Case study of a successful in-plant water reuse project that solved the water shortage problem while providing a good payback for a major petrochemical plant

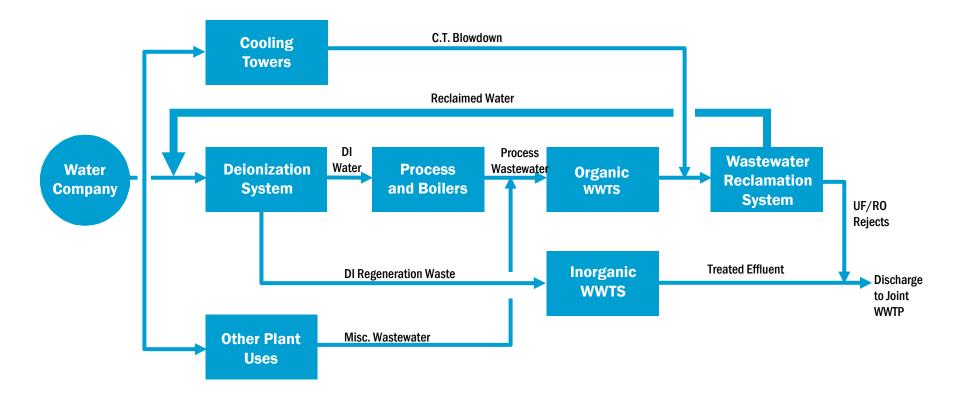
Joseph Wong, Brown and Caldwell WateReuse Association Northern California Chapter Meeting February 21, 2014

Presentation Outline

- Introduction of CAPCO Kaohsiung PTA Plant
- Plant Water Problems
- Water Resources Management Study
- Water Reclamation Project
- Pilot Testing Program
- Project Cost Analysis
- Full-Scale Implementation
- Summary of 14 Years of Operation
- Present Status and Conclusions

CAPCO PTA Plant – 1 Million Tons Per Year Production (1993)

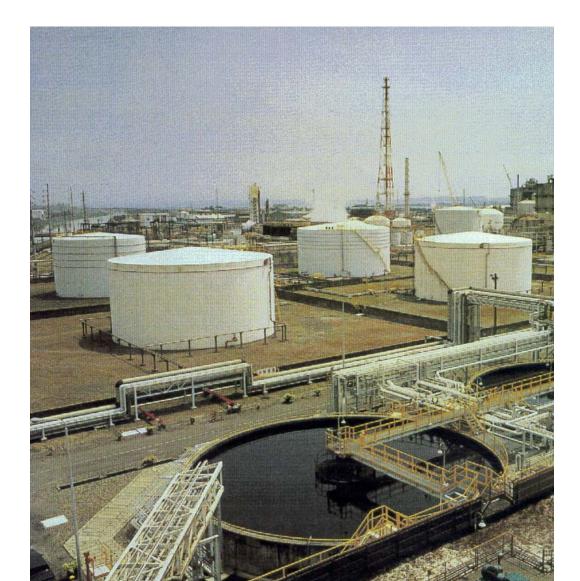
New PTA Production Units – 600,000 Tons Per Year (1995)

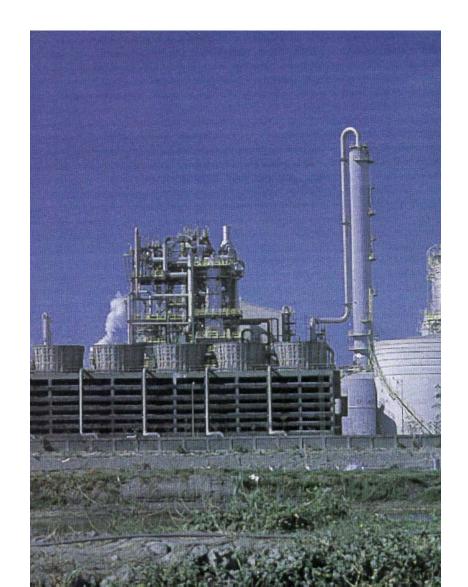

Petrochemical Plant Water Problems

- Large Water User
- Water Rationing Due to Drought
- Raw Water TDS Increase
- Deionization (DI) System Constraint
- Wastewater Discharge Sewer Overloading
- Future Plant Expansion Constraint

