Terminal Island Water Reclamation Plant Advanced Water Purification Facility

Completing the First Design-Build Potable Reuse Facility

LASAN Owns and Operates Terminal Island Water Reclamation Plant (TIWRP) and its Advanced Water Purification Facility (AWPF)

Phase 2 Expanded MF and RO and Added UV AOP to Produce 12 MGD of Purified Water

TIWRP AWPF Exceeds CCR Title 22 IPR Pathogen Requirements for Groundwater Replenishment - Subsurface Application

Process	Virus Log Removal	<i>Giardia</i> Log Removal	<i>Crypto</i> Log Removal				
Primary and Secondary	1.9	0.8	1.2				
Tertiary (Sand Filtration)	0.0	0.0	0.0				
MF	0.0	4.0	4.0				
RO	1.0	1.0	1.0				
UV/NaOCI	6.0	6.0	6.0				
Ct & Distribution	4.0	3.0	0.0				
Subsurface Travel Time	6.0	0.0	0.0				
Total	18.9	14.8	12.2				
Required	12	10	10				

Dominguez Gap Barrier Will Inject TIWRP AWPF Product Water at 100% RWC for IPR

Process Changes

Equalization Tank to Dampen Diurnal Flow Variations in Tertiary TIWRP Effluent

New PVDF Membranes for Expanded Microfiltration

Expanded RO Capacity and Enhanced Monitoring

Benchtop and Pilot Studies to Determine AOP

Filename.ppt/10

Low Pressure UV Coupled with Sodium Hypochlorite for Cost Effective AOP

UV AOP Critical Control Point Online Monitoring

UV Dose Control (instead of EE/O)

a xylem brand

UV AOP System

Finished Water Stabilization with Calcium Chloride and Sodium Hydroxide

Parameter	Value	RO Feedwater	RO Product Water	Stabilized Finished Water
Calcium	mg/L	101.0	0.5	30.4
Bicarbonate	mg/L	115.5	4.4	92.5
Carbon Dioxide	mg/L	59.8	65.5	0.9
Total Dissolved Solids (TDS)	mg/L	3,316	85	160
рН		6.5	5.0	8.2
LSI		-1.1	-6.2	0.1

No Decarbonators

Construction Challenges

Cross-Connection Elimination during Construction

Air Gap

Filename.ppt/1

Congested Ductbank and Pipeline Routing on a Tight Site

Coordinating with DCS Integrator for Plantwide Control System Reboot

Engineering Report finalized after Project went out to Bid

A u g u s t 2 0 1 5

Amended Engineering Report for the Terminal Island Water Reclamation Plant Advanced Water Purification Facility Expansion: Dominguez Gap Barrier Project

For compliance with CCR Title 22, Section 60323

Prepared for CITY OF LOS ANGELES DEPARTMENT OF PUBLIC WORKS BUREAU OF SANITATION

Prepared by LARRY WALKER ASSOCIATES, INC. TODD GROUNDWATER NELLOR ENVIRONMENTAL ASSOCIATES, INC.

TRUSSEL TECHNOLOGIES, INC.

Adopted from Table 14.1 of the Engineering Report.

Log Removal Value (LRV); for MF, MEMCOR® MEMBRANE Integrity testing per Membrane Filtration Guidance Manual EPA 815-R-06

009 (2005) based on PDT.

Confirmed with weekly grab sample. UVT measurement upstream of NaOCI addition

UVT measurement upstream of NaOCI addition for monitoring. UVT measurement downstream of NaOCI addition for contro

Writing an Operator-Friendly Operation Optimization Plan

§60320.222. Operation Optimization and Plan.

(a) Prior to operation of a GRRP, a project sponsor shall submit an Operation Optimization Plan to the Department and Regional Board for review and approval. At a minimum, the Operation Optimization Plan shall identify and describe the operations, maintenance, analytical methods, monitoring necessary for the GRRP to meet the requirements of this Article, and the reporting of monitoring results to the Department and Regional Board. A project sponsor shall be responsible for ensuring that the

Treatment	Log R	eduction (LRVs)	Values	LRV requirements	Equation			Related			
Process	Viruses	Giardia	Crypto	met when:	Definitions	Train	DCS Tag	Instrumentation			
MF				$LRV_{DIT} = \frac{Q_P \bullet ALCR \bullet P_{atm}}{\Delta P_{test} \bullet V_{sys} \bullet VCF}$	Q _P = membrane unit design capacity filtrate flow (L/min) ALCR = air-liquid conversion ratio (dimensionless)	MF Train A	CMF 1: TMFAHI4075B CMF 2: TMFAHI4105B CMF 3: TMFAHI4135B CMF 4: TMFAHI4165B CMF 5: TMFAHI4195B CMF 6: TMFAHI4405B	Calculated by the MFPLC based on analog inputs from: PIT-4077 PIT-4107 PIT-4137 PIT-4167 PIT-4197 PIT-4407			
	0.0	4.0	.0 4.0		P _{atm} = atmospheric pressure (psia) P _{test} = smallest rate of pressure decay that can be reliably measured and associated with a known integrity breach during the	MF Train B	CMF 1: TMFBHI4225B CMF 2: TMFBHI4255B CMF 3: TMFBHI4285B CMF 4: TMFBHI4315B CMF 5: TMFBHI4345B CMF 6: TMFBHI4375B	PIT-4227 PIT-4257 PIT-4287 PIT-4317 PIT-4347 PIT-4347			
					integrity test (psi/min) V _{sys} = volume of pressurized air in the system during the test (L) VCF = volume concentration factor (dimensionless)	CMF 1: TMFCHI0011E MF Train CMF 2: TMFCHI0012E C CMF 3: TMFCPY0013C CMF 4: TMFCHI0014E CMF 5: TMFCHI0015E CMF 6: TMFCHI0016I		Calculated by the MFPLC2 based on analog inputs from: TBD			

Schedule: Start Up Testing Coming Soon!

AWPF - Comissioning and Turnover Schedule

ACTIVITY / DESCRIPTION	April		May			June			July			August						
Completion of Honeywell ORT / Honeywell Equipment Ready for Startup																		
Shutdown to Tie in Evoqua RWP CP / RIO 8.1 (Neal / Evoqua)																		
Upgrade Existing MCC's (Neal / GE)																		
Tie in EQ Tank to MF Wetwell (Walsh)																		
Wet Testing of MF Facility (Evoqua)																		
Modify New MF O-rings (Evoqua)																		
Delivery / Installation of Vertical Line Shaft Pumps																		
Delivery / Installation of Horizontal End Suction Pumps																		
Dry Testing of RO Facility RIO 7.2, 7.4 (Neal / Honeywell/Doosan)																		
Chemical Facilities Installation/Start-up																		
Startup Vertical Turbine Lineshaft Pumps EQ, PW, MF (Texas Turb)																		
Startup Horizontal End Suction Pumps (Cortech)																		
Wet Testing of RO Facility (Doosan)																		
Wet / Dry Testing of AOP (Wedeco / Honeywell)																		
Shutdown of AWPF for Integrating to New DCS 7.1, 7.3, 7.5 B's (Neal / Honeywell)																		
Integration of 2204 and 0001 to PCM 7 (Neal / Honeywell)																		
Exisitng MF Modifications (Evoqua)																		
30 Day Performance Test																		
30 Day Acceptance Test																		

Plant Shutdowns

Existing 6 MGD Plant Capacity

New 6 MGD Plant Capacity

AWPF 12 MGD Plant Capacity Øh Trakk

Questions?

Hannah Ford hford@carollo.com