EBMUD East Bayshore Recycled Water Project – Scalping/MBR/Water Quality

An Bartlett, P.E. EBMUD Joe Wong, P.E., BCEE, Brown and Caldwell Seppi Henneman, P.E., Brown and Caldwell

WateReuse Association Northern California Chapter Meeting February 23, 2018

Presentation Outline

- 1. Introduction and Study Objectives
- 2. Water Quality Analysis
- 3. Water Quality Objectives
- 4. Recycled Water Demands
- 5. Treatment Alternatives Screening
- 6. Alternatives Evaluation

EBRWF Treatment Schematic Flow Diagram

EBRWF – Pall MF System

Same slide s 6 just Easier to follow

East Bayshore Recycled Water Facilities

Recycled Water Demands

Phase 1A: Average – 0.8 mgd; Peak – 1.8 mgd

MF System (Pall):

(1+1) Strainers; (4+1) 0.5 mgd MF skids

Chlorination:

Average dose – 8 mg/L; Max. dose – 20 mg/L

Chlorine Contact:

Theoretical contact time – 120 min.

Storage Reservoir:

Active volume – 1.5 Mgal Mg(OH)₂ System: 2-6,000 gal tanks; Design feed rate - 6.1 gal/hr

Existing EBRWF Distribution System

East Bayshore Recycled Water Quality Improvement Study Objectives

- Maximize recycled water uses in the EBRWF service area by expanding to Berkeley, Albany and Alameda
- Expand recycled water customer base to include commercial cooling towers, dual plumbing and other industrial uses
- Improve water quality to meet requirement of recycled uses

Water Quality Analysis

Parameters of Concern for Different End Uses

Parameter	Irrigation	Cooling Tower/Industrial	Dual Plumbing
Chloride	✓	\checkmark	\checkmark
Total Dissolved Solids (TDS)	\checkmark	\checkmark	
Nitrogen (Ammonia, Total)	✓	\checkmark	
Phosphorus (Ortho-P, Total)	\checkmark	\checkmark	
Sodium Adsorption Ratio (SAR)	✓		
Iron (total and dissolved)	\checkmark	\checkmark	\checkmark
Sulfide			\checkmark
Sulfate			\checkmark
Boron	\checkmark		
рН		\checkmark	\checkmark
Total Hardness	\checkmark	\checkmark	

Summary of East Bayshore Effluent Quality

Parameter	Units	SE ⁽¹⁾	EBRWF Effluent ⁽¹⁾	Potable Wate	r ⁽²⁾
		Average	Average	System Avg.	MCL
Chloride	mg/L	-	322	10	250
Total Dissolved Solids (TDS)	mg/L	-	856	94	500
Sodium Adsorption Ratio (SAR)	-	-	8	0.7 to 1.3	-
Ammonia-N	mg/L	44	44	-	-
Total Kjeldahl Nitrogen (TKN)	mg/L	46	45 ⁽³⁾	-	-
Orthophosphate as P	mg-P/L	3.4	3.0	-	-
Total Phosphorus	mg-P/L	4.0	3.1 ⁽³⁾	-	-
Iron, Total	mg/L	0.30	0.16	-	-
Sulfide	mg/L	-	-	-	-
Sulfate	mg/L	-	57	15	250
Magnesium	mg/L	17.6	18.6	1 to 12	-
рН	s.u.	6.8	7.2	8.2 to 9.6	-
Total Hardness (as $CaCO_3$)	mg/L	-	144	10 to 120	-

Notes:

- (1) EBMUD data (Jan 2011 to Jun 2017)
- (2) 2016 Annual Water Quality Report
- (3) Plant effluent data

TDS Sources By Interceptor

Note: Potable water values from 2016 EBMUD Annual Water Quality Report (system average). Pixar measured conductivity at 90 μ S/cm (September 24, 2015) < 181 μ S/cm (system average). rown and Caldwell

