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Foreword

The WateReuse Research Foundation, a nonprofit corporation, sponsors research that
advances the science of water reclamation, recycling, reuse, and desalination. The Foundation
funds projects that meet the water reuse and desalination research needs of water and
wastewater agencies and the public. The goal of the Foundation’s research is to ensure that
water reuse and desalination projects provide high-quality water, protect public health, and
improve the environment.

An Operating Plan guides the Foundation’s research program. Under the plan, a research
agenda of high-priority topics is maintained. The agenda is developed in cooperation with the
water reuse and desalination communities including water professionals, academics, and
Foundation subscribers. The Foundation’s research focuses on a broad range of water reuse
research topics including:

Definition of and addressing emerging contaminants

Public perceptions of the benefits and risks of water reuse
Management practices related to indirect potable reuse
Groundwater recharge and aquifer storage and recovery
Evaluation and methods for managing salinity and desalination
Economics and marketing of water reuse

The Operating Plan outlines the role of the Foundation’s Research Advisory Committee
(RAC), Project Advisory Committees (PACs), and Foundation staff. The RAC sets priorities,
recommends projects for funding, and provides advice and recommendations on the
Foundation’s research agenda and other related efforts. PACs are convened for each project
and provide technical review and oversight. The Foundation’s RAC and PACs consist of
experts in their fields and provide the Foundation with an independent review, which ensures
the credibility of the Foundation’s research results. The Foundation’s Project Managers
facilitate the efforts of the RAC and PACs and provide overall management of projects.

High-pressure membrane processes, such as reverse osmosis (RO) and nanofiltration (NF),
are becoming increasingly widespread in water treatment, industrial processes and
wastewater reclamation/reuse applications where a high product water recovery is desired.
The overall goal of this project is to develop models that can be used, a priori, to predict the
rejection of a wide variety of organic compounds by NF and RO membranes. The objectives
of this research project were to (a) evaluate molecular modeling approaches and determine
method-independent and reliable molecular descriptors for the development of quantitative
structure activity relationship models, (b) identify, develop, and optimize membrane
modeling strategies and develop models that can be employed to predict the rejection of
organic solutes, and (c) evaluate the efficiency that membranes employed on full-scale
removal of trace organic chemicals and to successfully predict the removal rates with the
developed model(s).

Richard Nagel G. Wade Miller
Chair Executive Director
WateReuse Research Foundation WateReuse Research Foundation
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Executive Summary

Project Background

One possible solution for securing additional drinking water sources is the reclamation of
wastewater effluents using high-pressure membranes such as reverse osmosis (RO) and
nanofiltration (NF) membranes, which is being implemented in the United States and
explored in Australia. Past laboratory research projects have demonstrated that a limitation of
RO and NF is the incomplete removal of various organic solutes, such as certain disinfection
by-products, pharmaceutical residues, personal care products, household chemicals, and
emerging disinfection by-products (Nghiem et al., 2004; Drewes et al., 2005; Xu et al., 2006;
Snyder et al., 2006). Uncertainty regarding the rejection of certain solutes, coupled with the
increasing number of detections of trace organic chemicals at the parts-per-trillion level in
impaired water sources, justifies the development of modeling approaches that can
adequately predict—a priori—the removal of contaminants by RO and NF membranes. A
successful predictive model would eliminate the need to conduct pilot-scale evaluation of
trace organic contaminant removal, eliminate uncertainty regarding permeate water quality,
and promote the implementation of water reuse projects employing membrane treatment.

Project Objectives

The objectives of this project were (a) to evaluate molecular modeling approaches and
determine method-independent and reliable molecular descriptors for the development of
quantitative structure activity relationship (QSAR) models, (b) to identify, develop, and
optimize membrane modeling strategies and develop models that can be employed to predict
the rejection of organic solutes, and (c) to evaluate the efficiency that membranes employed
on full-scale removal of trace organic chemicals and to successfully predict the removal rates
with the developed model(s). The research study consisted of three major phases. The project
was initiated with the development of a roadmap for membrane rejection modeling, including
a comprehensive literature review and the determination and calculation of reliable, accurate,
and relevant molecular descriptors for a wide range of trace organic chemicals. The second
phase of the project addressed the construction and optimization of viable membrane
rejection models and their validation. Evaluation and validation of the membrane rejection
models were conducted by using pilot- and full-scale units or facilities.

This research was performed by a team of faculty, scientists, and graduate students from the
Colorado School of Mines and the University of Houston. The study was supported by
researchers at the Southern Nevada Water Authority and UNESCO-IHE. It was funded by the
WateReuse Research Foundation, Bureau of Reclamation, California State Water Resources
Control Board, the Orange County Water District, and the Southern Nevada Water Authority.

Study Findings

Numerous possible approaches for describing solute mass transfer through high-pressure
membranes have been proposed in the past. Therefore, there is a strong need to summarize
the current knowledge base regarding trace organic solute removal and the mathematical
description of their rejection. Current limitations in predicting the rejection of organic
chemicals during water reuse applications exist because an understanding of viable modeling
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approaches is lacking; many past modeling approaches utilized unrealistic experimental
setups and produced data that are inappropriate for predicting rejection on larger scales. In
addition, modeling membrane treatment is an inherently difficult problem because of system
complexities and numerous factors affecting rejection. Information gained through a
comprehensive literature review was used to develop a representative list of organic solutes
for experimentation, an experimental protocol for measuring rejection, and a list of pertinent
modeling strategies for NF and RO membranes.

For this study, 270 organic solutes were initially selected for model development and model
validation. The list of compounds was compiled from a variety of sources and yielded a
relatively diverse set of organic solutes based on properties (e.g., size, charge,
hydrophobicity/hydrophilicity, etc.), relevance to membrane treatment (e.g., functional
groups affecting rejection and likelihood of permeation), and environmental relevance (e.g.,
EPA Candidate Contaminant List and recent advancements in emerging contaminant
research, human health, and environmental relevance). After removal of compounds that
caused analytical and experimental issues (e.g., high volatilization, instability, and poor
solubility), a shorter list of 137 compounds was generated for model development and
validation. Compounds were categorized by expected rejection mechanism based on charge
and hydrophobicity. Six different categories were developed: hydrophilic neutral (HN; less
than 0.01% charged at pH 6.5; Log Kow < 2), hydrophilic/hydrophobic neutral (HHoN; less
than 0.01% charged at pH 6.5; Log Kow > 2 and Log Kow < 3), hydrophobic neutral (HoN;
less than 0.01% charged at pH 6.5; Log Kow > 3), hydrophilic negatively charged (HCN;
greater than 50% negatively charged at pH 6.5), hydrophilic positively charged (HCP; greater
than 50% positively charged at pH 6.5), and hydrophilic negatively and positively charged
(HCNP; having both positive and negative charge at pH 6.5).

For each rejection mechanism subgroup, principal component analysis and k-means
clustering/discriminate analysis were performed to further group similar compounds on the
basis of molecular properties calculated and compiled from various sources (e.g., Syracuse
Research Corporation, ACD Labs, Schrodinger, and Hyperchem). This selection process
yielded a group of 134 compounds for model development and validation. On the basis of
further analysis, this final list of compounds retained much of the diversity of the full list on
the basis of criteria outlined previously (e.g., properties, rejection mechanisms, classes of
compounds, environmental relevance, etc.). The list was then randomized with the 33 top
compounds selected for the validation set and the remaining 101 selected for the model
development set.

Several criteria were used to develop an experimental protocol to measure organic solute
rejection at bench scale under conditions that allowed the development of a rejection database
for the select solutes. This database provided the basis for subsequent rejection model
developments. For each compound, replicate experiments were conducted by using flat-sheet
membrane material cut from a spiral-wound element. During experimentation, concentration
polarization was minimized by maintaining recovery below 1.5%. Short-term rejection was
evaluated at five permeate flux set-points spanning a range from 3 to 60 gal per sq ft and day
(gfd). Longer-term rejection to study potential interactions between solutes and membranes
was evaluated by operating the SEPA system at flux of 12 gfd for approximately 24 h. Feed
and permeate samples were collected in replicate, and solute concentration was quantified by
a variety of analytical methods including total organic carbon analysis, refractive index
detection, liquid chromatography diode-array detection, gas chromatography electron capture
detection, and liquid chromatography with tandem mass spectroscopy detection. By
characterization of the hydrodynamic conditions of the testing system, intrinsic rejection (i.e.,
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rejection in the absence of concentration polarization) was calculated for each compound by
using feed and permeate concentrations. The rejection-versus-flux data were used to populate
a database consisting of rejection data and solute properties, which was subsequently used for
model development.

Because of the large number of experiments planned, two different membranes were
employed during the study. The NF-270 membrane from Dow/Filmtec was selected as the
representative NF membrane because this membrane had been applied in previous pilot-scale
studies using reclaimed water and exhibited excellent rejection performance for organic
solutes, low fouling propensities, and a significantly higher specific flux than conventional
RO membranes (Bellona and Drewes, 2007; Bellona et al., 2008). The ESPA2 membrane
from Hydranautics was selected as the representative low-pressure RO membrane because
this membrane is employed at several full-scale water reclamation facilities.

Numerous possible modeling approaches for describing solute mass transfer through high-
pressure membranes were identified. Several approaches were characterized as impractical
for describing rejection at larger-scale membrane applications, including the Donnan steric
pore and surface force pore models. Modeling approaches evaluated during this study
included quantitative structure property relationships (QSPRs), empirical models, the
hydrodynamic model, the phenomenological model, and the solution—diffusion model.

A significant portion of this study evaluated rejection at pilot scale under carefully controlled
laboratory experiments and in the field at a water reclamation facility. This approach
provided valuable information on comparing and upscaling bench-scale experimental
rejection results to larger membrane systems. Findings from these studies suggest that bench-
scale rejection results can be used to describe the rejection at a large scale; however, the
hydrodynamic conditions and flux and concentration gradients for a large-scale system need
to be characterized. The differential element approach combined with the phenomenological
model was an effective modeling approach to describe rejection at pilot scale. Bench-scale-
derived phenomenological model coefficients could be used to estimate pilot-scale permeate
concentrations and rejection. QSPRs and the rejection diagram approach developed with
bench-scale rejection data could estimate rejection at pilot scale.

Recommendations

Different modeling approaches were evaluated during the course of the study to develop a
broadly applicable model to predict the rejection of trace organic chemicals by NF and RO
membranes. Although modeling approaches were developed that can estimate rejection at
bench, pilot-, and full-scale installations, developing accurate models for the thousands of
potential organic contaminants is difficult for a number of previously discussed reasons. The
research team found that bench-scale results can be used to describe the rejection of organic
solutes at larger scales; however, changes in membrane performance over time from
compaction and fouling to aging are difficult to incorporate into modeling approaches. These
issues aside, there are different modeling approaches that can be adopted on the basis of the
level of effort required for development. They are listed in order of increasing complexity:

1. The rejection diagram is a simple and effective approach for describing the range of
rejection for a wide variety of organic solutes as it requires few, easily determined
solute descriptors. The rejection diagrams (Figure 5.4.1) were developed and tested
during the course of this study for one RO-type membrane and one NF-type
membrane.

WateReuse Research Foundation XXV



A utility looking to develop a transport model to describe the rejection of organic
solutes would be advised to sacrifice an (fouled) element from its system and to run
experiments (rejection as a function of permeate flux) with organic solutes spanning
a range of size, charge, and hydrophobicity. For nonionic solutes, simple correlations
can be developed between the reflection coefficient and permeability coefficient and
a solute size descriptor. For ionic compounds, the measured range of reflection and
permeability coefficients should be sufficient to estimate the range of rejection for
these compounds. A simple mass balance model can be developed for a full-scale
membrane system by using bench-scale-derived phenomenological coefficients.

The major issue with QSPR models is that they are dependent on the conditions used
to develop the rejection data and require a large number of rejection data to generate
statistically significant correlations. The solute selection method employed during

this study proved to be a good approach for selecting solutes for QSPR development.

Future Research Needs

A number of research questions were raised during the completion of this study that should
be studied further to understand the transport of organic compounds through NF and RO
membranes. These include

XXVi

Understanding the solute properties that result in adsorption and partitioning through
membrane materials and developing modeling approaches for these compounds

Quantifying the time it takes to reach rejection equilibrium conditions for a broad
range of solutes with strong membrane interactions

Quantifying the effect of membrane compaction and fouling on the rejection of
organic solutes

Identifying membrane-specific descriptors that affect solute mass transport

Integrating membrane-specific descriptors into rejection models
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Chapter 1

Introduction

1.1 Background

High-pressure membrane processes, such as reverse osmosis (RO) and nanofiltration (NF),
are becoming increasingly widespread in water treatment, industrial processes, and
wastewater reclamation/reuse applications where a high product water recovery is desired.
For example, Bartels et al. (2008) reported that the capacity of global high-pressure
membrane applications for water reclamation over the past 30 years increased from
approximately 150,000-m’/day in 1977 to approximately 900,000-m’/day in 2008.

