WateReuse Association Northern California Chapter Meeting Santa Rosa, CA

Technology & Innovation

Keel Robinson, North America Water Reuse Leader

May 13th, 2016

Agenda

Who is Xylem?

xylem

We Span the Entire Cycle of Water

Diverse Product Portfolio

xylem

5

Reuse Thought Leadership: Advancing The Cause

California Drought Summit (July 2015)

Presenting to Members of Congress on Water Reuse in D.C. (June 2015)

WateReuse Manufacturer of the Year (September 2014)

Xylem honored by WateReuse Research Foundation

From Singapore to Stockholm, and all over California, Xylem's water reuse technology is helping communities around the world build a secure water future. At the recent 19th Annual Water Reuse & Desalination Research Conference, the WateReuse Research Foundation honored Xylem for its commitment to water reuse research and developing innovative water reuse solutions.

xylem

Recent Survey – Californians Support Water Reuse

DROUGHT-WEARY CALIFORNIANS ARE READY FOR Californians believe that recycled water should be used as a RECYCLED WATER LONG-TERM SOLUTION for a water-secure future - regardless of potential rainfall from El Niño. Residents eager for long-term solutions to water scarcity NEARLY 90% **76**[%] 87% of Californians believe the 41° 12* Somewhat Willing state should continue to invest in recycled water for 42° drinking water even if VERY WILLING of respondents SUPPORT El Niño brings the believe recycled water using recycled water as an expected rainfall. should be used as a additional source of water. Only 12% will be less long-term solution, re willing to concerned about 83* conserving water if VERY SOMEWHAT SUPPORTIVE SUPPORTIVE El Niño brings the expected rainfall.

http://www.xylem.com/en-us/expertise/publications/Documents/drought_infographic_single_cropped_rev1.pdf

Silicon Valley Advanced Water Purification Center

UV Disinfection System (Title 22+)

- Silicon Valley Advanced Water Purification Center
- 8 MGD state-of-the-art water reuse facility
- MF-RO-UV treatment train
- High quality non-potable water for irrigation and industrial customers
- Tours available to public

State of Innovation for Water Reuse

Some Examples of Applied Research Successes

- ✓ Rediscovery of ozone-based solutions including O₃-BAC
- \checkmark Taking UV/Cl₂ AOP from academia to pilot-scale to full-scale
- ✓ "Tools in the toolbox" approach to cleverly configure treatment trains that are "fit for purpose"
- ✓ Focus on resilience/robustness/reliability/redundancy
- ✓ Use of indirect (surrogate) measurements for real time monitoring & control

08-08: Oxidative Technologies to Reduce Fouling of Membranes

- 11-02: Equivalency of Advanced Treatment Trains for Potable Reuse
- 14-12: Demonstrating Redundancy and Monitoring to Achieve Potable Reuse
- 11-08: Formation of Nitrosamines and PFOAs During Ozonation

Next 5 Years: Evolving To Implementation and Optimization

- **Continue to lead the regulators**
- **D** TOC of reuse water vs. TOC of drinking water
- □ Toxicological relevance of TOrCs
- On-line Sensors
- **Data management**
- **Optimize secondary biological wastewater treatment**
- **Resource recovery/energy efficiency/brine disposal**
- **Decentralized reuse**
- Industrial reuse
- **Operator training and experience**
- □ Balancing safety with sustainability
- □ What other technologies can emerge?

Technology & Innovation Challenges and Opportunities

Municipal sector acceptance of new technologies and solutions

Policies that fund and enable innovation (similar to energy sector)

Lack of regulations

Prescriptive and restrictive solutions

UV/Cl₂ AOP: The New Kid On The Block

UV/H₂O₂ AOP For Reuse Has Been The Status Quo

- Has historically been the standard AOP technology for groundwater recharge/indirect potable reuse in California with multiple successful installations in operation today (e.g. Orange County, West Basin, WRD)
- Also used in drinking water for taste & odor and in groundwater remediation applications
- Hydrogen peroxide is relatively expensive and not readily used at WWTPs
- The photolysis of hydrogen peroxide is inefficient as only about 10% of the chemical is consumed in the UV AOP reaction; thus, incurring significant residual quenching costs

Introducing UV/Cl₂ AOP

- Recent academic research shows that UV/Cl₂ AOP is effective at low pH
 Watts, M. & Linden, K., 2007. Chlorine Photolysis and Subsequent OH Radical Production During UV Treatment of Chlorinated Water. Water Res., 41:13:2871
 Watts, M., Rosenfeldt, E., & Linden, K., 2007. Comparative OH Radical Production Using UV-Cl2 and UV-H2O2 Processes. Jour Supply Water Res Technol AQUA., 56:8:469
 Watts et al. 2012. Low pressure UV/Cl2 for advanced oxidation of taste and odor. Journal-AWWA
- Reverse osmosis for FAT produces a low pH permeate (~5.5)
- Sodium hypochlorite (chlorine) is readily used at most WWTPs
- Residual chlorine after FAT may be desirable for additional pathogen credit and/or secondary disinfection

Pilot-Scale Testing at TIWRP

- Tested multiple AOPs including UV/H₂O₂ vs. UV/Cl₂
- Both AOPs achieved the treatment objective at similar UV doses
 - 0.5 log removal of 1,4-Dioxane
 - <10 ppt of NDMA
- UV/Cl₂ AOP did not produce any significant disinfection by-products

Technology Selection/Investment Decision at TIWRP

Terminal Island Water Reclamation Plant

UV/Chlorine Advanced Oxidation Process

- Terminal Island Water Reclamation Plant
- 12 MGD indirect potable reuse facility (FAT)
- Groundwater recharge
- First ever full-scale UV/chlorine AOP
- Installation in 2016

xylem

O₃-BAC: It's Like déjà vu All Over Again

What is O₃-BAC?

• Inactivation of Pathogens & Oxidation of Organics • Removal of TSS and Turbidity • Destruction/Removal of TOC, CECs, and DBPs

CECs

The Value Proposition of O₃-BAC for Reuse

- ~40% TOC removal across O3-BAC system
- Ozone excellent at removing a majority of CECs
- BAC (after ozone) provides additional barrier for most challenging CECs and oxidation byproducts
- O3-BAC significantly reduces organic fouling of UF membranes
- O3-BAC improves quality of RO concentrate
- O3-BAC satisfies California criteria for AOP

xylem

Can O₃-BAC Displace RO?

	MF-Ozone-BAF	MF-RO-AOP
Installed capital cost	~ 40% lower	High
Annual operation and maintenance cost	~ 50% lower	High
Energy	Low	High
Consumables	Low (GAC does not need to be replaced)	No (RO membranes must be replaced)
Residual Management	Minimal	Yes
TDS/Salinity Removal	No (use partial RO treatment if needed)	Yes
Destroys TOrCs and TOC	Yes	No (creates a residual waste stream)
NDMA	UV photolysis (use as needed)	Removed

Importance of Sensors and Process Control

Effluent TOC Control reduces effluent TOC fluctuation and achieves lower effluent TOC value

Pure Water San Diego

THE CITY OF SAN DIEGO

Ozone-Enhanced Biologically Active Filter

- North City Water Reclamation Plant
- 1.5 MGD Demonstration Plant
- O3 + BAC + MF + RO + AOP for Lake Miramar
- Surface water augmentation (drinking water)
- First full-scale demo of O3 + BAC for reuse in CA
- Evaluating design for 36 MGD reuse plant to address water needs

The End of Our Presentation

keel.robinson@xyleminc.com

Questions?

27

Thank You!