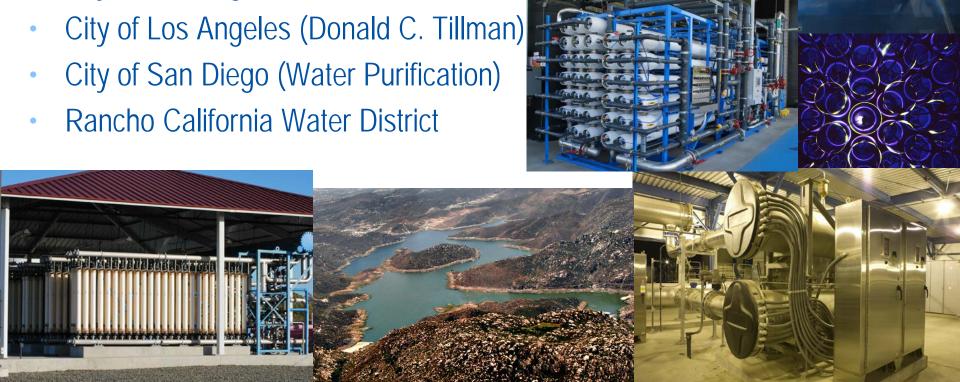


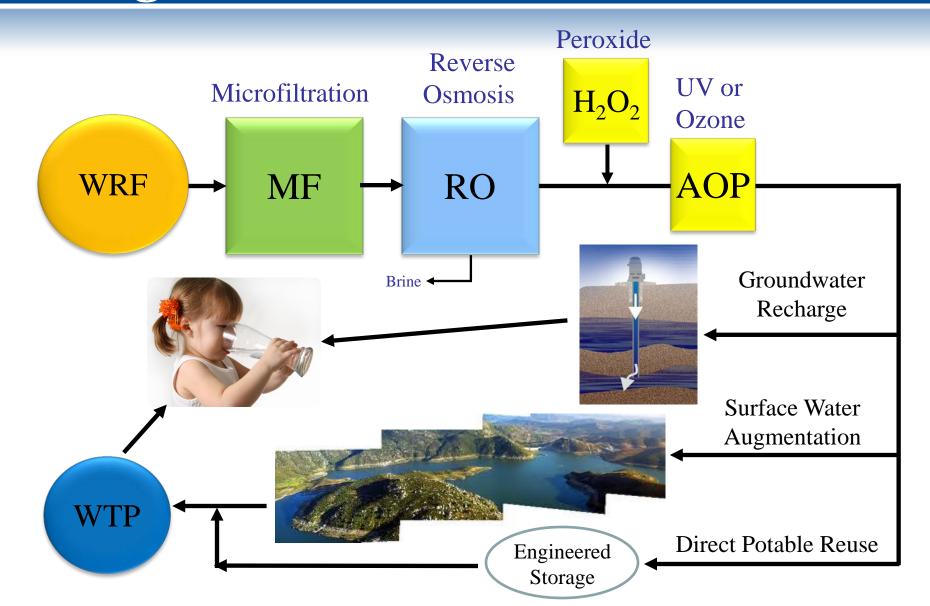
IPR Case Studies and Issues for DPR

WateReuse 2013

San Diego Chapter May 8, 2013 San Diego, California


Greg Bradshaw

Agenda


- AWT, AWPF or FAT
- Public Perception Issues
- Case Studies
- Control of Pathogenic Microorganisms
- Surface Water Augmentation Challenges
- Pathway to DPR