For drinking water augmentation projects in the United States, Singapore, and Australia that
use reclaimed water, treatment using an integrated membrane system (IMS), such as
microfiltration (MF) pretreatment followed by RO, is the industry standard. Facilities
employing RO for water reclamation include the West Basin Water Recycling Facility (El
Segundo, CA), Scottsdale Water Campus (Scottsdale, AZ), Leo J. Vander Lans Plant (Orange
County, CA), Terminal Island Treatment Plant (Long Beach, CA), Groundwater
Replenishment System (Orange County, CA), and several installations in Singapore and
Australia. Past research projects have demonstrated that a limitation of RO and NF is the
incomplete removal of various organic solutes, such as certain disinfection by-products,
pharmaceutically active compounds, household chemicals, chlorinated flame retardants,
steroid hormones, and pesticides (Nghiem et al., 2004; Drewes et al., 2005; Xu et al., 2006;
Snyder et al., 2007. Uncertainty regarding the rejection of certain solutes, coupled with the
increasing number of detections of emerging trace organic chemicals at the part-per-trillion
level in impaired water sources, justifies the development of modeling approaches that can
adequately predict—a priori—the removal of contaminants by RO and NF membranes. A
successful predictive model would eliminate the need to conduct pilot-scale evaluations of
trace organic contaminant removal, eliminate uncertainty regarding permeate water quality,
and promote the implementation of water reuse projects employing membrane treatment.

1.2  Objectives

The overall goal of this project is to develop models that can be used, a priori, to predict the
rejection of a wide variety of organic compounds by NF and RO membranes. The objectives
of this research project were (a) to evaluate molecular modeling approaches and determine
method independent and reliable molecular descriptors for the development of quantitative
structure activity relationship (QSAR) models, (b) to identify, develop, and optimize
membrane modeling strategies and develop models that can be employed to predict the
rejection of organic solutes, and (¢) to evaluate the efficiency at which membranes employed
at full scale remove trace organic chemicals and to successfully predict the removal rates with
the developed model(s). The research study consisted of three major phases. The project was
initiated with the development of a roadmap for membrane rejection modeling, including a
comprehensive literature review and the determination and calculation of reliable, accurate,
and relevant molecular descriptors for a wide range of trace organic chemicals. The second
phase of the project addressed the development, optimization, and validation of viable
membrane rejection models. Evaluation and validation of the membrane rejection models
were conducted at pilot- and full-scale membrane installations.
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Chapter 2

Review of Modeling Solute Rejection in High-
Pressure Membranes

2.1 Introduction

The goal of this literature review is to identify the factors that affect rejection and identify the
most promising modeling approaches for the development of predictive models for organic
solutes. This topic is very broad and is complex and is constantly expanding. Therefore, any
review on this subject matter should be considered a work in progress, but the review
provided in this chapter represents the current state-of-the-art of solute rejection and
modeling approaches in high-pressure membranes.

2.1.1 Differences Among Membranes

Differences among thin-film composite RO membranes, low-pressure RO (LPRO)
membranes, and NF membranes are subtle and often debatable. The nomenclature used to
describe a particular membrane is often based upon the application for which the membrane
was designed. Membranes designed for applications in which monovalent salt-free permeate
is desired (i.e., seawater desalination and brackish water treatment) are most often termed
seawater RO elements, brackish water RO elements, and/or low-pressure brackish water
elements. These membranes hinder the diffusive transport of solutes through the membrane,
are capable of rejecting >99% of monovalent salts, and will be termed RO membranes for
this study (Zhao and Taylor, 2004; Zhao et al., 2005).

LPRO (<200 psi) membranes designed for high monovalent salt removal (>98%) and low-
molecular-weight organic removal (<100 Da) are loosely termed LPRO membranes.
Although it is debatable whether LPRO membranes have discrete pores or operate solely
through diffusive transport limitations, it has been shown that solute removal involves a
combination of steric and electric exclusion and is likely a combination of both diffusive and
convective limitations (Ozaki and Li, 2002; Kosuti¢ and Kunst, 2002; Tsuru et al., 1991a).

NF membranes span a wide range of properties and are indistinguishable from ultra-LPRO
(ULPRO) membranes if they reject monovalent salts well and are indistinguishable from
certain ultrafiltration (UF) membranes if they moderately reject low-molecular-weight
organics (<300 Da) and divalent cations. Generally, NF membranes are considered to operate
at lower pressures than ULPRO membranes (~100 psi), are considered to have pores in the 1-
nm range (although this is debatable), efficiently remove divalent cations and most organic
solutes, and pass monovalent salts and organics smaller than the membrane pore size (Bowen
and Mukhtar, 1996; Nghiem et al., 2005). It has been shown that NF membranes remove
solutes through steric and electrostatic exclusion from pores (Bowen and Mukhtar, 1996;
Hagmeyer and Gimbel, 1998; Bandini and Vezzani, 2003; Bellona and Drewes, 2005).

2.1.2 Solute Transport through RO and NF
There is still controversy regarding pore structures in NF and RO membranes. Wijmans and
Baker (1995) published a review on the solution—diffusion model in which they discuss the

controversy surrounding whether transport through RO membranes should be described by
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pore-flow or solution—diffusion models. According to the researchers, “Both models were
proposed in the 19th century, but the pore-flow model, because it was closer to normal
physical experience, was more popular until the mid-1940s...the transport mechanism in
reverse osmosis membranes was a hotly debated issue in the 1960s and early 1970s. By 1980,
however, the proponents of solution—diffusion had carried the day; currently only a few die-
hard pore-flow modelers use this approach to rationalize reverse osmosis.” Wijmans and
Baker (1995) attempted to clarify the difference between solute diffusion limiting membranes
and membranes where solute transport is partially due to pore-flow phenomena: “The
transition between a pore-flow and a solution—diffusion mechanism seems to occur with
membranes having very small pores. Membranes that reject sucrose and raffinose but pass all
micro-ions are clearly pore-flow membranes...Presumably, the transition is in the
nanofiltration range, with membranes having good rejection of monovalent ions in the 20—
50% range.”

How important are pore structure and solute transport when selecting models to describe
solute rejection for a particular membrane? Solution—diffusion models are applicable to dense
membranes where permeating solutes first dissolve into the membrane and diffuse though the
membrane material following a concentration gradient (Wijmans and Baker, 1995; AWWA,
2007). For these membranes, dissolved solutes have very low permeability as compared to
water. For membranes with high water flux at low pressure that allow some solutes to a
degree similar to that of water, pore-flow models may be more applicable. However, whether
pore-flow models apply to low-pressure RO membranes is unclear. Early RO models
included terms for convection, which led to much of the mass transport controversy reported
by Wijmans and Baker (see Dresner, 1971; Spiegler and Kedem, 1966). Does the ability of
small polar molecules, such as N-nitrosodimethylamine (NDMA) and boron, to freely
permeate commercially available LPRO membranes (examples are ESPA2 from
Hydranautics and the TFC-HR from Koch Industries) and to a somewhat lesser extent
desalination RO membranes, mean that RO membranes have pores? It is quite easy to find
literature supporting both pore flow and diffusion as transport mechanisms for RO
membranes (Dresner, 1971; Spiegler and Kedem, 1966; Kargol, 2001; Kim et al., 2007).
However, it appears that most researchers agree that solute transport through RO membranes
occurs by diffusion through the membrane polymer.

For NF membranes, it appears that most researchers acknowledge that solute transport
through NF membranes occurs by convection and diffusion. NF modeling approaches
developed in the 1990s used a ratio of solute size to effective pore size to develop convective
hindrance factors based on the work reported by Deen (1987). Using atomic force
microscopy, researchers have worked to defend the idea that NF and to a lesser extent RO
had discernible pores in the 1-nm range (Bowen et al., 1997).

2.2 Observations of Rejection at Pilot- and Full-Scale Membrane
Installations

Past laboratory research projects have demonstrated that a limitation of RO and NF is the
incomplete removal of various organic solutes, such as certain disinfection by-products,
pharmaceutically active compounds, chlorinated flame retardants, steroid hormones, and
pesticides (Nghiem et al., 2004; Drewes et al., 2005; Xu et al., 2006, Snyder et al., 2007).
However, there is some question whether these laboratory-scale studies indicate that RO
membranes operating at full scale have incomplete rejection of organic compounds of
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concern. Recently, studies have been conducted investigating the rejection of a variety of
organic contaminants by RO and NF membranes at full-scale membrane installations
(Drewes et al., 2007; Snyder et al., 2007). A summary of the organic compounds that have
been found to permeate RO membranes operating at water reuse facilities (full-scale and
pilot-scale data) is presented in Table 2.1. Most of the compounds that are quantified in feed
water are not detected in membrane permeates or, when they are, are at low concentrations.
However, it was discovered at a full-scale reclamation plant employing RO treatment that
trace organics such as 1,4-dioxane and NDMA were present in product water at
concentrations greater than the California Department of Public Health (CDPH) action limit.

Drewes et al. (2008) investigated 12 commercially available RO and NF membranes in
rejecting a wide variety of organic contaminants on a laboratory-scale testing unit employing
two spiral-wound 4040 membrane elements. One of the major findings was that nonionic
organic contaminants are often incompletely removed, even by RO membranes with greater
than 99% monovalent salt rejection. In addition, although RO and NF membranes operating
at full scale at the West Basin Water Recycling Plant (WBWRP, El Segundo, CA) were
observed to adequately reject negatively charged organic solutes such as trichloroacetic acid
(TCAA), the removal of low-nonionic-molecular-weight organic chemicals, such as NDMA,
and of solutes with strong membrane affinity, such as chloroform, was marginal during pilot-
and full-scale investigations (Figure 2.1). These results highlight that the properties of an
organic solute often determine rejection and that there may not be one membrane modeling
approach that can incorporate all of the factors driving rejection, including solute and
membrane properties and operational conditions.
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Table 2.1. Compounds Detected in Full- and Pilot-Scale RO Permeate Samples

Compound Concn (ng/L) Citation Scale Membrane Membrane Type
1,4-Dioxane NA Drewes et al., 2008 Full TFC-HR, ESPA2 RO
Bisphenol A 25 Drewes et al., 2008 Pilot TMG10, NF-90 RO and NF
Caffeine 1.2-52 Snyder et al., 2007 Pilot and full TFC-HR, ESPA2 RO
Chloroform 2-5 (*103) Drewes et al., 2008 Pilot and full TFC-HR, ESPA2, TMG10 RO
Diethyl-m-toulamideDEET 2 Snyder et al., 2007 Full Saehan FL RO
Galaxolide 11 Snyder et al., 2007 Full ESPA2 RO
Gemfibrozil 2 Snyder et al., 2007 Full ESPA2 RO
Ibuprofen 4-27 Drewes et al., 2008 Pilot TMG10 RO
Iopromide 1.1-72 Snyder et al., 2007 Pilot TFC-HR RO
Meprobamate 1 Snyder et al., 2007 Pilot Sachan RE-FRM RO
Naproxen 1 Drewes et al., 2008 Pilot T™MGI10 RO
NDMA 2040 Drewes et al., 2008 Full ESPA2 RO
Oxybenzone 6 Snyder et al., 2007 Full ESPA2 RO
Pentoxifylline 45 Snyder et al., 2007 Pilot TFC-HR RO
Sulfamethoxazole 1-2 Snyder et al., 2007 Pilot Saehan FL RO
Tris(2- ESPA2, Sachan RE-FRM,
chloroethyl)phosphate 2-30 Snyder et al., 2007 Pilot and full Osmonics AK RO
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Figure 2.1. Feed, permeate and rejection concentrations for NDMA (left), chloroform (middle), and TCAA (right) by the TFC-HR and ESPA2

membranes at full scale and the TMG10 and NF-90 membranes at pilot scale.
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2.3 Calculating Rejection

2.3.1 Concentration Polarization

The accumulation of retained solutes at the membrane surface as water crosses the membrane
is termed concentration polarization. The film model has been used to describe concentration
polarization and describes the film caused by concentration polarization as a one-dimensional
film in which longitudinal transport is negligible (Hofman et al., 2007). During membrane
operation, it is assumed that equilibrium is reached where convective transport of solutes
towards the membrane is balanced by back diffusion into the bulk solution (Hofman et al.,
2007). The degree of concentration polarization (often expressed as ) is based on the film
model and can be calculated by:

el
Cr m (2.1

where c,, and c,are the concentration of the solute at the membrane and in the bulk solution,
respectively, J,, is the convective flux, and %, is the local mass transfer coefficient (MTC) on
the brine or feed side. The local MTC can be calculated by a Sherwood equation developed
by Schock and Miquel (1987) for spacer-filled channels (Hofman et al., 2007):

Sh=0.065-Re**. Sc** (2.2)

where Re is the Reynolds number, Sc is the Schmidt number, and S# is the Sherwood number,
which is given by the following equation:

(2.3)

where d, is the hydraulic diameter and D, is the bulk diffusivity (meters®/seconds™).
Sutzkover et al. (2000) later redefined the constants in Equation 2.2 for their specific
membrane system, and the constants should be determined for each membrane system being
investigated. The Schmidt number is defined as

Se = 1
pD, ., 24)

with 1 the viscosity of the bulk solution and D, . the diffusion coefficient at infinite dilution.
The Reynolds number is defined as

Re = pvd,
n (2.5)
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For a cross-flow spiral-wound membrane module, the cross-flow velocity v can be calculated
by

V= o
nLh &

(2.6)

where Qyis the feed flow rate, n is the number of membrane leaves, L is the length of the
element, &, is the thickness of the spacer, and ¢ is the feed spacer porosity. The hydraulic
diameter for a spiral-wound element is determined by

4e
i+(1—g)-Sv

sp

h, (2.7)

d, =

where S,, 1s the specific surface of the spacer. Schock and Miquel (1987) found that S,
could be calculated as 4/dj, where d,is the thickness of the filaments in the spacer. The
porosity can be calculated by using the average filament thickness and mesh size of the
spacer:

E= . 2.8
VTot ( )

where V), is the total volume of the spacer and V,,, is the total channel volume.
2.3.2 Rejection

For membrane applications where the percent removal of a solute in the feed water is desired,
removal is commonly expressed as rejection, which is calculated by the following equation:

REO%) = (1— <2100
¢ (2.9)

where R is rejection expressed as a percentage, C, is the permeate concentration, and Cyis the
feed concentration. The experimental determination of rejection can be complicated by a
number of factors, including concentration polarization, changes in concentration along full-
scale membrane elements employed in a multiple-element pressure vessel, and adsorption of
a solute to a membrane. Therefore, more information about solute removal is often desired,
especially for modeling exercises where concentration gradients and solute flux across a
membrane are needed.

