

Coupling Pre-Treatment with Suspended Biological Reactors in the Treatment of Produced Water

James Rosenblum, PhD

Collaborators

- Karl Linden, PhD
 - Croft Professor of Environmental Engineering
 - University of Colorado, Boulder
- Kurban Sitterly, Masters Student
- Mike Thurman, PhD and Imma Ferrer, PhD
 - Center for Environmental Mass Spectroscopy
- Linden Lab Group
 - Ian Morrissey, Undergraduate Student
 - Amanda Connell, Masters Student
 - Robyn Hawkinson, Masters Student
- Acknowledge
 - South Adams County Water and Sanitation District
 - Blair Corning
 - MBBR Carriers (media)
 - Boulder Wastewater Treatment
 - Aerobic and Anaerobic sludge

Outline

- Hydraulic Fracturing
 - Basics
 - The role water plays in the fracturing process
- Reusing Hydraulic Fracturing Wastewaters

 Challenges associate with these waters
- Treatment
 - Pre-Treatment
 - Coagulation and Flocculation
 - Biological Treatment
 - Moving Bed Biofilm Reactor
- Conclusions
- Future Research

What is hydraulic fracturing of "unconventional gas sources" ?

Hydraulic Fracturing

- Source Rock
 - Tight formations
 - ~1000 times smaller pore size
 - Flow rates reduced by 1x10⁶
- Hydraulic Fracturing has allowed us to access these tight formations

Factors in Drilling

- 1. Permeability
- 2. Viscosity
- 3. Reservoir Contact
 - Conventional Vertical Well
 - 20 m²
 - Fracking
 - 500,000m²

Fracturing Fluids

- ~85-90% Water
- ~10% Proppants
 Sand
- ~1-2% Chemical Additives
 - Friction Reducers
 - Crosslinkers
 - Gelling Agent
 - Breakers
 - Biocides
 - Surfactants
 - Corrosion Inhibitors

Photo courtesy of shalegaswiki.com. Data obtained from Environmental Considerations of Modern Shale Gas Development, SPE 122391

Role of Fracturing Fluid Agents

- Water
 - Media
- Sand (proppant)
 - Fissure remain porous (permeability)
- Friction Reducer
 - Guar
 - Helps with head loss
 - Transport of the proppant

- Due to viscosity and turbulence within the water, the sand remains suspended,
- Cross Linkers
 - Boric Acid
 - Binds guar molecules, forming polymers of guar, further improving head loss
- Biocides
 - Guar is a carbohydrate (Food for Microbes), so biocides prevents microbes from degrading guar within the Frac Fluid
- Breakers
 - Hydrogen Peroxide
 - Break apart the gels allowing for the release of gas

Water

The Hydrologic Cycle

http://www.srh.noaa.gov/jetstream/atmos/hydro.html MODIFIED

Oil and Gas Hydrologic Cycle

- 1. Water Acquisition
- 2. Mixing (making) Fracturing Fluid
- 3. Act of Fracturing
- 4. Wastewater Flowback/Produced
- 5. Wastewater treatment or Disposal

Wastewater

What are the different wastewater streams ?

Wastewater production

- I. Drilling **Drilling mud**
- II. Injection of fracturing fluid
- III. First 1-3 weeks: Flowback water
- IV. Next few years: Produced water

Produced water Elowback Drilling mud

Water Management Options

- Deep well injection disposal
- Evaporation pits
- Treatment and surface water discharge

Deep Well Injection

- On-site recycling/reuse
 - Relatively uncommon with no national estimates

Wastewater Composition

- Flowback and produced water are characterized by
 - High dissolved organic matter, including volatile compounds and hydrocarbons
 - High salt content (TDS)
 - DJ Basin ~20 g/L
 - Marcellus Shale > 200 g/L
 - Metals (e.g., iron, manganese, calcium, magnesium, barium, etc.)
 - Dissolved gases (e.g., H_2S)
 - Naturally occurring radioactive material (NORM)
 - High concentrations of suspended solids, oil, and grease
- Flowback and Produced Wastewater Quantity
 - High flowrates in the first days/weeks after fracturing
- Produced water
 - High flowrates at early life of well, decreasing with time (e.g., coalbed methane)
 - Very low flowrates throughout the life of the well (e.g., shale gas and others)

Re-Using Fracturing Wastewaters

Treatment

What makes treating Hydraulic Fracturing Wastewaters a challenge?

- A. High levels of total dissolved solids (TDS)
- B. Dissolved organic content (DOC) over > 400ppm
- C. Known and unknown chemical agents
- D. Lack of a centralized collection system
- E. None of the above
- F. All of the above

Treatment Plan

Coagulation-Flocculation >AICI3 or FeCI3

>Powder Activated Carbon

- Total Organic Carbon
- Total Petroleum Hydrocarbons
- Turbidity
- Total Suspended Solids
- Ionic contaminants

Organic Carbon Removal

-Biological Treatment -Bio-Treat coupled with AOP -MBBR

Aerobic / Anaerobic

- Total Organic Carbon
- Biochemical Oxygen Demand

Total Dissolved Solids Removal

-Membranes

 Salts and other dissolved solids not removed by the previous two methods

Assessing Treatment

- Wastewater Treatment Indicators
 - Total Organic Carbon, Turbidity, Total Suspended Solids, Total Dissolved Solids
- Advanced Chemical Markers
 - Ionizable Compounds
 - HPLC-TOF
 - Burnable Compounds (hydrocarbons)
 - GC-FID
- Advanced Biological Markers
 - Bacterial Toxicity Assays