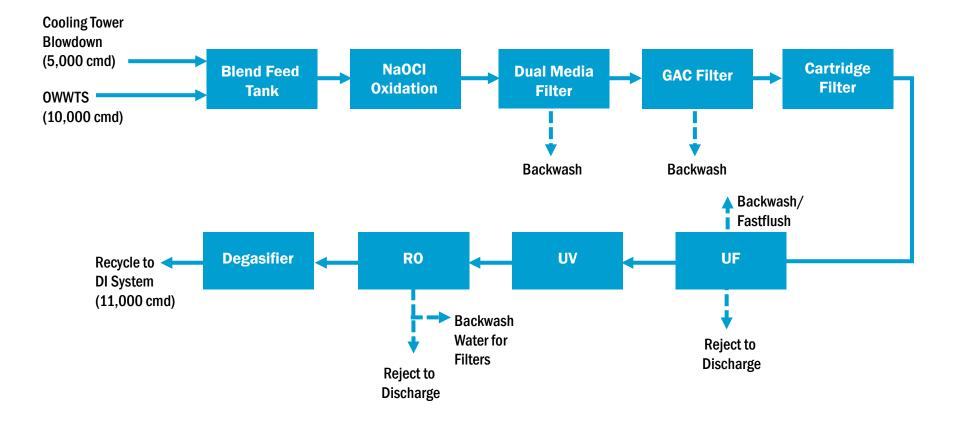
Water Resources Management Study

- More than 90 Percent Usage in Two Systems Cooling Towers & DI System Makeup (~3.2 mgd each)
- Cooling Tower Improvements
- DI Systems Improvements
- Major In-plant Water Reuse Project Identified


Relation of Wastewater Reclamation System with Plant Water Systems


Two Stage Anaerobic-Aerobic Organic Wastewater Treatment System

Organic Wastewater Treatment System Clarifiers


Cooling Towers

Wastewater Effluent Characteristics & Discharge Requirements

	Cooling Water B/D	OWWTS Effluent	Effluent Discharge Standards
рН	7.32	8.45	6 -9
TSS (mg/L)	10	24	30
T-H (mg/L) as Ca CO ₃	980	39	
TDS (mg/L)	3,000	3,544	
Cond (µS/cm)	3,690	4,260	
SiO ₂ (mg/L)	71.6	3.5	
COD (mg/L)	51	74	100
Co (mg/L)		2.2	
Mn (mg/L)		1.3	10

Wastewater Recovery Treatment System Block Flow Diagram

Wastewater Reclamation Project Benefits

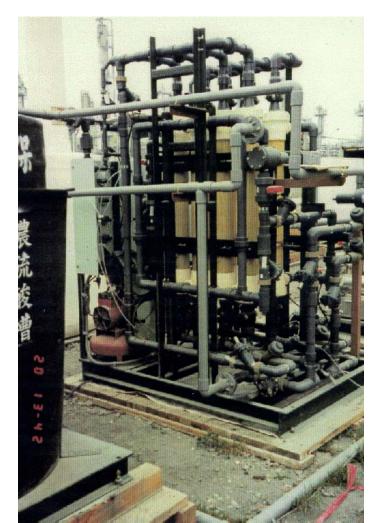
- Economically Advantageous
- Save Fresh Water for Community
- Improve and Expand DI System
- Minimize Drought Effects on Plant Production
- Minimize Discharge Sewer Overloading Situation
- Minimize Effects of W/WW Fee Increases
- Enhance Community Relations
- Future Plant Expansion Opportunity

Pilot Test Program

- Bench-Scale Testing
- Semi-Automatic 110 cmd (20 gpm) Pilot System
- Basic Performance Testing
- Optimization Testing
- Accelerated Biofouling Testing

Pilot Plant Pictures

Pilot Plant #1



Pilot Plant #2

Pilot Plant Pictures

Pilot Plant #4

Pilot Plant #3

Pilot Plant Pictures

Pilot Plant #5

Pilot Plant #6

Continuous Pilot Test Results

Average Product Water Quality				
Conductivity, μ S/cm (>94.8 percent removal)	<240			
Hardness, mg/L as CaCO ₃	<5			
SiO _{2,} mg/L	<2			
pH, su	6.9			
CO _{2,} mg/L	5			
Mn, mg/L	Trace			
Co, mg/l	Trace			
COD, mg/L	Trace			
Average Recovery Rates				
UF	92 percent			
RO	80 percent			
UF/RO	73.6 percent			

UF System Performance

- UF Flux: 38 to 55 gfd
- Chemical Cleaning Frequency: 3 to 4 Weeks
- Accelerated Biofouling Test
- No Permanent Fouling Found

RO System Performance

- More than 2000 Hours Without Cleaning
- No Significant Performance Deterioration
- No Signs of Physical, Chemical, or Biological Fouling

Conclusions of Pilot Testing

- Demonstrated Technical Feasibility
- Identified Potential Problems and Solutions
- Provided Operating Parameters
- Provided O&M Cost Estimation Data

Estimated Capital Cost of 15,000 CMD (4 mgd) WW Reclamation System

Water Reclamation System	Cost, dollars
Equipment	
Horizontal dual-media filters	400,000
GAC filters	500,000
Cartridge filters	100,000
Hollow-fiber UF system	2,500,000
UV system	150,000
RO system	2,000,000
Degasifier	100,000
Pumps	500,000
Tanks	500,000
Total major equipment cost	6,750,000
Equipment installation at 100 percent	6,750,000
Piping	1,000,000
Instrumentation and control	500,000
Building	1,000,000
Electrical	1,000,000
Total construction cost	17,000,000
Contingency at 10 percent	1,700,000
Legal, administrative, and engineering at 20	3,400,000
percent	3,400,000
Total capital cost	22,100,000
Tax credit at 10 percent	<2,210,000>
Net investment cost	20,000,000