There are different methods by which to calculate rejection, including the general equation
given earlier. The feed water concentration, however, differs from the actual concentration at
the membrane surface, especially when concentration polarization effects are noticeable;
therefore, rejection should be calculated accordingly (Bouranene et al., 2007; Bowen et al.,
1998). The intrinsic or real rejection, Ry, is rejection when taking into account the
concentration at the membrane surface. Observed rejection (R,s) can be related to intrinsic
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rejection (R,) by the following equations (Bouranene et al., 2007; Sutzkover et al., 2000;,
Nghiem et al., 2004):

Ry, exp(=(J, / K))

= (2.10)
1+ R_(exp(-J /K) -1
or
Robs eXp(Jv /K)
" 1-R,, (1-exp(J,/K)) (2.11)
and

l{l—Rimj:lﬂ[l—Rgbsj_(ij (2.12)
Rint Robs K

where J, is the permeate flux rate and K is the MTC for back diffusion (previously expressed
as k,). K can be calculated by using either of the two following equations:

()
K= sal (2.13)
J,
In AP (1= ( V)salt
ﬂ:b - n/’ JV)water
or
Sh = KD' d, _ 0.20 - Re*?!. S¢*» (2.14)

1,00

where m, and m, are the osmotic pressures of the bulk and permeate solutions, respectively, AP
is the applied pressure, S4 is the Sherwood number, Re is the Reynolds number, Sc is the
Schmidt number, d, is the hydraulic diameter, and D;, is the diffusion coefficient of a solute
at infinite dilution. Sutzkover et al. (2000) developed Equation 2.13 as a simple technique for
determining the MTC and the concentration polarization of an RO membrane system.
Through experimentation with a spiral-wound RO module, the researchers were able to
develop Equation 2.14, which was found to be similar to the Deissler correlation (i.e., Sh =
0.023Re"*" Sc"%). However, because this correlation was developed for a specific spiral-
wound module, for different membrane configurations, it may be necessary to calculate K
from experiments and Equation 2.13.

When one is evaluating larger membrane systems such as full-scale treatment trains, the feed
water concentration can change considerably (six times the initial feed concentration,
depending on the recovery of the system) along a pressure vessel, making it difficult to
calculate rejection. In this case, the rejection of a feed water component is the feed/brine
average rejection value, which is used to compare systems that are operated under different
conditions and is given by Equation 2.15.
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- Recovery
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This value takes into account the increased concentrations of a component at the surface of a
downstream membrane in a system of a certain recovery and offers a more useful comparison
for two systems operated at different recoveries. Solution—diffusion models, where the
permeate concentration model output is dependent upon the feed water concentration, have
been modified to account for the effect of hydrodynamic conditions, such as concentration
polarization on rejection (Zhao et al., 2005).

2.4 Mechanisms and Understanding Rejection (Size Exclusion)

There have been numerous studies of the effect of size on the rejection of solutes by RO and
NF membranes. The underlying principle is that membranes exclude large solutes from the
permeate side (size exclusion) but that, depending on the membrane, small molecules are
incompletely removed. Size exclusion is generally referred to as a convective flux
phenomenon where small solutes could permeate through a membrane pore or void space
(see Kiso et al., 2001a); however, because small molecules are expected to diffuse at higher
rates, size exclusion is also a diffusion phenomenon. As a general summary, molecular size
does not always correlate with rejection and finding a good-sized parameter is not always
easy. The following sections discuss molecular size parameters, the effect of size on
rejection, and size exclusion modeling approaches.

In the past decade, numerous papers have reported (in one way or another) on the correlation
between the size of an organic solute and rejection. Describing the size of a solute is
nontrivial as illustrated by the number of attempts to correlate rejection of nonionic solutes to
their size (Braeken et al., 2005; Kiso et al., 1992; Van der Bruggen et al., 1999). There have
been a number of studies that have attempted this correlation and therefore a number of
different means of describing the size of a molecule. In many cases, however, the rejection of
organic solutes is somewhat independent of molecular size and depends on other factors.
These factors will be discussed in the next section.

The rejection of uncharged organic compounds is largely dependent on the size of a solute
and the molecular weight cutoff (MWCO) or effective pore size of a membrane (Bellona et
al., 2004). To illustrate, Figure 2.2 presents the rejection of four organic solutes (phenacetine,
TCEP [Tris(2-chloroethyl)phosphate], TCPP [Tris(1,3-dichloroisopropyl)phosphate], and
TDCPP [Tris(1,3-dichloro-2-propyl)phosphate]) by 11 commercially available NF, LPRO,
and RO membranes. For the low-molecular-weight compound phenacetine, rejection was
highly variable among the membranes tested, with the NF membranes exhibiting between 40
and 70% rejection and the RO membranes exhibiting between 70 and 95% rejection. There
have been many attempts to correlate rejection with different solute size descriptors, which
are discussed in the following sections.
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Figure 2.2. Rejection of phenacetine, TCEP, TCPP, and TDCPP by 11 commercially available
RO, LPRO, and NF membranes.

Notes: Laboratory experiments performed with 4040 spiral-wound element testing unit, 16-gfd flux,
20% recovery, and ~500-ng/L feed concentration (Bellona et al., 2008).
gfd = gallons per square foot and day.

Molecular Weight. The simplest, yet one of the most insufficient, measures of a solute’s
size, is the molecular weight or molar mass of a solute of interest. Ozaki and Li (2002)
reported that, for ULPRO membranes, the rejection of noncharged and nonpolar compounds
could be predicted by using the molecular weight of the compound. Researchers (Van der
Bruggen and Vandecasteele, 2002; Van der Bruggen et al., 1999; Schutte, 2003) have also
proposed that the molecular weight of a noncharged compound can be a useful predictor of
rejection and for calculation of reflection coefficients (rejection at infinite pressure). Other
studies confirmed that the molecular weight of a solute with characteristics other than
noncharged and hydrophilic is a rather poor predictor of rejection (Kiso et al., 1992; Kiso et
al., 1996). Because steric hindrance may be an important driving factor in the rejection of
molecules by NF membranes, a quantification of the molecular size (and geometry) of a
solute, coupled with the pore size of a membrane, might be a better descriptor of the rejection
than is MWCO, molecular weight, or desalting degree.

Kiso et al. (2001a) reported that, for two NF membranes (MWCO > 500 Da), rejection of
sugar and alcohols increased as molecular weight increased. In addition, the researchers
found that, for these NF membranes, molecular size parameters (e.g., radius, length, and
diameter) were only slightly better than molecular weight in predicting the rejection of
compounds for which steric hindrance is the main driving factor in rejection. However, when
examining NF membranes with MWCOs of <250 Da, Kiso et al. (2001b) reported that
molecular size parameters were significantly better descriptors for rejection when size
exclusion was the dominant mechanism (Figure 2.3).

12 WateReuse Research Foundation
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Figure 2.3. Rejection of sugars and alcohols as a function of molecular weight and molecular
width.
Source: Kiso et al., 2001b

Past research has illustrated that the rejection of a limited class of compounds, mainly
aliphatic alcohols and sugars, can be described well by molecular weight (Kiso et al., 2001b;
Bellona, 2007). Figures 2.4 and 2.5 summarize the reflection coefficient for nine aliphatic
compounds determined for the NF-4040 and NF-90 membranes and the model fit utilizing the
cumulative density function. The reflection coefficient (o) is defined as rejection at infinite
pressure where convective transport dominates (Van der Bruggen and Vandecasteele, 2002).
In general, the cumulative density function developed by using the molecular weight of a
solute and MWCO of a membrane was found to adequately describe the reflection coefficient
for these compounds.

*
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Methyl-tert-butyl ether Glucose 4
-

.
Tetraethylene glycol

e 1,3-butanediol

+ Glycerine

Reflection Coefficient (-)
o
)

Ethanol «

* Urea
Methanol
*
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MW (g/mol)
Figure 2.4. Reflection coefficient (real or observed rejection at infinite pressure, ~17-bar driving

pressure during this study) of aliphatic sugars and alcohols for the NF-4040
membrane on bench scale (SEPA cell) at 19 °C and pH 6.3.

Note: The model line fit was developed by using the cumulative density function as proposed by Van
der Bruggen and Vandecasteele (2002). The MWCO was found to be 190 Da.
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Figure 2.5. Reflection coefficient (real or observed rejection at infinite pressure, ~17-bar driving
pressure during this study) of aliphatic sugars and alcohols for the NF-90 membrane
on bench scale (SEPA cell) at 19 °C and pH 6.3.

Note: The model line fit was developed by using the cumulative density function as proposed by Van
der Bruggen and Vandecasteele (2002). The MWCO was found to be 90 g/mol.

However, as pointed out by numerous researchers, molecular weight often fails to be an
accurate descriptor for the rejection for a large number of compounds (Bellona, 2007;

Kiso et al., 2001b; Nghiem et al., 2004). Nghiem et al. (2004) found that steroid hormones
are rejected less often than would be expected on the basis of their molecular weights (Figure
2.6). Kiso et al. (2001b) found that molecular weight poorly describes the level of rejection
for pesticides (Figure 2.7). A study funded by the Water Research Foundation determined
that molecular weight was a poor descriptor for the rejection of phenyl urea pesticides
(Hofman et al., 2007). Other size parameters have therefore been examined.
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Figure 2.6. Experimental data for estradiol, estrone, testosterone, and progesterone for 2 NF
membranes as compared to predicted retention as calculated by the hydrodynamic

model.

Source: Nghiem et al., 2004.
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Molecular Size. The molecular weight of a compound is easy to determine but does not
provide any information on the geometry of a molecule. To evaluate the effect of size on the
rejection of certain solutes by NF, researchers have attempted to develop an easy yet effective
way to describe the molecular characteristics of a molecule. Berg et al. (1997) determined
that molecular structure, such as the number of methyl groups, may be an important
parameter for predicting the rejection of noncharged molecules. Noncharged compounds with
a higher number of methyl groups were reportedly rejected at higher levels than ones with
lower numbers of methyl groups. Several studies confirmed that molecular size parameters,
such as molecular width, Stokes radii, and molecular mean size (MMS), have been shown to
be better predictors of steric hindrance effects upon the rejection of solutes by NF membranes
than MW (Ozaki and Li, 2002; Berg et al., 1997; Kiso et al., 1992 and 2002; Bowen and
Welfoot, 2002; Van der Bruggen et al., 1998; Kiso et al., 2001b). The Stokes radius has been
used in molecular biology to characterize the size of proteins based on elution times through a
chromatographic column. The Stokes radius according to Kiso et al. (1992) is determined by
using the Stokes—Einstein equation:

T
6D, (2.16)

where r, is the molecular radius or Stokes radii (meters), Dy is the diffusion coefficient of the
organic compound in water (meters>-seconds™), k is the Boltzmann constant (Joule-Kelvin™),
T is the absolute temperature (Kelvin) and p is viscosity of water (N-seconds-meters™?).
Calculating Diffusion Coefficients for Stokes Radius Calculation

Cussler (1997) reported that the most common basis for calculation of diffusion coefficients
of solutes in liquids is given by the Stokes—Einstein equation (Equation 2.16) but that it is
only accurate to 20%. The main limitation to the Stokes—Einstein equation is that it was
developed for a system given by a rigid sphere in a solvent and that, when solutes become
small or on the order of the size of water, the equation becomes increasingly less accurate
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(Cussler, 1997). Because of this limitation, investigators have developed empirical
correlations to obtain diffusion coefficients for small solutes. These include the Wilke—Chang
correlation and Hayduk—Laudie correlation among the number of developed correlations. The
diffusion coefficient can be calculated by the Wilke—Chang correlation given by

B 7.4x10’8(¢M)°‘5TD _ 74x107 (M) T

D ,
' V. 3 uve 2.17)
where D; is the diffusion coefficient, ¢ is an association factor for hydrogen bonding (set at
2.26 for water as the solvent), and M is the molecular weight of the solvent (grams/mole), T is
the temperature, 1 is viscosity of water (Newton-seconds-meters ™), and ¥ is the molar
volume of the solute. Delgado (2007) experimentally determined the diffusion coefficients of
2-naphthol, benzoic acid, salicylic acid, camphor, and cinnamic acid in water as a function of
temperature and found that the Wilke—Chang correlation was an accurate means to predict
diffusion coefficients.