Pre-Treatment

Coagulation and Flocculation

- Remove suspended and settleable solids
- Utilized Two Coagulants
 - $AICI_3$ and $FeCI_3$
 - Compared varying doses on their ability to remove TOC
 - 40, 60, 80, 120mg/L
 - Compared them based on their ability to also remove
 - TSS and Turbidity
 - Advanced indicators
 - Hydrocarbons, Ionizable Compounds, Bacterial Tox Assays
- Utilized Powder Activated Carbon (PAC)
 - Compared varying doses on their ability to remove TOC, TPH, and Ionic contaminants
 - Coupled with either AlCl₃ or FeCl₃ at PAC doses of
 - 0.05, 0.25, 0.50, 1, and 10 g/L (PAC dose)
 - 120 mg/L (Coagulant dose)
 - PAC alone
 - 0.25, 0.50, 1, and 10 g/L

Coagulation-Flocculation >AICI3 or FeCI3

>Powder Activated Carbon

- Total Organic Carbon
- Total Petroleum Hydrocarbons
- Turbidity
- Total Suspended Solids
- Ionic Contaminants

120 mg/L of AICL₃

Pre-Treatment

- TOC Removal
 - AlCl₃ 120 mg/L
 - 5% TOC reduction
 - AlCl₃ 120 mg/L + 10g PAC
 - 16.8% TOC reduction
 - 10g PAC
 - 13.7% TOC reduction
- Turbidity
 - Raw Water
 - 60 NTU
 - AlCl₃ 120 mg/L
 - 14 NTU (76% reduction)
 - AlCl₃ 120 mg/L + 10g PAC
 - 1.5 NTU (99% reduction)
 - 10g PAC
 - 2.0 NTU (99% reduction)

Total Petroleum Hydrocarbon

- Coagulation with FeCl3 and AlCL3
- Powder Activated Carbon (PAC)

Pre-Treatment	mg/L	% Reduction
Produced Water (Raw)	14.9484	
120 (mg/L) FeCL3	5.258	64.83%
120 (mg/L) FeCL3 + 0.250g PAC	3.99	73.31%
120 (mg/L) FeCL3 + 0.50g PAC	2.4965	83.30%
120 (mg/L) FeCL3 + 1.0g PAC	0	100.00%
120 (mg/L) FeCL3 + 10.0g PAC	0	100.00%
120 (mg/L) ALCL3	5.54314	62.92%
120 (mg/L) ALCL3 + 0.250g PAC		
120 (mg/L) ALCL3 + 0.50g PAC	2.274	84.79%
120 (mg/L) ALCL3 + 1.0g PAC	1.76	88.23%
120 (mg/L) ALCL3 + 10.0g PAC	0	100.00%
0.25g/L PAC only		
0.5g/L PAC only		>80% (Filtered, did not settle)
1g/L PAC only		>90% (Filtered, did not settle)
10g/L PAC only	3.5008	76.58%

Hydrocarbon Chromatograms for Polyaluminum Chloride (AlCl₃) Coagulated with simultaneous addition of Powder Act. Carbon.

Solid-Phase Extraction

• Dried settled floc and performed a liquid-solid extraction

Treatment Studies

- LC Chromatograms:
- Coagulation and Powdered Activated Carbon treatments

Bacterial Toxicity Assays

- AMES II
 - Measures gene mutations (reversions)
 - Genotoxicity
 - Frameshift Mutation
 - Base-Pair Substitution
 - Color change from purple to yellow
 - Salmonella typhimurium
- Bioluminescence Based Toxicity Assay
 - Photobacterium "Vibrio fischeri"
 - Salt Water Bacteria
 - If metabolic processes are changed upon cell damage by a toxic substance, a reduction in "bioluminescence" can be detected

Bioluminescene Based Toxicity Assay

Produced Water

AMES II Assay Produced Water at 1%

Biological Results

Biological

- Moving Bed Biofilm Reactor (MBBR)
 - Sequencing Batch Reactors
 - 2 L liquid, 50% carrier fill (1L)
 - 3 Liters total
- Aerobic and Anaerobic MBBRs
 - Duplicate
- Variables of interest
 - MLSS/TS, TDS, and pH
 - Dissolved Organic Carbon
- Slowly acclimated with pretreated produced water
 - 120 mg/L AlCl₃ with 10 g/L PAC
 - 100, 200, 300, 400,.....1000ml
 - Feed two times at each volume

Organic Carbon Removal

Biological Treatment
Bio-Treat coupled with AOP
MBBR
Aerobic / Anaerobic

- Total Organic Carbon
- Biological Oxygen Demand

Aerobic and Anaerobic Degradation of Produced Water

Conclusion

- We can treat this water!!...more research needed
 - Economics
 - Mobility
 - Generation of concentrated wastes
- Key to understanding what level of treatment is required
- Utilizing advanced indicators to study unknown compounds and assess their presence following treatment
 - Toxicity
 - HPLC
 - GC

Future Research and Challenges

- Other variables to assess treatment
 - Naturally Occurring Radioactive Material (NORM)
- Advanced Oxidation Processes
 - Degrading contaminants
 - Parent vs. Daughter compounds
 - Biologically available recalcitrant OM
- Bringing these different pieces together to develop a treatment train

Questions

National Science Foundation

- AirWaterGas Sustainability Research Netword
- Grant No. CBET-1240584