Summary

- TDS and conductivity varies throughout the year (higher in summer)
- Adeline Interceptor has lowest TDS (average ~300 mg/L) best source for satellite treatment
- Ammonia, TDS, chloride in effluent are significantly higher than potable water
- Treatment process adds at least 30 mg/L of chloride and 12 mg/L sodium (10 and 6 percent of average effluent load, respectively).
- Trucked waste program contributes to significant TDS and ammonia in secondary effluent

Water Quality Objectives

End Uses within East Bayshore Area

- Irrigation
- Cooling water (commercial HVAC systems, Berkeley campus, pharmaceutical and light industrial)
- Dual plumbing
- Truck Fill Stations (Caltrans, etc.)
- Main WWTP or SD-1 uses

Landscape Irrigation – Constituents of Concern

Parameter	Irrigation	Cooling Tower/Industrial	Dual Plumbing
Chloride	\checkmark	\checkmark	\checkmark
Total Dissolved Solids (TDS)	\checkmark	✓	
Nitrogen (Ammonia, Total)	✓	✓	
Phosphorus (Ortho-P, Total)	✓	✓	
Sodium Adsorption Ratio (SAR)	✓		
Iron (total and dissolved)	✓	✓	\checkmark
Boron	✓		
Sulfide			\checkmark
Sulfate			\checkmark
Magnesium			
рН		\checkmark	\checkmark
Total Hardness	\checkmark	\checkmark	

Irrigation – Water Quality Objectives

- Grasses are more tolerant of salinity, chloride, sodium and boron
- Trees are more sensitive to salinity, chloride, sodium and boron

(1) Average EBRWTF effluent values from 2011-2016. Potable water values from 2016 EBMUD Potable Water Quality Report

Parameter	EBRWF ⁽¹⁾	Potable Water ⁽¹⁾	Grasses	Coastal Redwoods	Sensitive Ornamentals
Chloride (mg/)	322	10	<350	140 (drip/surface irrigation)	100 (with sprinklers)
Total Dissolved Solids (TDS) (mg/L)	856	94	<1,670	<640	1,000 to 2,000
Sodium (mg/L)	230	6 to 33	<250	70 (sensitive ornamentals w/sprinklers)	70 (with sprinklers)
Sodium Adsorption Ratio (SAR)	8	0.7 to 1.3	<9	<3 (drip/surface irrigation)	3
Boron (mg/L)	0.3	<0.1	2.0 - 4.0	1.0 to 2.0	0.5 - 1.0

Cooling Tower/Industrial Uses

Issues of Concern

- Scaling
- Fouling
- Corrosion

Source: SPX Cooling Technologies, Overland Park, KSstems

Cooling Tower – RW Quality Objectives

Parameter	Units	EBRWF Effluent	Target RW Qu Tower Ma	uality for Cooling ake-up Water
		Average	EBMUD (3.5 COC)	Industry Guidelines
Alkalinity as CaCO ₃	mg/L	334	<142	230
Ammonia-N	mg-N/L	44	0.6	1
Chloride	mg/L	322	<71	180
Chlorine Residual, total	mg/L	2.1	<1.4	<4.0 (Free, NRWRP)
Conductivity	µS∕cm	1,789	<685	-
Copper	mg/L	0.01	-	0.01
Calcium Hardness as CaCO ₃	mg/L	64	<170	-
Iron, Total	mg/L	0.16	-	0.05
рН	s.u.	7.2	6.5-9.0	7.5
Orthophosphate as P	mg-P/L	3.0	<4.2	3
Phosphorus, total	mg-P/L	3.1	-	4
Silica as SiO ₂	mg/L	22	<43	30 (GE Betz, NRWRP)
Sulfate	mg/L	56	<71	110
Total Dissolved Solids (TDS)	mg/L	856	<430	690
Total Suspended Solids (TSS)	mg/L	-	<7.1	<0.5/<10 (NRWRP)

Note: values in parenthesis were measured by Pixar (2015)

Summary of Water Quality Objectives

	Units	EBRWF Effluent ¹	Irri	gation	Cc	ooling
Parameter		Average	Grasses	Sensitive Species	HVAC	Industrial
Ammonia-N	mg-N/L	44	NA	NA	0.6	1.0
Chloride	mg/L	322	<350	100	<71	180
Total Dissolved Solids (TDS)	mg/L	856	<1,670	1,000 to 2,000	<430	690
SAR	Ratio	8	<9	3	NA	NA

(1) Average EBRWTF effluent values from 2011-2016.