Another method that has been favored for membrane applications is the Hayduk—Laudie
correlation, which is given by

D, =1326%107 . 7.y % (2.18)

S

Although these empirical correlations may lead to more-accurate diffusion coefficients, the
molar volume of a solute must be determined, which can lead to another source of error
depending on the method used. The most commonly used method is the La Bas molar volume
method, which assigns molar volumes to atoms, ring structures, and functional groups. The
LaBas molar volume is an estimated property according to the equation:

Vz; = E niAVI.:?,i
i (2.19)

where Vg, is the molar volume assigned to each substituent group and » represents the

equivalent concentration. A list of the molar volumes assigned to various substituent groups
is presented in Table 2.2.
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Table 2.2. LaBas Molar Volume Increments

Atom DV’g; (10°m*/mol) Atom DV’s; (10°m’/mol)
C 14.8 Br 27.0
H 3.7 Cl in R-CHCI-R’ 24.6
O (except as below) 7.4 Clin RCI1 21.6
Carbonyl 7.4 F 8.7
Aldehyde, ketone 7.4 I 37.0
Methyl ether 9.9 S 25.6
Ethyl ester 9.9 P 27.0
Higher esters 9.9 Ring
Higher ethers 9.9 3-membered -6.0
Acids (-OH) 11.0 4-membered -8.6
Joined to S, P, N 8.3 5-membered -11.5
N Double bonded 15.6 6-membered -15.0
Primary amine 10.5 Napthalene -30.0
Secondary amine 12.0 Anthracene -47.5

Source: Table adapted from Hofman et al., 2007.

Other Size Descriptors. Kiso et al. (2001a) reported that “the Stokes radius is a commonly
used factor for the evaluation of the steric hindrance; however, the diffusivities to estimate
Stokes radius cannot be obtained for many organic solutes.” In addition, the Stokes radius is
based on the assumption that molecules are spherical and rigid, which is not always correct.
Because Stokes radius calculations can be difficult for some molecules, other measures of
molecular size have been developed.

STERIMOL parameters are used for determining the size of a molecule by utilizing
molecular shape descriptors such as length and width (Kiso et al., 1992 and 2001a). Two
studies by Kiso et al. (2000 and 2001a) compared the molecular widths of molecules
calculated by using STERIMOL with the Stokes radius of the same molecules and reported a
high correlation between the two. STERIMOL parameters consist of five measurements for a
molecule; one length (L) measurement and four width measurements (B1 to B4) (Kiso et al.,
2001a). Figure 2.8 demonstrates how these values are determined. The molecular length (L)
is determined as the greatest distance between two atoms of the molecule and forms the L
axis. The area of the rectangle (S) is the minimum area enclosed perpendicular to the L axis.
Molecular width is defined as half the square root of the area of the rectangle. MMS is
defined as half the length of the rectangle that has the same volume as a cylinder that
encompasses the molecule lengthwise (Kiso et al., 2001a). Originally intended for
pharmaceutical development, STERIMOL parameters have been applied in QSAR studies to
assess the toxicological relevance of organic compounds (Verma and Hansch, 2007. Kiso et
al. (1992) first applied STERIMOL parameters to organic solute removal with cellulose
acetate RO membranes.
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Figure 2.8. Molecular size parameters as determined for a nonspherical molecule.
Source: Kiso et al., 2001a

Another molecular size quantification developed in a manner similar to that of molecular
width is the MMS (sometimes designated as W) of a molecule. The MMS is calculated by
taking half of the length of the edge of the cube encompassing the molecule (Kiso et al.,
2001b). Kiso et al. (2001b) demonstrated that MMS correlated better than molecular width
with Stokes radii and could also be an effective measurement of molecular size. In their
study, the molecular width and MMS were calculated for a variety of alcohols and
saccharides and were evaluated as predictors for the rejection of these compounds by four NF
membranes. For two other membranes examined in this study (MWCO < 250 Da), molecular
width was found to be a better descriptor than MMS and especially better than molecular
weight for the effects of steric hindrance on the rejection of alcohols and saccharides.
Molecular width appeared to be a better predictor for rejection, especially for the tighter NF
membranes.

Recently, a study performed by Zheng et al. (2009) compared different molecular size
descriptors to the rejection of nonionic organic compounds. The researchers developed a new
size descriptor, calculated mean size, which is a length parameter calculated with the smallest
volume taken up by a molecule. The calculated mean size is determined by calculating the
area and length of a molecule in three perpendicular planes and taking the cube root of the
smallest volume obtained:

dC:Vmin{S L,S.L,S.L) (2.20)

xy "z xz T yd Yy x
where S is the area of a molecule, L is length and d, is the calculated mean size. The authors

found that the calculated mean size was a significant improvement over the Stokes radius,
molecular width, and molecular length as a descriptor for rejection.
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Taylor et al. (2000) determined the molecular structure of pesticides with the Hyperchem
software package. The free energy between the intramolecular interaction of the polymer and
functional groups was used to calculate the structure, theoretical length, and volume of the
pesticides. The pesticide length depended upon the orientation of view or view angle and
represented the cross-sectional diameter due to structural rotation. The pesticide volume was
defined as the volume of the rotated pesticide molecule. Taylor et al. (2000) concluded that,
in conjunction with pore size distribution of a membrane, pesticide size and orientation
determined the range of pesticide rejection by RO and NF membranes.

Recent research conducted by Bellona (2007) compared the MMS, Stokes radius, molecular
width, and size parameters (length and width) calculated from molecular modeling software
as size parameters for use in modeling exercises. The Stokes radius was found to be the best
size descriptor for modeling steric exclusion for compounds spanning a wide range of sizes.
Because the range of MMS and of molecular width was relatively narrow for the compounds
evaluated, the model output (rejection) for all of the compounds was narrower than
experimental rejection was found to be. In contrast, the Stokes radius was found to better
represent the different sizes exhibited by the molecules and therefore the model output was
more accurate (Bellona, 2007).

2.5 Rejection of Solutes with Membrane Interactions

As pointed out in the previous section, for neutral compounds, size often fails as a parameter
to describe rejection. In many cases, the rejection of an organic solute is less than would be
expected based on the size, and researchers have reported that certain compounds can adsorb
to and partition through membrane materials (Kim et al., 2007; Nghiem et al., 2004; Williams
et al., 1999). Besides the work of Williams et al. (1999), Matsuura and Sourirajan (1971), and
a few others, very little work has been performed to determine the nature of these interactions
and to find molecular descriptors to describe the strength of adsorption and propensity for
lower-than-expected rejection (based on size). For example, researchers continue to compare
rejection to a compound’s partitioning coefficient Log K, value (Braeken et al., 2005;
Agenson et al., 2003), although there is an abundance of work demonstrating that only in
certain cases does Log K, correlate with rejection. Researchers such as Williams et al.
(1999) have pointed out that there are likely two types of adsorption (i.e., specific and
nonspecific) that have different impacts on rejection. Nonspecific adsorption arises as a result
of hydrophobic or nonpolar compounds’ preference for a membrane (often called
lipophilicity), although specific adsorption refers to the ability of a molecule to form
hydrogen bonds with the membrane sites that facilitate the transfer of water.

Although partitioning coefficients such as the Log K, describes the tendency (or
thermodynamic favorability) of a molecule to remain in water (as opposed to a lipophilic
solvent such as octane,) they do not necessarily describe whether a solute can interact with
membrane polymers. For example, Braeken et al. (2005) reported that, for compounds with
molecular weight below the MWCO of a membrane, the greater the Log K, the lower the
rejection. However, other researchers have clearly demonstrated that compounds such as
benzene with a relatively high Log K, value (~2.2) are often significantly better rejected
than solutes with smaller values such as phenol (~1.4). Additionally, because size is still a
major factor in the rejection of these compounds, finding one descriptor to describe
solute—membrane interactions and subsequently rejection is extremely difficult.

On the basis of past work, it appears that nonionic compounds with strong membrane
interactions are the most likely to permeate a membrane. Therefore, elucidating the
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mechanism by which these compounds can adsorb to membrane materials is integral to
developing modeling approaches. On the basis of past research, it appears that it may be more
important to identify the functional groups that result in membrane interactions than to
correlate rejection to partitioning coefficients. Understanding how these interactions occur
and where they occur on or in the membrane may assist in identifying more meaningful
descriptors for solute—membrane interactions (McCallum et al., 2008).

2.5.1 Adsorption and Partitioning Through Membrane Materials

Williams et al. (1999) performed a study to investigate the adsorption of organic compounds
to an RO membrane and quantify the subsequent effect on permeate flux rates. The
researchers found that phenols and substituted phenols adsorbed strongly to membrane
materials and significantly decreased the permeate flux of the membrane. Benzene was found
to adsorb to membrane materials but had a very marginal effect on flux. The researchers
hypothesized that the phenolic compounds specifically adsorb to the active sites of the
membrane designed to transport water, which decreases the permeate flux (Figure 2.9).
Benzene, which is nonpolar, adsorbed to the membrane, but the interaction was hydrophobic
in nature as characterized by minimal permeate flux loss.

Ahmad and Tan (2004) reported results similar to those of the Williams et al. (1999) study for
chlorophenol, nitrophenol, and phenol. The researchers found that, during experiments with
these compounds, permeate flux declined significantly and that rejection was extremely low.
They reported that the characteristics of a strong solute—membrane affinity system include a
decrease in rejection when permeate flux increases, lower flux than that shown by pure water
and that is not caused by osmotic effects, lower-than-expected rejection, possible negative
rejection, and an increase in rejection with increasing feed water concentrations. The
researchers state that “solute separation in reverse osmosis is generally governed by the
hydrogen bonding ability of an organic molecule.”
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Figure 2.9. Hydrogen bond formation of trichlorophenol with the carbonyl group of a
polyamide chain.

Source: Williams et al., 1999.

Hammett and Taft numbers have been proposed as steric parameters that can be used to
describe molecular interactions with membrane polymer structures. Although the Hammett
equation accounts for how field, inductive, and resonance effects influence reaction rates, the
Taft equation also describes the steric effects of a substituent. On the basis of hydrogen
bonding theory illustrated in Figure 2.9, Matsuura and Sourirajan (1971) attempted to
develop correlations between rejection and molecular descriptors for a number of organic
compounds. They hypothesized that, because Hammett and Taft numbers quantify the degree
by which a compound “wants” to donate a proton, they could be used as potential indicators
for hydrogen bond formation with the membrane. Matsuura and Sourirajan (1971) found that
the more negative Hammett and Taft numbers fit well with greater rejection as these values
indicated a decrease in hydrogen bond formation between the solute and membrane

(Figure 2.10). Because Taft and Hammett numbers are difficult to calculate for a large
number of organic compounds, the researchers eventually used a measure of the stretching of
the OH bond in a solute as a measure of the proton donating ability (and hydrogen bond
formation ability) of a solute. Generally, this parameter was found to correlate well with the
compounds that were studied.
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Source: Matsuura and Sourirajan, 1971.

Although it is generally accepted that certain organic solutes interact with specific membrane
active layer sites, there has been very little work investigating which types of compounds
display this behavior and which ones do not. Nghiem et al. (2004) found that steroid
hormones are rejected at lower concentrations than would be expected on the basis of their
size. These compounds have aromatic rings with hydroxyl groups attached, which
hypothetically make them capable of forming hydrogen bonds with membranes. Other
compounds that have exhibited lower rejection than expected include bisphenol A

(Nghiem et al., 2009), chloroform (Xu et al., 2006), triclosan (Bellona, 2007), and 2-naphthol
(Kimura et al., 2003a). Compounds that have been listed as not adsorbing to membranes
include dextrose, dioxane, erythritol, and xylose (Nghiem et al., 2004). In recent studies by
Marts (2008) and Bellona (2007), certain aromatic organic compounds including
carbamazepine and primidone were found to have behavior very similar to that of sugars and
alcohols whose rejection depends mostly on size, although other aromatic organic compounds
such as acetaminophen and phenacetine had much lower rejection than expected on the basis
of size. Therefore, determining molecular descriptors that indicate whether a solute will
interact strongly with the membrane is needed.