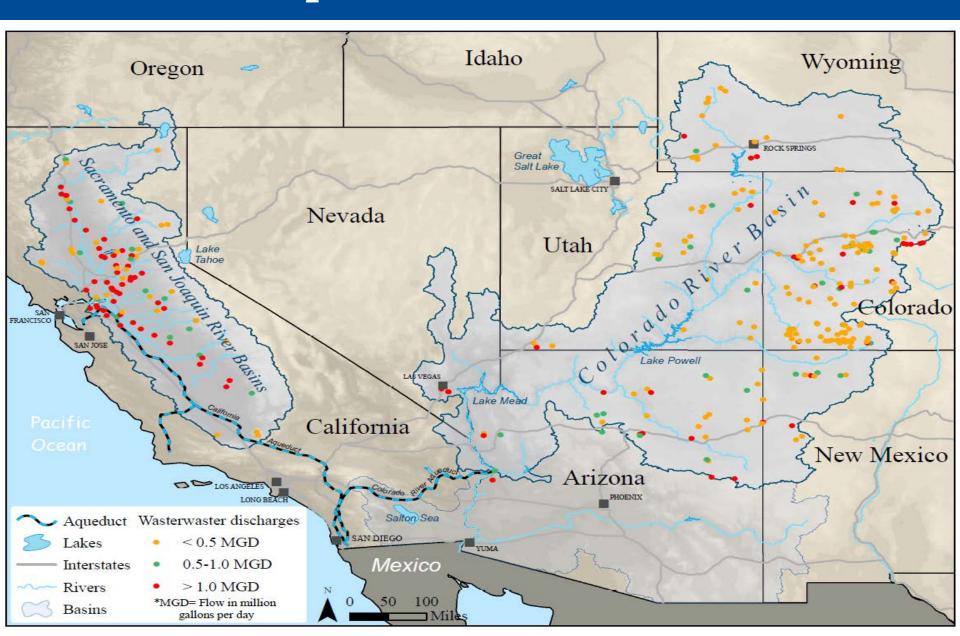
AWT References

- West Basin Municipal Water District
- Orange County Water District
- Water Replenishment District (WRD)
- City of Los Angeles (Terminal Island)

Full Advanced Treatment (FAT) Configuration

Why get FAT?

- Reduce Reliance on Imported water
 - Develop New Source
 - Sea Water Intrusion and Augment GW Supplies (Past and Present)
 - Augment Surface Water Supplies (Future)
 - Salt Management Strategy
 - Industrial Use or Irrigation supplies
- Reduce environmental impacts from a WW discharge
- Pathway to DPR


How Effective is FAT?

Removal of Organic Chemicals in AWT Processes

<u>Chemical</u>	<u>MF</u>	<u>RO</u>	<u>UV / AOP</u>	Ozone / AOP
Atrazine	Poor	Excellent	Mod To High	Excellent
Carbamazepine	Poor	Excellent	Excellent	Excellent
DEET	Poor	Excellent	Moderate	Excellent
1,4 Dioxane	Poor	Poor	Mod To High	Mod to High
Nitrosomines	Poor	Mod	Mod to High	Moderate
Estrone	Poor	Excellent	Excellent	Excellent
Gemfibrozil	Poor	Excellent	Excellent	Excellent
Meprobamate	Poor	Excellent	Fair to Mod	Excellent
Sulfamethoxazole	Poor	Excellent	Excellent	Excellent
TCEP	Poor	Excellent	Poor	Fair to Moderate

Public Perceptions on Water Reuse

Be Prepared for Emerging Issues

What will be the target issues in the future?

New emerging contaminants

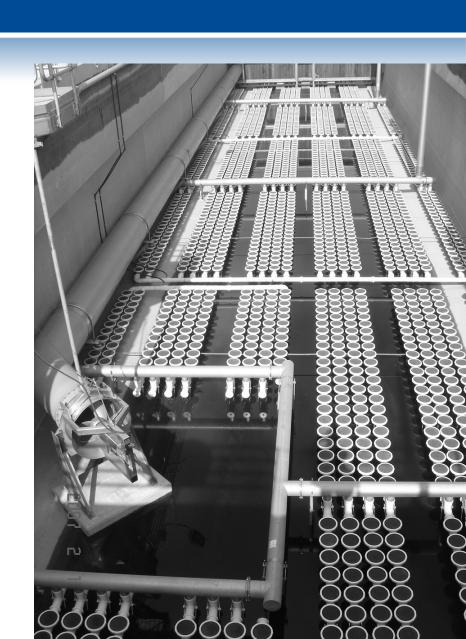
Tritium

Lithium

 As IPR Programs evolve - more stringent protection and public education of the sewer shed