(2) Red values show where EBRWTF is greater than specific WQ objective

Preliminary Conclusions

- EBRWF effluent is suitable for grasses now
- Advanced treatment or satellite treatment required for sensitive grasses
- Significant additional treatment for ammonia, metals, and salts would be required to target additional industrial/cooling customers
- For dual plumbing, the more stringent water quality objectives should be met unless water age can be reduced

Recycled Water Demands – Current and Projected

Existing Demands

EBMUD Potential New Purple Pipe to Service New Customers

Design Flow Demands

Alternative	Annual Average Flow, mgd	Max. Month Flow, mgd	Flow Segment
Irrigation (existing)	1	1.1	Existing pipeline
Irrigation (buildout)	2.9	4.8	Expand to Alameda, Frontage Road, Berkeley
Include Industrial (expand off existing)	1.3	1.6	Minor expansion off existing pipeline to reach industries in Emeryville
Include Industrial (buildout)	3.1	4.4	Expand to Alameda and Berkeley

Screening Treatment Options

Alternatives Selected for Screening

- 1. Expand pipeline to target lowest \$/AFY projects
- 2. Periodic flushing to reduce high water age when demands are low
- 3. Seasonal shutdown of the EBRWF
- 4. Satellite treatment from Adeline and treat with Nereda
- 5. Add reverse osmosis and ion exchange to the EBRWF treatment train
- 6. Satellite treatment from Adeline and treat with an MBR

Add RO/IX Treatment at East Bayshore

Add RO and Ion Exchange at East Bayshore

Pros	Cons
Suitable to meet both industrial and dual-plumb customer water quality needs	Added capital costs plus O&M and energy costs associated with operating an RO system
RO is part of the potable reuse flow train so it could be reused as part of a potable reuse train	Need to manage two new streams (the concentrate with consideration for nutrient regulations, ion exchange regenerate)
No stranded assets (i.e., MF)	Two new processes to operate
	Additional polishing step (ion exchange or 2 nd pass RO) required to meet ammonia water quality objective

Satellite Treatment of Adeline with MBR

Satellite Treatment of Adeline with MBR

Pros	Cons
Combined secondary and tertiary treatment in one step	Existing MF becomes a stranded asset
Provides acceptable water quality for industrial and dual-plumbed uses	High capital cost, high energy cost
Eliminates the need for a separate TDS removal step	New process to operate
Provides nutrient removal	

Satellite Treatment of Adeline with Nereda/SBR

Adeline Satellite Treatment with Nereda/SBR for Nutrient Removal

Pros	Cons
Eliminates the need for a separate TDS reduction step	High capital cost/new infrastructure needed
Provides nutrient removal	Emerging technology/pilot testing recommended
Compact/simple technology	New process to operate
Lower energy demand compared to other BNR processes (e.g., MBR)	Chemical addition may be required to achieve lower effluent nutrient levels
No clarifiers needed	
MF is not a stranded asset	
Provides acceptable water quality for irrigation and industrial uses (e.g., cooling tower make-up water, dual plumbing)	

Treatment Alternatives Evaluation

Treatment Alternatives Selected for Further Evaluation

- Add MBR to treat raw wastewater from Adeline Inceptor
 - 1.6 mgd Design Capacity; Annual average: 1.3 mgd
 - 4.4 mgd Design Capacity; Annual average: 3.1 mgd
- Add RO/IX to treat MF effluent from EBRWF
 - 1.6 mgd Design Capacity; Annual average: 1.3 mgd
 - 4.4 mgd Design Capacity; Annual average: 3.1 mgd

Influent Pump Station Location

MBR 4.4 MGD

RO/IX 4.4 MGD Layout

Questions?