The dipole moment of a compound is another descriptor that has been used in studies as a
potential indicator of solute—membrane interactions. Dipole moment values are representative
of the polarity of a compound. In a study by Van der Bruggen et al. (1999), the dipole
moment was found to correlate strongly with rejection of organic solutes. Van der Bruggen et
al. (1999) argued that compounds with high dipole moment consistently have lower rejection
values due to the interaction of the dipole with the membrane. Although this interaction may
occur as Van der Bruggen et al. (1999) described, the rejection data show that compounds
with lower dipole values may also have low rejection, suggesting that dipole moment may not
be a very successful descriptor.

As previously discussed, a number of researchers have attempted to correlate Log K, with

rejection with the explanation that hydrophobic compounds adsorb to membranes (Braeken et
al., 2005; Braeken et al., 2006; Agenson et al., 2003; Kiso et al., 2000). Braeken et al. (2005)
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suggested a linear relationship between Log K, and rejection by NF membranes for
compounds with molecular weights below the MWCO of two NF membranes, the UTC-20
and the Desal-HL-51. The greater the Log K., of the solute, the lower the rejection

(Braeken et al., 2005; Figure 2.11). Braeken et al. (2005) indicated that this relationship also
exists for compounds with molecular weights greater than the MWCO of the membrane. In a
small sample of three compounds with similar molecular weights, estrone (Log Ky: 3.43)
and estradiol (Log K,y: 3.94) demonstrated lower rejection values than salicine (Log Ky: -
1.41) in 15 h run times. Although Log K., may reflect rejection behavior, as compound size
increases, the Log K, value is less influential in this behavior.
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Figure 2.11. Rejection as a function of Log P (Log K,,,) for organic solutes where MW < MWCO.
Source: Braeken et al., 2005.

Two studies by Kiso et al. (2000 and 2001b) reported on the rejection of hydrophobic
pesticides by four flat-sheet Nitto Denko NF membranes (NTR-729HF, NTR-7250, NTR-
7450, and NTR-7410). The researchers found that Log K, was a good descriptor for the
rejection of certain compounds but failed for other compounds (Figure 2.12). Kimura et al.
(2003b) found no correlation between partitioning coefficients and the rejection of a number
of endocrine disrupting compounds (EDCs) and pharmaceutically active compounds. Bellona
(2007) found that the Log K, could not be reliably used to determine what compounds are
likely to exhibit strong solute—membrane interactions and have low removal. For example,
chloroform (Log Ko = 2.97), NDMA (-0.57), triclosan (5), 2-naphthol (2.7), and
methylparaben (1.86) all displayed similar rejection by an NF membrane. On the basis of the
specific-versus-nonspecific adsorption idea, the Log K., does not directly quantify the degree
by which a solute can interact with specific sites on a membrane. Although partitioning
coefficients are related to polarity of a compound, they are often ambiguous; that is, two or
more molecules could have the same Log K., value but completely different structures,
interactions with membrane materials, and rejection.
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Log K, as a descriptor.

Source: Top figure: Kiso et al., 2003; bottom: Kiso et al., 2001b.

24 WateReuse Research Foundation



Similar to the idea behind the work of Matsuura and Sourirajan (1971), it may be more
important to determine the relative contribution of functional groups on the adsorption and
partitioning phenomenon. Employing compounds with different functional groups, Kiso et al.
(2001a) demonstrated that polar groups within the compound had various effects upon the
adsorption and that the effect of polar groups on adsorption decreases as follows: -C(O)O- > -
CO- > HCON > CH3CON > -OH- > -O-. In addition, when Log K, values of similar
compounds (e.g., monosubstituted benzenes) were compared to rejection, strong correlations
were found indicating that specific chemical characteristics of compounds are more
important.

According to the preferential sorption capillary flow model, rejection of organic solutes by a
membrane is a two-step process (Matsuura and Sourirajan, 1971). First, the solute is adsorbed
by the membrane. Subsequently, the solute passes through the membrane by diffusion and/or
convection. Breakthrough concentrations are theorized to depend on the size of the compound
relative to the pore size of the membrane, and compounds smaller than the pore size have
been observed to permeate more freely (Duranceau et al., 1992; Nghiem and Schéfer, 2002;
Nghiem et al., 2002a and 2002b; Schéfer et al., 2003). When membrane—solute interactions
are strong; however, size exclusion becomes a much less valuable descriptor. Using the
Hyperchem molecular modeling software to simulate the optimized molecular shape of each
compound, Braeken et al. (2005) calculated the effective molecular diameter to compare
compounds of similar molecular size. By comparing the effective diameter to rejection,
Braeken et al. (2005) found that molecular size is a poor descriptor of expected rejection for
compounds that can interact with membrane materials. For both of the membranes used in the
study, UTC-20 (Toray Industries, Inc.) and Desal-HL-51 (Osmonics), xylose with the shortest
calculated effective diameter (0.69 nm) had some of the highest rejection values, although
compounds with much longer effective diameters, such as benzilidene acetone (0.99 nm) and
3,4-methylnitrophenol (0.82 nm), were among the compounds with the worst rejection.

McCallum et al. (2008) recently identified the site of adsorption to membrane materials to be
within the polysulfone support layer. Ruuning rejection experiments with the NE-70
membrane and a sample of unfinished NE-70 membrane, just the polysulfone support and
nonwoven fabric backing, showed that the normalized concentration profiles of estradiol
were nearly identical, suggesting that the polysulfone support layer as opposed to the active
layer largely governs the non-steady-state breakthrough phenomenon. This finding stresses
the need for a better understanding of both where solute—membrane interactions take place
and how different functional groups of a solute may participate in these interactions. For
compounds to adsorb to the support layer, however, they must be transported through the
active layer, which appears to be governed by specific characteristics of compounds.

Observations from Pilot and Full Scale. Many of the compounds that have been detected in
permeate samples during pilot- and full-scale membrane studies at water reuse facilities are
nonionic solutes that are expected to have interactions with the membrane polymer because
of their relative hydrophobicity and moieties that may cause specific adsorption (Table 2.1).
These compounds include bisphenol A, chloroform, galaxolide, iopromide, oxybenzone, and
TCEP. Compounds that are nonionic but have not been studied in terms of adsorption but
have moieties that may interact with the membrane include diethyl-m-toulamide (DEET),
caffeine, meprobamate, and pentoxifylline. As will be discussed in the modeling section, the
rejection of these compounds is partially a function of their molecular size but also of the
degree to which they interact with a membrane. The development of a predictive model,
therefore, is hindered by the lack of understanding of the nature of solute—membrane
interactions and of ways to quantify them.
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2.5.2 Electric/Donnan and Dielectric Exclusion of Charged Solutes

For charged solutes, three removal mechanisms are generally accepted: size exclusion,
electrostatic (or Donnan) exclusion, and dielectric exclusion (Bowen et al., 2004; Timmer
2001). Because of the charged nature of membranes, solutes with an opposite charge of the
membrane are attracted to neutralize the membrane charge, although solutes with an opposite
charge are repelled. This phenomenon is referred to as Donnan exclusion. Dielectric
exclusion refers to the idea that water molecules within the membrane structure are polarized,
which results in a decreased dielectric constant inside the pore, making it less favorable for
charged solutes to enter. As pointed out by Timmer (2001), the mechanisms by which
charged membranes remove charged solutes are a point of debate in the scientific community.
What is generally accepted, however, is that charged organic solutes are removed at a
relatively high level regardless of size (Bellona et al., 2008).

2.5.2.1 Electrostatic Effects—Literature Review

Electrostatic interactions between charged solutes and membranes have been frequently
reported to be an important rejection mechanism (Tsuru et al., 1991a and 1991b; Wang et al.,
2002; Duranceau et al., 1992; Wang et al., 1997; Bowen et al., 2002; Childress and
Elimelech, 2000; Xu and Lebrun, 1999). RO and NF membranes are composed of a thin
membrane skin that acts as the strainer and a thicker support layer underneath (Braghetta et
al., 1997; Wang et al., 1997; Xu and Lebrun, 1999; Ariza et al., 2002). The membrane skin,
for most thin-film composite membranes, carries a negative charge to minimize the
adsorption of negatively charged foulants present in membrane feed waters and to increase
the rejection of dissolved salts (Braghetta et al., 1997; Tsuru et al., 1991a and 1991b;
Deshmukh and Childress, 2001; Xu and Lebrun, 1999; Shim et al., 2002). The negative
charge on the membrane surface is usually caused by sulfonic and/or carboxylic acid groups
that are deprotonated at neutral pH. Membrane surface charge is usually quantified by zeta
potential measurements. Studies (Deshmukh and Childress, 2001; Childress and Elimelech,
2000; Xu and Lebrun, 1999; Tanninen and Nystrom, 2002) have determined that pH had an
effect on the charge of a membrane because of the disassociation of functional groups. Zeta
potentials for most membranes have been observed in many studies to become increasingly
more negative as pH is increased and as functional groups deprotonate (Braghetta et al.,
1997; Deshmukh and Childress, 2001; Hagmeyer and Gimbel, 1998; Lee et al., 2002; Ariza
et al., 2002; Tanninen and Nystrom, 2002; Shim et al., 2002; Yoon et al., 2002).

Dissolved ion rejection by NF and RO membranes is heavily dependent on the membrane
surface charge and therefore on feed water chemistry (Wang et al., 1997 and 2002; Hagmeyer
and Gimbel, 1998; Childress and Elimelech, 2000; Xu and Lebrun, 1999; Yoon et al., 2002;
Seidel et al., 2001; Bellona and Drewes, 2005; Kim et al., 2002). Ozaki et al. (2002) reported
that the rejection of heavy metals by ULPRO membranes was positively correlated with the
pH of the feed water. Yoon et al. (2002) performed a study investigating the transport of
perchlorate through NF and UF membranes and reported that “perchlorate rejection by
negatively charged NF and UF membranes was greater than expected based on only
steric/size exclusions.” Researchers in this study also reported that the rejection of perchlorate
increased with increasing pH and that the diffusive transport coefficient for perchlorate
decreased as pH was increased. Increasing the pH increased the negative surface charge of
the membrane as confirmed by others (Braghetta et al., 1997; Deshmukh and Childress, 2001;
Lee et al., 2002; Tanninen and Nystrom, 2002; Ariza et al., 2002), which resulted in increased
electrostatic exclusion of a negatively charged solute by a membrane. Conversely, it was
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determined that the presence of counterions (Ca*" and K*) decreased the rejection of
perchlorate.

This last finding is thought to be a result of two mechanisms. One explanation is that
increasing ionic strength shields the surface charge of a membrane and is supported by
previous studies where ions such as Na', K*, Ca®", and Mg®" in feed water reduced the
negative zeta potential of a membrane (Braghetta et al., 1997; Deshmukh and Childress,
2001; Ariza et al., 2002; Shim et al., 2002). A decrease in surface charge would theoretically
decrease electrostatic exclusion and the rejection of charged solutes. This is the explanation
given by Nghiem et al. (2006) as to why ibuprofen and sulfamethoxazole rejection decreases
with increasing ionic strength. Recent research by Bouranene et al. (2007) showed that
increasing ionic strength decreases the hydrodynamic radius of organic solutes, which
decreases exclusion from size and decreases rejection.

The second explanation is that ions in solution that can permeate a membrane affect the
transport of other ions in solution. In 1924, Donnan published his classic paper on the theory
of membrane equilibria, which presented an explanation to the “peculiar electrical and other
effects which must occur in a system in which two solutions containing electrolytes are
separated by a membrane which is freely permeable to most of the ions, but impermeable to
at least one of them.” The main factor is that electroneutrality has to be maintained on both
sides of a membrane and that, when one charged solute crosses the membrane, an oppositely
charged species must cross the membrane. When a divalent ion crosses the membrane, two
monovalent ions must cross to conserve electroneutrality. Chellam and Taylor (2001)
observed that calcium rejection by two NF membranes increased by a factor of 2 (at all
recoveries tested) for a 14-fold increase in sulfate concentrations. Charged functional groups
attract ions of the opposite charge, inhibiting them from crossing the membrane (Chellam and
Taylor, 2001). Counterions are also retained to preserve electroneutrality, and rejection for
the counterion increases substantially. Ozaki et al. (2002) reported that, when divalent cations
(Mg”" and Ca*") were present in the feed water, the rejection of heavy metals decreased. It
was hypothesized that the need to preserve electroneutrality across the membrane resulted in
a lower rejection of metals. For organic solutes, the hypothesis is that adding salts
overwhelms the charge of the membrane and the ability of the membrane to retain
counterions, which leads to a breakthrough of both coions and counterions, including the
charged organic compounds.