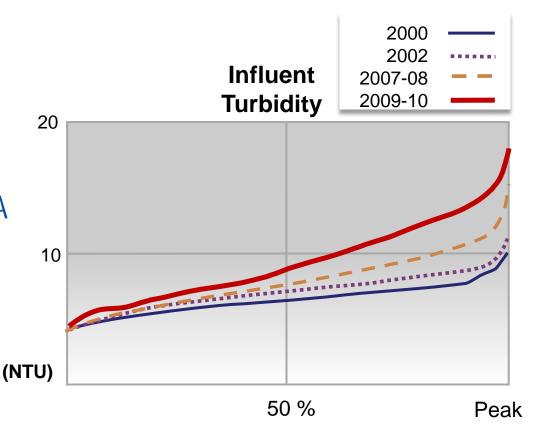
Bio-cremation may pose Public Concerns

- Not legal in California
- Process
 - Potassium Hydroxide
 - Heat, pressure and time
- Waste Stream to sewer
- Public Outreach challenge



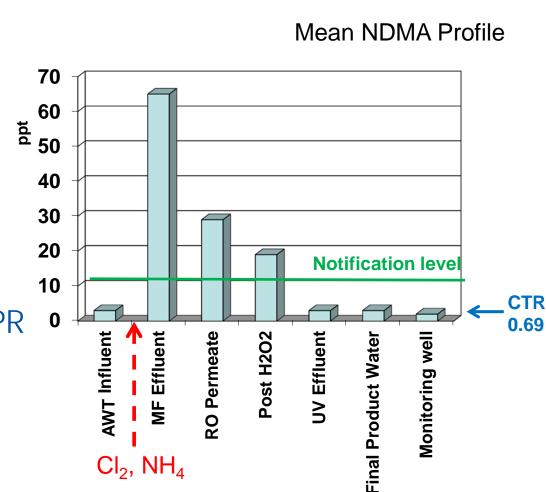
Considerations and Case Studies

FAT Considerations


- Biological Treatment Impacts
 - Diurnal variability
 - Plan to address off-spec water
- Nitrification
 - Improves FAT performance
 - Lower production of NDMA
 - Necessary for SWA/DPR
- How FAT recycle flows impact biological operations?

Case Study A: Feed Water Quality

- Consider feed water quality changes, diurnal effects and biological process upsets
 - Operations Impacts
 - Flux decline
 - Increased fouling
 - Increased CIP
 - Capacity
 - Potential Impacts for SWA
 - Nutrients
 - California Toxics Rule



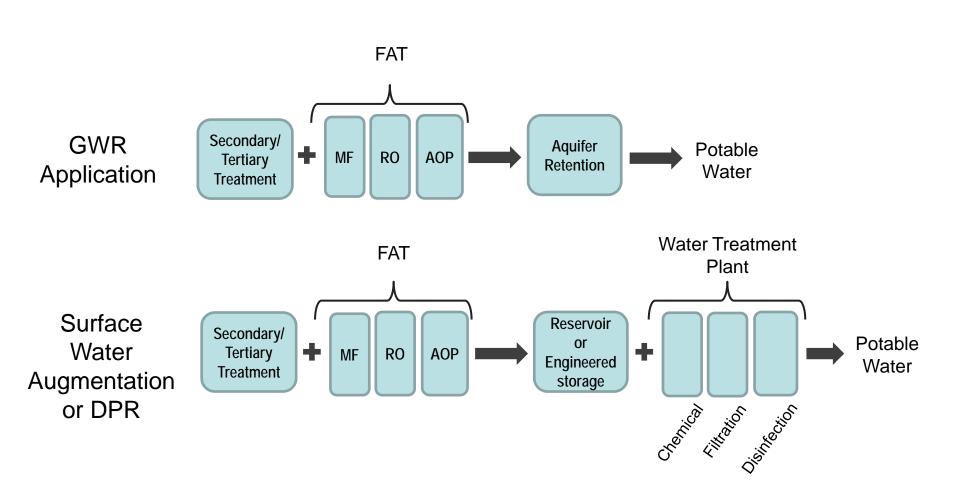
Case Study B: Chemicals Create Challenges