Estimated Annual O&M Cost

Item	Cost, dollars
Electrical power	500,000
Chemicals	
H_2SO_4	480,000
NaOCI	100,000
Polymer	25,000
Antiscalant	60,000
UF/RO cleaning chemicals	40,000
RO membrane replacement at 4-year life	170,000
UF membrane replacement at 5-year life	270,000
UV lamp replacement at 1-year life	15,000
Cartridge filter replacement	60,000
GAC regeneration/makeup	600,000
Other maintenance and analytical materials	80,000
O&M labor	100,000
Total Annual O&M Cost	2,500,000

Project Cost Analysis

Net investment cost	\$20,000,000
Total annual savings at present water/wastewater costs	\$6,885,000
Annual O&M cost	<u>2,500,000</u>
Net annual savings (present cost)	\$4,385,000
Simple Payback (Present Cost)	4.56 years
Total annual savings at future water/wastewater cost	\$7,968,000
Annual O&M cost	<u>2,500,000</u>
Net annual savings (future cost)	\$5,468,000
Simple Payback (Future Cost)	3.66 years

Full Scale Implementation

- First Phase:
- Design/Build:
- Space Limitation:
- Capital Cost:
- Commissioned:

9,000/6,600 cmd 2 Years Four-Story Building US\$15 Million April 2000

Full Scale Plant

Four-Story Building

Vertical GAC Filters

Horizontal Dual Media Filters

UF Cartridges (Koch PM100)

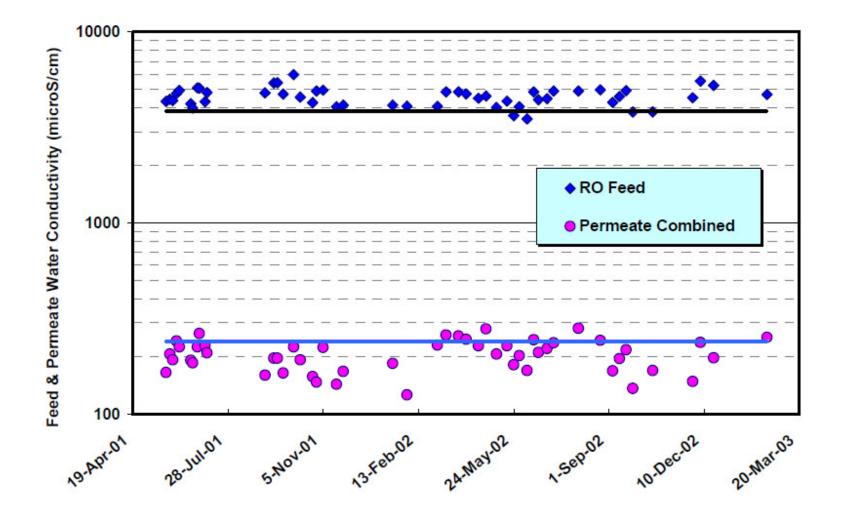
UF System (6-inch Cartridges)

RO Prefilters

RO Skids

RO Modules (FT BW30-400)

RO Tanks with Degasifier


UV Disinfection System

14 Years of Performance - R0

- 8 Trains of 2-Stage RO w/ 5:3 Array
- Membrane: Filmtech BW30-400
- Flux: 22 L/m2/h (13 gfd)
- Recovery: 80%
- Initial Chlorine Oxidation Caused Replacement of Membranes in 5 Trains
- Subsequent CIP Frequency: 1 years
- Average Membrane Life: >4 Years

Conductivity of RO Feed and Combined Permeate - Typical

14 Years of Performance - UF

- Flux: 85.9 L/m2/h (50.6 gfd)
- Recovery: 92%
- Effluent Turbidity: <0.1 NTU
- 5 Koch UF Skids Each w/ 109 6-inch PM100 Cartridges
- CIP Frequency: 4 Weeks
- Average Membrane Life: >6 Years
- Converted to 10-in Cartridge System (Still in Use after 6 years)

Converted 10-inch UF System (1)

Converted 10-inch UF System (2)

10-inch Koch UF Cartridge

14-year Operations Recap and Status

- Operated at 82% of capacity for first 3 years due to cooling tower blowdown-caused scaling of piping and UF
- Suspended UF/RO operation in 2008 for 6 months due to very high acid cost
- Resumed operation since January 2009
- Presently operating well at 5,000 CMD (economical capacity)
- No CT blowdown in UF/RO feedwater
- UF membranes installed in 2006 still working

Conclusions

- Project is successful despite some initial startup and operational problems
- Recovered several billion gallons of low TDS water for DI system makeup in 14 years
- Long-term pilot testing pays off
- Good investment and good public relations for CAPCO
- First major water reuse project in Taiwan
- First of its kind in the worldwide petro industries
- This project has solved the water shortage problem while providing a good investment payback for the PTA plant

An Environment-Friendly Petrochemical Plant -CAPCO

Q & A

Joe Wong, Brown and Caldwell jmwong@brwncald.com