On basis of the previous discussion, it should be noted that operating conditions can have a
significant effect on the rejection of charged species because of concentration polarization
and “overwhelming” of the membrane charge.

Literature reporting on the effect of membrane surface charge on the rejection of charged
organic compounds is not as abundant as studies on inorganic ion rejection. In fractionation
experiments, Hu et al. (2003) and Schifer et al. (2002a) found that low-molecular-weight
acids had higher rejections by RO and UF membranes than did larger neutral organics
because of electrostatic repulsion. In a study conducted by Berg et al. (1997), it was
determined that charged organic solutes were rejected at higher levels than were noncharged
organic compounds of the same size. Rejection experiments with the pesticide mecoprop in
disassociated and undisassociated forms were performed with five different NF membranes.
Mecoprop, in the disassociated form, was rejected at a higher rate than in the
nondisassociated form by all five membranes at levels between 10 and 90%. Ozaki and Li
(2002) performed a rejection experiment utilizing urea and acetic acid, both having the same
molecular weight, at different pH ranges using an LPRO membrane (ES20; Nitto Denko).
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Acetic acid is negatively charged at a pH of 4.8, although urea remains noncharged
throughout the pH ranges (3—9) tested. Although the rejection of urea decreased slightly from
35 to 28%, the rejection of acetic acid increased from an initial value of 32% in the
noncharged form at pH 3 to 100% in the negatively charged form at pH 9. The increase in the
rejection of acetic acid as observed by Ozaki and Li (2002) and in mecoprop as reported by
Berg et al. (1997) is most likely due to electrostatic repulsion at the membrane surface. The
increase in the rejection of acetic acid at pH values above the pK for association (pK,), is
most likely caused by the increasing negative charge of the membrane repulsing the
negatively charged acetic acid (Ozaki and Li, 2002).

Observations from Pilot and Full Scale. Drewes et al. (2007) investigated the organic
compound removal efficiencies of 11 commercially available membranes on a spiral-wound
membrane testing unit (Figure 2.13). Although the rejection of uncharged organic solutes was
variable and depended on the molecule of interest and the membrane, the rejection of ionic
trace organic compounds was greater than 90% for all compounds and membranes tested. As
an example, Figure 2.13 presents the rejection of four negatively charged compounds of
different size by a variety of RO, LPRO, and NF membranes.
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Figure 2.13. Summarized laboratory-scale candidate membrane rejection of nonionic (neutral)
trace organic compounds (for 80% recovery and permeate flux rate of
2024 L/m” h).

During pilot-scale and full-scale testing at two water reuse facilities, spiking experiments
were conducted with samples collected for the analysis of a select number of pharmaceuticals
and personal care products (PPCPs) and EDCs to determine removal efficiencies. In results
similar to those of laboratory-scale testing, even a “loose” NF membrane (NF-4040) rejected
>95% of the ionic trace organics that were spiked into the feed water (Figure 2.14).
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Figure 2.14. Spiked feed and permeate concentrations and subsequent rejection values of ionic
trace organic contaminants (negatively charged, molecular weights in parentheses)
during pilot-scale testing of the NF-4040 (spiking and sampling occurred at end of
testing period).

Source: Bellona and Drewes, 2007.

There have been permeate detections of ionic organic contaminants (Table 2.1); however, the
concentrations are generally quite low. From past research, it appears that most negatively
charged organic contaminants are well removed regardless of their size. Therefore,
developing complex models for these compounds may not be necessary.

2.6 Modeling

There has been considerable work over the last 40 to 50 years on modeling the rejection of
charged (mainly salts) solutes by NF and RO membranes. Some of the earliest work was
performed by Dresner (1971), Kedem and Katchalsky (1956), and Spiegler and Kedem
(1966). More recently, research groups from Japan (Tsuru et al., 1991a; Wang et al., 1997)
and the United Kingdom (Bowen) have put considerable effort into developing modeling
approaches to describe the permeation of salts. These researchers have approached the
problem utilizing fundamentally derived mass transfer models, including the
Teorell-Meyers—Sievers (TMS) model, the Space Charge model, and the Extended
Nernst—Planck (ENP) model among a few others. Other researchers have modified the
surface force pore model (SFPM) (Jain and Gupta, 2004) and the solution—diffusion model
(Williams et al., 1999) to account for solute—membrane interactions. The advantage to these
models is that they are, for the most part, fundamentally derived. The major disadvantage is
that they generally require numerical methods to solve and likely cannot be used as a
predictive tool. In addition, many of these approaches would be extremely difficult to use on
a larger-scale system than bench scale. The following sections discuss various modeling
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approaches, but it is also worth noting that there are numerous other approaches that have
been investigated as well.

2.6.1 Solution—Diffusion Model

The solution—diffusion model has been modified numerous times to account for a membrane
system’s operational conditions and the mass transfer contribution from convective flux.
Wijmans and Baker (1995) provide a good point of departure for the solution—diffusion
model and its derivation. The solution—diffusion model defined by Wijmans and Baker
(1995) is

(2.21)

where J; is solute flux, D; is the diffusion coefficient of solute j, K; is the sorption coefficient
of solute j, and / is the membrane thickness. Researchers have modified the
solution—diffusion model to account for the dependence of the concentration gradient on
recovery (Zhao, 2004; Chellam and Taylor, 2001). The homogenous solution—diffusion
model (HSDM) output of permeate concentration as a function of system recovery is given
by

KC, (2.22)
2-2R

C, =

K, (AP - ATI) +K

N

where K; is solute MTC, K, is the solvent (water) MTC, C, is the permeate concentration, R
is the system recovery, and AP and A7 are the driving and osmotic pressure differentials,
respectively. Given a membrane system’s AP and A/ll, recovery, solvent MTC, and a solute’s
MTC, the permeate concentration can be predicted.

Another derivation of the solution—diffusion model is the film theory diffusion model (FTM),
which incorporated concentration polarization. The FTM is given by

w

Ky
C - CiKe (2.23)
’ 2-2R =
K, (AP - An)( 5 ) +Ke"

where F), is the water flux through the membrane (often given as J,) and %, is the back-
diffusion MTC as defined in Equation 2.13 (as K in Equation 2.13). Other modifications to
the FTM have included correction terms for the solute MTC that are based on recovery and
flux (Zhao, 2004).

The solution—diffusion model assumes that the transport of a solute across a membrane is due
to diffusion through the membrane polymer. As discussed previously, it is commonly
accepted for NF and a lesser extent for LPRO that mass transport occurs both by diffusion
through the membrane material (solid-phase diffusion) as well as diffusion and convection
through a membrane pore. The advantage of the solution—diffusion model is that it requires
one parameter for a solute, K, to predict rejection.
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A modified solution—diffusion model to include convective and diffusive hindrance factors
was reported by Hofman et al. (2007) to be developed on the basis of work developed by
Taylor et al. (1996) and is given by

k= K 1_2ch§ R
1+ = - +K,;
K, (AP, -AH,»)(Z(l—R)) ’(2(1—R)) (2.24)

where R; is the rejection of solute species 7, K..; is a convective hindrance factor, K; is the
coefficient for hindered diffusive transport through pores, R is recovery, and K is the solid-
phase diffusion parameter. Although this model may be fundamentally sound, in order to
apply it, three independent solute MTCs must be known. Hofman et al. (2007) attempted to
correlate the MTCs to the ratio between solute and pore size as reported by Deen (1987) and
Bowen et al. (2002); however, no model verification was reported.

Over the past 2 decades, a few researchers have used the solution—diffusion modeling
approach to model charged solutes, namely, salts (Chellam and Taylor, 2001; Zhao, 2004).
To develop a predictive model, the solute MTC needs to be correlated to a solute parameter.
Zhao (2004) developed an exponential relationship between the charge number of a salt and
the MTC as shown in Figure 2.15. Once the MTC is known, the HSDM can be used.

One advantage to solution—diffusion models, such as the HSDM, is that one solute parameter
is needed that could encompass solute properties if correlations can be made between solute
properties and MTCs. As pointed out previously, however, the transport of solutes through
NF and possibly LPRO membranes is thought to be a combination of diffusion and
convection. Solution—diffusion models may be limited to certain RO membranes. For these
membranes, the solution—diffusion model will likely be one of the best options because
operational conditions such as recovery are considered.
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Figure 2.15. Modeling the MTC for salts based on the charge number of the salt.
Source: Zhao, 2004.
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2.6.2 Hydrodynamic Model

The hydrodynamic model is commonly used to describe the rejection of uncharged solutes,
primarily to characterize the pore size of a given membrane, and detailed descriptions of the
derivation and application can be found in numerous publications (Bowen et al., 2004; Santos
et al., 2006; Yoon and Lueptow, 2005). The major equations used to employ the
hydrodynamic model are presented in Figure 2.16. The model is comprised of two
components, hindered convection and hindered diffusion of a solute, to describe the transport
of molecules through pore structures considered to be cylinders (Equation 2.25). Partitioning
within a membrane pore on the feed and permeate sides of the membrane is given by
Equations 2.26a and 2.26b, respectively, where the solute partitioning coefficient (®) is a
function (Equation 2.27) of the ratio between the hypothetical pore radius and the solute
radius (A, Equation 2.28). By assuming a parabolic profile of the Hagen—Poiseuille type, the
solute hindrance factors for convection and diffusion are given by Equations 2.29 and 2.30
(Bowen et al., 1997), although other researchers have proposed other functions to describe
solute hindrance (Bouranene et al., 2007; Deen, 1987). Bowen et al. (2002) showed that the
introduction of the Peclet number and the inclusion of the Hagen—Poiseuille definition of
pore solvent velocity (Equation 2.31) erased the need for the extra fitting parameter, namely,
membrane thickness, and allowed for a center line approach for calculating hindrance factors
using Equations 2.29 and 2.30. Rearranging and integrating Equation 2.25 yield Equations
2.32 and 2.33, which describe the ratio between the bulk feed and permeate concentrations
and rejection, respectively.

Hydrodvnamic Model Equations
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Figure 2.16. Equations for the hydrodynamic model.
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The hydrodynamic model output is mainly dependent upon A, the ratio between a solute’s
size and the membrane’s pore size. Choosing a size parameter that effectively captures a
solute’s geometry, therefore, is essential for model development, and numerous studies have
attempted to determine the best size parameters that correlate with rejection (see previous
discussion on molecular size). The often unsatisfactory result of these rejection/molecular
size correlations have been explained by two main schools of thought: (a) that an effective
molecular size descriptor is elusive (Santos et al., 2006; Zheng et al., 2009 and/or (b) that
physicochemical properties other than size strongly affect rejection (Nghiem et al., 2004).
Because the hydrodynamic model requires a chosen molecular size parameter, as a predictive
measure, the model output is generally poor when compared to experimental results. As an
example, the rejection of two pharmaceutically active compounds, acetaminophen and
phenacetine, by the NF membrane as determined experimentally and modeled by using the
hydrodynamic model and the Stokes radius is presented in Figure 2.17. In the case of both
molecules, rejection is overestimated by the hydrodynamic model, and the output is
unsatisfactory as a predictive measurement. The hydrodynamic model fails as a predictive
tool either because the Stokes radius is ineffective in describing a solute’s size or because
physicochemical properties of the solutes and resulting solute—membrane interactions affect

rejection or both.
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Figure 2.17. Rejection of phenacetine and acetaminophen by NF membrane.

Note: Model lines determined by using the hydrodynamic model and the solute’s Stokes radius.

There are many cases where the hydrodynamic model was found to accurately predict the
rejection of neutral compounds by NF membranes on the bench scale, but there are many
cases where the model significantly overpredicts rejection (Bellona, 2007). It appears that the
model can be applied to compounds where size exclusion is the dominant rejection
mechanism. However, when solute—membrane interactions become important, size exclusion
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models fail. The difficulty in solving this problem is determining, a priori, which compounds
are expected to have minimal solute—membrane interactions. It is also worth noting that there
has been little work applying these models to pilot- and full-scale systems.

2.6.3 Phenomenological Model and Pore Size Distribution Approach

The main equations for the Spiegler—Kedem, phenomenological, or irreversible
thermodynamic model are presented in Figure 2.18. The basic phenomenological transport
equation (Equation 2.34) is nearly identical to Equation 2.25 of the hydrodynamic model
except that hindrance factors for diffusion and convection are replaced by coefficients that
encompass general properties of the solute and membrane. In this way the phenomenological
model has been considered a “black box™ approach, because the solute permeability (P) and
reflection coefficient (o) are fitting parameters that only generally capture the properties and
interactions of a given membrane and solute. In addition, the phenomenological approach has
generally been limited to the modeling of solution—diffusion processes because other
mechanisms and elements of rejection (i.e., pore size, pore size distribution, and
hydrodynamic hindrance) are difficult to capture within the phenomenological coefficients.
Van der Bruggen and Vandecasteele (2002) circumvented this problem in the application of
the phenomenological model to describe organic solute rejection by NF membranes by
calculating the reflection coefficient based on the pore size and pore size distribution of the
membrane and the size of a solute.