Chlorine

- DBPs (SWA)
- NDMA
- AOP
 - Formaldehyde
 - Bromate
- Ammonia
 - Impacts to SWA/DPR
- Polymers
- SWA: CTR

Case Study C: pH Stabilization

- Lime
 - Operators don't like it
 - Requires a lot of attention
 - O&M challenges
 - Difficult to meet GW injection criteria w/o
 - pH
 - LSI



- More flexibility on alternative strategies with SWA/DPR
 - Caustic
 - Caustic and Blend with other sources
 - Calcium Chloride

Control of Pathogenic Microorganisms

Comparison of GWR with SWA/DPR

Pathogen Log Removal – GWR 6 months retention time

Organism	Log Reduction Required	Log Reduction Obtained	Biological and Membrane Filtration Treatment	Reverse UV Osmosis Disinfecti	Advanced Oxidation	Aquifer Retention
Crypto	10	16	4	6		6
Giardia	10	14	2	6		6
Viruses	12	12	0	6		6

- 1. No credits taken for biological or tertiary treatment
- 2. No credits taken for reverse osmosis
- 3. No credits shown for peroxide addition or AOP
- 4. Ozone can be used instead of UV but credits for Crypto inactivation need to be validated. Likely need a contactor.

Pathogen Log Removal – GWR with less than 6 months retention

Organism	Log Reduction Required	Log Reduction Obtained	Biological and Tertiary Treatment	Membrane Filtration	Reverse Osmosis	UV Disinfection	Advanced Oxidation	Aquifer Retention
Crypto	10	15	2	4	1	6		2
Giardia	10	13	2	2	1	6		2
Viruses	12	12	1	2 ^a	1	6		2

- a. Removal is a result from chlorine used as a biocide
- b. Other credits proposed are conservative estimates based on literature research

Potential Pathogen Log Removal - SWA

Organism		Log Reduction Obtained		Membrane Filtration	Reverse Osmosis	UV Disinfection	Advanced Oxidation	Reservoir	Water Treatment Plant
Crypto	10	15	2	4	1	6		2	2
Giardia	10	14	2	2	1	6		2	3
Viruses	12	14	1	2	1	6		2	4

a. Log removal credits shown do not take credit from the Reservoir or any post treatment chlorination, which should probably be avoided

Potential Pathogen Log Removal - DPR

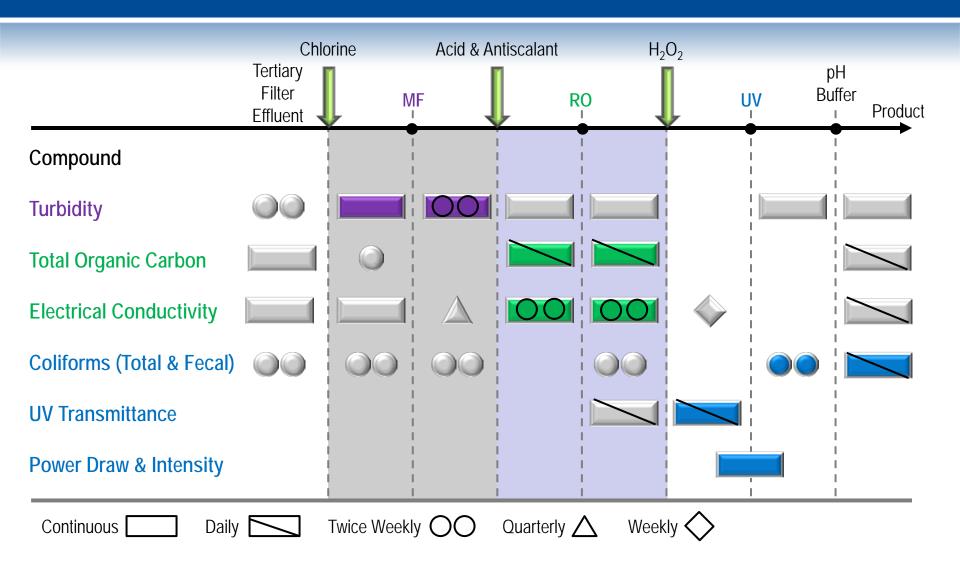
Organism		Log Reduction Obtained	Total Control of the	Membrane Filtration	Reverse Osmosis	UV Disinfection	Post Treatment Chlor.	Reservoir or Eng Storage	Water Treatment Plant
Crypto	10	15	2	4	1	6			2
Giardia	10	14	2	2	1	6			3
Viruses	12	16 ^a	1	2	1	6	2		4

