Drought Response and Recycled Water Outlook for 2016

Hossein Ashktorab, Ph.D. Recycled and Purified Water Unit Manager

Santa Clara Valley Water District

February 26th, 2016

Who we serve

2,000,000 people 15 cities

4,700 direct well

owners

13 local water

providers

Economic Impact of Water Shortage

GOOD YAHOO!

intel

Santa Clara

e

תה

Image © 2012 TerraMetrics © 2012 Google

130

diali

Adobe

San Jose

Risks to Water Supply Reliability

Lake Oroville 2011

- Ongoing/ severe droughts
- Climate change
- Reduced import of water
- Population growth

Lake Oroville 2014

February 2016 Drought Status Report

U.S. Drought Monitor California

February 2, 2016

(Released Thursday, Feb. 4, 2016)

Valid 7 a.m. EST

Drought Conditions (Percent Area)								
	None	D0-D4	D1-D4	D2-D4	D3-D4	D4		
Current	0.00	100.00	95.26	86.13	63.90	39.41		
Last Week 1/26/2016	0.00	100.00	95.35	86.13	63.96	40.21		
3 Months Ago 11/3/2015	0.14	99.86	97.33	92.27	70.55	44.84		
Start of Calendar Year 12/29/2015	0.00	100.00	97.33	87.55	69.07	44.84		
Start of Water Year 9/29/2015	0.14	99.86	97.33	92.36	71.08	46.00		
One Year Ago 2/3/2015	0.16	99.84	98.13	93.57	77.46	39.99		
ntonsity.								

D0 Abnormally Dry D1 Moderate Drought D2 Severe Drought D3 Extreme Drought D4 Exceptional Drought

The Drought Monitor focuses on broad-scale conditions. Local conditions may vary. See accompanying text summary for forecast statements.

Author: Anthony Artusa NOAA/NWS/NCEP/CPC

http://droughtmonitor.unl.edu/

Drought Response Strategies

Supply and Operations	Water Use Reduction	Drought Response Opportunities	Administrative and Financial Management	
1. Secure imported water supplies	4. Reduce 2015/16 water use by 30%	7. Advance long- term water conservation	12. Secure legislative support to offset drought impacts, accelerate programs	
2. Manage surface water and groundwater supplies	5. District facilities model water conservation	8. Accelerate recycled water program	13. Leverage EOC to assist drought efforts	
3. Optimize treated water quality and availability	6. Minimize drought impacts to stakeholders	9. Maintain uniquely accessible District assets	14. Adjust District resource allocations	
		10. Further develop the District's workforce	15. Support the Board	
		11. Advance knowledge of District services		

Precipitation as of Feb 16, 2016

Recycled Water Can Fill the Gap

- Reusable source
- Locally-controlled source
- Purified through treatment
- Drought-proof
- Replicates natural water cycle

District Recycled and Purified Water Goals

Current Recycled Water Use

Wastewater Treated vs. Recycled Water

Proposed Projects for Purified Water Expansion

RCW_IPR-DPR_NCounty_02-27-15_NoPA.mxd. 02/27/2015, MSilva

Proposed Projects for Purified Water Expansion

Description	Capacity (AFY)	Est. Capital Costs (\$M)	Est. Total O&M Costs (\$M/Year)
Ford Recharge Ponds IPR	4,200	\$ 70	\$ 4.0
Mid-Basin Injection Wells IPR	5,600	\$ 140	\$ 3.5
Los Gatos Recharge Ponds IPR	20,200	\$ 260	\$ 10.0
Westside Injection Wells IPR (or Central Pipeline DPR)	5,000 (5,000)	\$ 120 (\$ 65)	\$ 4.0 (\$ 4.5)
Sunnyvale IPR	10,000	\$ 210	\$ 2.0
Total	45,000	\$ 800	\$ 23.5

DPR Could Be Future Complement to IPR

How would DPR work? Purified water pumped into raw water line

 Treated at drinking water treatment plants Program Benefits

- Less infrastructure required:
 - Pipelines shorter
 - No injection wells or ponds
 - Capitalizes on drinking water treatment plant ozonation/BAF
- Simpler operations

RO Concentrate Management Options

- Discharge to existing shallow water Bay outfall with dilution water
- Treatment wetlands, then discharge to the Bay
- Pre-treatment to produce a brackish supply for wetlands restoration
- Discharge to a sewer line that goes to a regional wastewater treatment plant
- Discharge to deep Bay outfall

Silicon Valley Advanced Water Purification Center

Path to Potable Reuse

- Demonstrate technology at
 Silicon Valley Advanced Water
 Purification Center
- Conduct potable reuse studies
- Collaboration with recycled water producers
- Engage the public
- Select & build project

Silicon Valley Advanced Water Purification Center