If one rearranges Equations 2.34 and 2.35, the rejection of a given solute by a given
membrane can be calculated by using Equations 2.36 and 2.37. The permeability coefficient
(P) for a given solute is related to the diffusion parameter for a particular compound and the
thickness of a membrane and through rearranging can be calculated from Equation 2.38,
where the diffusion parameter (p) is membrane specific (Van der Bruggen and Vandecasteele,
2002). Van der Bruggen and Vandecasteele (2002) applied a Log-normal distribution for the
determination of the reflection coefficient using the average pore size of the membrane, the
standard deviation of pore size, and solute size. This method assumes that each pore will
reject or pass the solute depending on the size of the solute in relation to the pore size (e.g.,
each pore has a reflection coefficient of 1 or 0). When all the pores in the membrane are
combined, the reflection coefficient is the percentage of pores small enough to reject the
solute (Kargol, 2001). The reflection coefficient can be expressed in terms of the probability
density function [P(x), Equation 2.39] or cumulative density function [D(x), Equation 2.40].

To use the probability or cumulative density function to calculate the reflection coefficient for
a given membrane, the parameters average pore size (r) and standard deviation of pore sizes
(Sp) must first be known. These parameters are determined by performing rejection
experiments for several solutes with different sizes. The reflection coefficient of a given
compound is the maximum or limiting rejection at infinite pressure, where only convective
transport occurs. Rejection experiments, therefore, are performed at pressures great enough to
estimate the reflection coefficient for a number of compounds. Equations 2.39 and 2.40 can
then be fitted to the reflection coefficient versus solute size curve by manipulating the
average pore size and standard deviation of pore sizes to achieve the best fit.
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Phenomenological (Spegler-kedem) Model Equations
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Figure 2.18. Equations for the phenomenological and pore size distribution model.

The greatest difficulty in developing the phenomenological model is determining the
reflection coefficient and diffusion parameter for a wide variety of organic solutes. In work
performed by Bellona (2007), the diffusion parameter (p) was not found to be membrane
dependent as was claimed by Van der Bruggen and Vandecasteele (2001). Instead, it
appeared that the permeability constant could be calculated directly from a molecule’s size by
using an empirical regression. In addition, determining the reflection coefficient by using the
cumulative density function with a solute’s size and the membrane effective pore size was
found accurate only for sugars and alcohols. Computing the reflection coefficient for the
aromatic compounds studied yielded a model output that overpredicted rejection, similar to
the hydrodynamic model.

The phenomenological model presented earlier uses a pore size distribution approach to
calculate the reflection coefficient. However, the reflection coefficient could be based on any
solute property as long as statistical correlations were developed. This approach is often
called a “black box approach” because the diffusion parameter and reflection coefficient
incorporate all of the fundamental interactions between the solute and membrane, which are
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not considered explicitly. Therefore, the phenomenological model presents a mass transport
approach that could be developed into a “hybrid model” that incorporates solute properties
other than size into the reflection coefficient () and diffusion or permeability coefficient (P).

2.6.4 Extended Nernst—Planck Equation

The successful implementation of the ENP equation to describe and/or predict the transport of
solutes, mostly salts, across a membrane has been detailed in numerous papers (Tsuru et al.,
1991a and 1991b; Dresner, 1971; Hagmeyer and Gimbel, 1998; Bowen and Mukhtar, 1996).
The ENP equation has been favorably applied to membrane modeling, because it introduces
solute transport due to solvent volume flux as well as diffusive transport due to concentration
and electrical potential gradients (Dresner, 1971;, Tsuru, 1991a; Bowen and Mukhtar, 1996).
The ENP equation is given by

T zeD,
ji=-p, % 2P pd¥ ey (2.41)
*dx RT dx ’

where D, ), is the diffusion coefficient of a solute in a pore, z; is the valence of the ion, R is the
ideal gas constant, T is the temperature, F is the Faraday constant, ¥ is electic potential , K; .
is the hindrance factor for convection, and V is the solute velocity.

The ENP equation coupled with the TMS assumption, which includes electroneutrality
equations, null-current conditions, Donnan ion partitioning equations, and volumetric flux
equations was used to describe the transport of salts within and through a membrane (Dresner
etal., 1971; Tsuru et al., 1991b; Hagmeyer and Gimbel, 1998; Bowen and Mukhtar, 1996).
Bowen and Mukhtar (1996) proposed a hybrid model, termed the Donnan steric pore model
(DSPM), which allowed for the treatment of a membrane as porous through the use of
diffusive and convective hindrance factors. The major advantages of the DSPM are the use of
structural and electrical properties of a membrane for use in describing solute transport. Many
recent studies investigating the transport of salts through membranes have employed and/or
built upon the DSPM, thus demonstrating the applicability of this approach to describe
fundamental mass transfer processes during membrane separations (Hagmeyer and Gimbel,
1998; Bowen and Welfoot, 2002a; Bowen et al., 1997; Bowen and Mohammad, 1998;
Bandini and Vezzani, 2003; Lee and Lueptow, 2001). The DSPM has also been applied to
describe the transport of uncharged solutes through membranes, although the use of the
DSPM for this purpose has been generally limited to the characterization of a membrane in
terms of pore size (Santos et al., 2006; Bowen et al., 2002; Bowen et al., 1997).

The greatest limitation of the DSPM as pointed out in Bowen et al. (2002) and in Bandini and
Vezzani (2003) is the complex fitting procedures that require extensive iterations and
experimentation to characterize the membrane. In addition, the DSPM has mainly been used
to either (a) describe the separation of salt mixtures by NF and RO membranes or (b)
optimize the separation of individual components of salt/organic dye mixtures. In the case of
municipal water reclamation projects, where the prediction of ionic and nonionic organic
solutes would be greatly beneficial, the utilization of the full DSPM is hindered by its
complexity and the limited range for which it has been used.

Recently, Bowen et al. (2002) and Bandini and Vezzani (2003) put forth linearized versions
of the DSPM called the linearized DSPM and DSPM&DE, respectively. In both cases the use
of electroneutrality conditions and linearized concentration gradients transforms the
differential transport equations into a set of algebraic equations that are subsequently shown
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to effectively describe the separation of binary and ternary salt mixtures by NF membranes.
The separation of a quaternary mixture of salts and organics was later shown to be
satisfactorily described by the linearized version of the DSPM (Bowen et al., 2004). The main
advantage of the linearized approach is the relative rapidity of the computations required to
solve the equations and the inclusion of dielectric exclusion as a rejection mechanism.

2.6.5 Other Mass Transfer Models

There have been a few studies that have used the SFPM and a modified solution—diffusion
model to incorporate solute—membrane interactions. Williams et al. (1999) uses a modified
solution—diffusion model (steady state) and diffusion—adsorption model (non-steady state) to
describe transport of benzene and substituted phenols through RO and NF membranes. The
modified solution—diffusion model as described by Williams et al. (1999) is expressed as

;- D,Cuf bC:  BGy ) _ (2.42)
o \l+b,Cp 1+ b,C
B ; by Cye _ by Cy
I+ b,C 1+ bC)

where Js is solute flux, Cr is feed concentration, Cp is permeate concentration, B’ is the solute
permeability constant, D is the diffusion coefficient of the solute in the membrane, C,, is the
total concentration in the membrane,  is a distance parameter, and b, is a coefficient of for
concentration polarization. Given that the concentration is changing because of adsorption,
the actual concentration gradient (including what is adsorbed to the membrane) needs to be
calculated:

dQ,,
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d. 'l{mj-.-\.{-:_- — AT [.I], —

m- %

di a '|r"E,I:] — i
(2.43)

where Q,,/dt is the total solute adsorbed by the membrane as a function of time (adsorption
rate), dC./dt is the feed concentration change as a function of time, J,, is water flux, 4,, is
membrane permeability, and Vris the molar volume of water. This model was developed to
describe the effect of adsorption on flux and can be used to model the initial decline in
rejection as solutes adsorb to the membrane. Researchers have shown, however, that
equilibrium is reached within 1 to 3 days and that, therefore, other models can be applied to
model the steady-state rejection without capturing the nonequilibrium portion of the rejection
curve.

Mehdizadeh and Dickson (1991) applied a modified version of the SFPM to describe the
rejection of solutes with strong membrane interactions. This approach is basically a system of
differential equations describing the forces exerted on a solute by a membrane and the
solvent. Jain and Gupta (2004) applied this model to a system composed of sodium and
chloride and sodium sulfate and found that the model output was very similar to the
phenomenological model described earlier. The SFPM, however, consisted of six
independent fitting parameters and required a very sophisticated numerical technique to
solve. It should be noted that, because the goal of the project is to develop predictive models
for full-scale membrane systems, models requiring numerical techniques to solve may not be
appropriate. The advantage to these models is that the fitting parameters represent the
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interactions between the solute and membrane, which allows for an investigation into the
fundamental aspects of mass transfer.

2.6.6 Quantitative Structure Activity Relationship Models

Although advancements have been made in the science of membrane modeling, additional
research is needed to develop quantitative models capable of predicting the removal of
solutes with a wide range of molecular structures and physicochemical properties. Previous
research has demonstrated that the rejection of nonionic organic solutes can be described by
using the ratio between solute size and effective pore size (Van der Bruggen and
Vandecasteele, 2002; Nghiem et al., 2004). However, because rejection is also strongly
dependent upon solute and membrane properties (e.g., hydrophobicity and polarity) and
interactions (e.g., adsorption and hydrogen bonding), this approach is often limited in
predictive power (Kiso et al., 1992; Bellona et al., 2004; Ng and Elimelech, 2004). In
addition, membrane models based on the ratio between solute and pore size often fail to yield
accurate predictions because of the difficulty in selecting an appropriate solute size parameter
and/or because a universal determination of solute size does not exist (Oedekoven, 2005;
Kiso et al., 1992; Santos et al., 2006).

Although the rejection of a limited number of nonionic organic solutes has been successfully
predicted using the hydrodynamic model and phenomenological model, limited work has
focused on incorporating solute properties other than molecular size into the model, which
would allow for predictions of a broader class of compounds (Van der Bruggen and
Vandecasteele, 2002; Nghiem et al., 2004; Bellona et al., 2004).

One method of incorporating molecular properties into the prediction of solute rejection by
RO and NF membranes has been the development of QSARs and quantitative structure
property relationships (QSPRs). The concept behind QSAR and QSPR analysis is to
mathematically quantify the correlations between an activity or property (e.g., reactivity,
phase partitioning, and membrane transport) and molecular descriptors. Once a correlation is
found, the activity or property can be predicted from molecular descriptors. The first step in a
generalized QSAR approach is determining activity data (e.g., rejection) for a number of
compounds that are used as a “training set” for QSAR model development. The second step
involves the calculation of suitable molecular descriptors for the “training set” that influence
the removal mechanisms. The third step is the application of statistical methods (multiple
linear regression models, partial least squares [PLS], etc.) to derive correlations between the
activity data and the molecular descriptors generated for the training set.

A few studies have investigated the use of QSAR as a tool for predicting the rejection of trace
organic contaminants by RO and NF membranes. Agenson et al. (2003) developed a QSAR
approach to model the rejection of volatile organic compounds by employing empirical
equations incorporating molecular size parameters and octanol—water partitioning
coefficients to predict rejection. Rodriguez et al. (2004) examined endocrine disruptors,
antibiotics, pesticides, and neuroactive drugs and developed QSAR models for predicting
their passage through, adsorption to, and rejection by RO membranes. Recently, this work
was published by Libotean et al. (2008).

Although these empirical models are membrane and water matrix dependent and did not
incorporate relevant parameters commonly used in membrane models, such as solvent
volume flux (including hydraulic pressure gradients and solvent viscosity), membrane pore
size, and resulting transport due to convective and diffusive flux, they are relatively simple.
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One major limitation to the previously discussed mass transport models is their complexity,
especially when considering large-scale systems such as pilot- and full-scale membrane
installations. For example, the DSPM used for charged solutes, although fundamentally
derived, is generally limited to a ternary system because of the numerical techniques required
to solve the equations. This model could never be practically applied to natural waters.

Our research team, therefore, believes that the development of robust QSPR models is needed
for simple predictions of the likelihood that a compound could permeate an RO or NF

system. Besides the Rodriguez et al. (2004) study, there has been little work developing
QSPR models that included solute descriptors other than size, Log Ky, dipole moment, and
pK.. As was previously mentioned, these descriptors often fail to describe rejection. One
major goal of this study was to investigate a wide range of descriptors and develop new
unambiguous descriptors for membrane QSAR models.