a. Probably would have post treatment chlorination with this configuration

Surface Water Augmentation

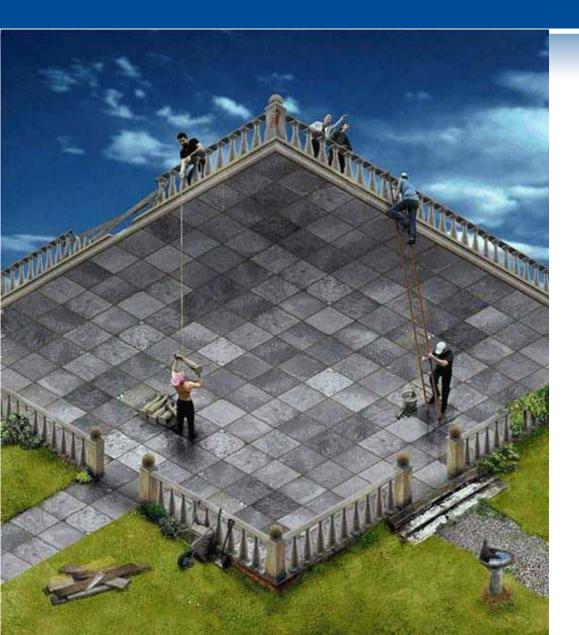
Surface Water Augmentation Challenges

- Currently regulated by NPDES permit
 - Goals for nutrients
 - Uphold natural N/P ratio
 - Limits established on interpretation of Basin Plan objectives
 - California Toxics Rule (CTR)
 - NDMA 0.69 ppt
 - DBPs individual DBPs are 500 times < total THMs in imported water
 - A mixing zone raises questions when the receiving water has higher concentrations
- Is the best water quality sent to the reservoir
 - When does FAT water become a supply vs a discharge?
 - Why are we treating it as an inferior supply?


Potential Metrics for Reservoir or Engineered Storage or DPR

Dilution

- For San Vicente project > 200:1
- Ability to take the reservoir/FAT off-line
- Response Retention Time Engineered Storage
 - Subject to monitoring frequency and assessment that enables timely intervention
 - Online Monitoring
 - Goal is to develop indicators of process performance that are very sensitive and provide real time feedback
 - Seeking two analytical parameters for each barrier that have a routine verification to address redundancy and reliability



Online Monitoring

Look at FAT Product Water Differently

- Inferior Source Water?
 - GW Diluent Water
 - SWA Dilution scenarios
- FAT is actually diluting other supplies

Pathway for DPR

- Public Acceptance
- Risk Management Strategies focus on acute risks
 - Define, assess risk and health based targets Multiple barriers to minimize the chance of a complete failure of treatment
 - Preventative measures including dilution
 - Continuously verify performance and failure response readiness
- Alternative treatment strategies must provide same level of protection

Conclusion

Advanced Water Treatment is a safe, reliable and sustainable source of water.

All water is reused over and over. Properly treated water is the safest on the planet.