2.6.7 Empirical Models

A simple, yet mostly effective modeling approach developed by Bellona et al. (2004) uses a
decision diagram to determine an estimation of rejection based on solute and membrane
properties. A revised version of the “rejection diagram” is presented in Figure 2.19. By
moving through the diagram, one encounters several possible outcomes or categories in
which compounds fit in depending on their properties and the membrane in question. The
seven possible categories are presented in Table 2.3. This model has adequately estimated the
rejection of a wide range of organic solutes during laboratory, pilot, and full-scale
investigations (Drewes et al., 2008) and was independently verified by a group of researchers
in The Netherlands (Verliefde et al., 2007). One difficulty in developing the model, however,
is incorporating molecular descriptors to rank the strength or overall effect of
solute—membrane interactions on rejection. Initially, the Log K, of a compound was utilized
to estimate the rejection of compounds that have been demonstrated to adsorb to membrane
materials. Although it validated the model, Log K, was found not to be a good parameter for
this estimation as it does not correlate well with rejection for all compounds that have
membrane interactions.

The new version of the model incorporates the Taft (could also be the Hammett constant)
parameter or constant, which has been used to describe the strength of hydrogen bonding for
organic compounds to membranes (Matsuura and Sourirajan, 1971). The Taft and Hammett
constant can be difficult to calculate for a wide variety of organic compounds, however, and
finding a molecular descriptor for adsorption is challenging. Therefore, additional research is
needed to refine the model in order to make it applicable for a wide variety of organic
compounds. Although this modeling approach requires additional work to fully develop, our
research team believes that it could be a simple yet effective tool that nonscientists and
nonengineers could employ if needed.
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Figure 2.19. Modified rejection diagram including three mechanisms of rejection, steric exclusion, adsorption, and electrostatic exclusion.
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Table 2.3. Possible Outcomes or Categories of the Modified Rejection Diagram

WateReuse Research Foundation

Category Charge Proton Donating Hydrophgblc MW rs/rp Rejection Mechanism Expect.ed
Group Interaction Rejection

1 pH > pKa (negative) NA Log Kow <3 NA NA Primarily Electrostatic > 90%

2 Yes NA NA NA H Bonding Dominates <40%
3 Log Kow>3 |>MWCO NA Hydrophobic Interactions | 70 - 90%

4 Log Kow > 3 NA Dominate < 20%

pH < pKa (uncharged) ) <MWCO

5 Not substantial <0.6 <40%

Log Kow>3 |~ MWCO 10.8 >x > 0.6 Steric Interactions 40 - 80%
6 9 Kow 62X >0 Dominate b

7 > MWCO >0.8 > 90%

NA - Not applicable or not important for tis compound to estimate rejection
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2.7 Operational Impacts on Rejection
2.7.1 Recovery

System recovery is defined as the percentage of the feed stream flow that becomes permeate
stream flow:

Recovery (%) = % *100 (2.44)
9

where Q, is the permeate stream flow, and Oy is the feed stream flow. The maximum recovery
specified by manufacturers for one spiral-wound element is 15%. For water reuse
applications treating wastewater effluents, overall system recoveries are generally between 70
and 85%. When one operates bench-scale flat-sheet experiments, recoveries are generally
about 1%. These differences in scale are important because recovery can have a significant
impact on observed rejection. Figure 2.20 shows the effect of recovery on the model output
(rejection) of the HSDM. Because of concentration polarization, the driving force for
diffusion is increased and rejection decreases with increasing recovery. Chellam and Taylor
(2001) performed a comprehensive study on the effect of recovery on the rejection of
constituents by a number of membranes and found that recovery has a big influence on
solutes that are only marginally rejected at low recoveries (Figure 2.21). For most of the
constituents of interest, the HSDM was found to accurately describe the effect of recovery on
observed rejection. However, in the cases of constituents with low rejection at low recovery,
the model was found to be less accurate.

100

retention [%)]
o

E5 = = = paly diffusicn i
T = U M MG WS CERTT

50 r r r r !
0 0.2z o4 0& 0.8 i

recovery [-]
Figure 2.20. Rejection of a model solute as a function of recovery.

Note: A diffusion model and a convection—diffusion model were used to generate the curves.
Source: Hofman et al., 2007.

42 WateReuse Foundation



i L l

b i
a Ymarbmre 0
0o — _ k=0 G pmis i
- T e—— 1 e .._._._ ____‘_______,:-:"'- kw1 Bl aimes !
- _\—-__r_— 5: = - .
T
& — F 3 it -,
l\I\.".
. — I..I.}.i,..u\:.ll %,
'--\___|I_ LI LU R
&0 — "'—-.._\_ =100
. Tl
] . .
- !
TO = ™
i a LorE E R
- = - a, b =L i
= 1 |5RE Canditions 2 Y., Bl
& Inzubation lima = 48 h B
T B0 | Temperatae = 24 °C J, =215 Ll Ay .
E_' i Imcubabion pH -~ 85 Ic*i"u:-:"alur-:- TR - .
s C rosdadl - 1.0MQL (| moyrcg watee F | *
B Y
:
i@ ik
* 20 N
(=
S -
W p— e
BSOS Conditlons - . ™ ’
F5 — [rscubation lime = 34 h J =212 L —B—1 g S " i =
Temperatune = 24 =G Terrpanalurs - 22 °C | = ®= 2= gir -
o [Fecubsativn pH - B0 Saurnce waber A e - 3 mp - B
Cl residual - 1.0 myl Mambesn | e g® oy
m — T T - T T T T T 1
30 47 50 EQ ! ad &0

Foni walar moosarny (%)

Figure 2.21. Rejection of total organic halide precursors by several membranes versus feed water
recovery.

Source: Chellam and Taylor, 2001.
2.7.2 Permeate Flux

From the mass transfer models, it should be apparent that, at a constant recovery, increasing
permeate flux decreases the concentration of a solute in the permeate and increases rejection.
Figure 2.22 presents the rejection of four nitrosamine compounds as a function of permeate
flux during experiments conducted on a pilot-scale membrane unit. During the experiment,
recovery was kept constant (approximately 72%) by changing the feed flow.
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Figure 2.22. Rejection of four nitrosamine compounds by NF-4040 membrane installed on a
pilot-scale membrane unit.

Note: Recovery was kept constant (approximately 72%) by increasing the feed flow as the permeate flow rate was
increased.

When the feed flow is kept constant and the permeate flux is increased, the increase in
recovery eventually adversely affects rejection. Figure 2.23 presents the bench-scale rejection
of sodium chloride and permeate flux for an NF membrane as a function of recovery. At low
recoveries (less than 1%), increasing permeate flux increased rejection. However, at
recoveries greater than 1%, concentration polarization began to affect the observed rejection
and eventually negatively impacted the observed rejection.

One of the major issues with many modeling approaches is that they are generally developed

by using bench-scale flat-sheet units at very low recovery. In addition, many of the transport
models do not account for recovery implicitly and cannot be used to model full-scale systems.
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Figure 2.23. Rejection of NaCl and permeate flux versus recovery.

Notes: Increasing the feed pressure decreased the feed flow of the pump, resulting in an increase in recovery.
Below a recovery of 1%, increasing permeate flux increased rejection and there was minimal impact from
increasing recovery. At higher recovery, concentration polarization effects began to decrease rejection with
increased permeate flux.

2.7.3 Differential Element Approach

One of the major limitations of commonly studied modeling approaches is that little attention
is given to the fact that, at pilot and full scale, recoveries are relatively high (70-85%) and
large concentration gradients exist across membrane treatment trains. The concentration
gradient will significantly affect the combined permeate concentration of solutes and needs to
be considered for modeling exercises. Sharma and Chellam (2008) recently published a
method by which modeling approaches used at bench scale could be used to model systems
operated at higher recovery. The approach is termed the differential element approach and is
similar to a method used by Zhao (2004). A membrane system is conceptually divided into
numerous identical sub-elements that are then modeled as completely mixed reactor. Each
sub-element is connected to its immediate neighbor by using appropriate flow and solute
mass balances at steady state. The following equations are used for the differential element
approach. The flow mass balance is given by

0,(j)=0,()-2.0,(k) (2.45)
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and the solute mass balance given by

_ 9,0 -9,()E,0)
O,(j+1) (2.46)

C,(j+D
The permeate flow rate O, (j) for each sub-element j can be calculated as

Q,(j)= JL,(j)% =L [AP - n( j)]% (2.47)

where J,(j) is the local permeate flux for sub-element j, 4 is the membrane area, n is the
number of sub-elements, L, is the membrane solvent permeability constant, AP is the
hydraulic pressure across the membrane, and An(y) is the osmotic pressure difference
calculated on the basis of the Van’t Hoff equation:

Am(j)=2RT[C,(j)-C,())] (2:43)

or other empirical relationships between total dissolved solids and osmotic pressure. For
experiments with extremely low feed concentrations, the effect of osmotic pressure on flux is
expected to be small. The pressure drop is assumed to be linear across the membrane system,
and the following equation can be used to calculate the driving force for permeate flow from
each sub-element:

P)-P(j+1) (2.49)

AP(j)=|(P(D)-(j-0.5) .

The permeate (C,(j)) and feed concentrations for each sub-element can be related by using a
one-dimensional film theory model like

GO UGNk 220
qm%%;?ﬂﬁm@mmm
The expression
C.()=Coli) 23D
C,(j)

can be calculated from membrane transport models including the solution—diffusion model,
the hydrodynamic model, the ENP equation approach, and the phenomenological approach.
For these models, parameters related to the membrane and the solute are inputs and the
differential element approach is used to model concentration gradient through the system.
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Once C,(j) for each sub-element is determined, the weighted average permeate concentration
over the entire element can be calculated by using

2. 0,0)C,0)
20,0

p

(2.52)

2.8 Summary of Factors that Affect Rejection
2.8.1 Membrane Reproducibility

The properties of a membrane can differ considerably across one membrane specimen
because of imperfections in membrane-casting techniques. For example, in a study by
Hofman et al. (2007), the researchers investigated membrane coupons cut from different
areas of the same flat-sheet specimen. The researchers found that salt passage changed
considerably depending on the location the sample was taken from on a flat-sheet sample.
Near the edges of the membrane sheet, salt passage was found to be the greatest but
decreased as the sampling location moved away from the edge of the membrane sheet. The
researchers concluded that this effect was due to the equipment used to cast membranes and
that the variation could affect model development.

2.8.2 Rejection Equilibrium

A study performed by Hofman et al. (2007) demonstrated that atrazine rejection required 3 or
4 days before equilibrium was reached. The researchers believe that after this time adsorption
equilibrium was reached, which stabilized the concentration in the permeate. However, this
result was not seen for all solutes that were studied and the rejection of atrazine changed by
only 1% over the 3 days. Other studies have demonstrated that, for some solutes, a period on
the order of days is needed to establish equilibrium and to reach a steady-state permeate
concentration.

Kimura et al. (2003b) reported that the adsorption of hydrophobic compounds to membrane
materials may result in overestimated rejection values if experiments are not performed over
a long-enough time to reach equilibrium. Synthetic feed waters used during experimentation,
with a low solute concentration, may not completely occupy the adsorptive sites of the
membrane if experiments are too short. As a result of the higher number of unoccupied
membrane adsorptive sites, rejection values are inflated during initial operation of membrane
systems. Kimura et al. (2003b) concluded that, until a membrane is saturated with solute,
rejection values will be an overestimation when compared to steady-state conditions. The
experiments conducted by Kimura et al. (2003b) were terminated after approximately 20 h,
and on the basis of the data presented, rejection was not at equilibrium. However, one
observation is that these experiments were conducted at a relatively high recovery (5%) and
an extremely low feed flow rate (~180 ml/min). It is difficult to extract useful information
from these experiments because of the unrealistic operating conditions.
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2.8.3 Temperature

The temperature of the feed water has a significant effect on the solvent and solute
permeability of membranes. Sharma and Chellam (2005) reported that an increase in feed
water temperature changed the pore structure of NF membranes, increasing the pore size and
decreasing the pore density. The net outcome of these changes would be greater transport of
solutes across a membrane, which has been documented for RO and NF membranes
(Sharma and Chellam, 2005). Experiments designed to determine MTCs, effective pore size,
and other model parameters should be conducted at various temperatures.

2.8.4 Feed Water Chemistry

There are feed water constituents that have been reported to affect rejection. These factors
mainly include organic matter, pH, ionic strength, and membrane fouling.

Organic Matter. Researchers have reported various effects to rejection when organic carbon
is added to the feed solution. Nghiem et al. (2002b) reported that the rejection of the steroid
estrone by seven of eight membranes was decreased when secondary effluent was added to
the deionized feed water. A study by Majewska-Nowak et al. (2002) found that pesticides
such as atrazine could adsorb to organic matter present in feed water, increasing rejection as a
result of increased size and electrostatic interaction between the organic and the membrane. A
more recent study by Jin et al. (2007) found that the rejection of estrone significantly
increased when an aromatic hydrophobic acid with phenolic groups was added to the feed
water solution. The explanation given was that estrone could form hydrogen bonds with the
solute, which either increased the size and thus steric exclusion, or that, because the
hydrophobic acid was negatively charged, electrostatic exclusion prevented adsorption of
estrone. However, when dextran was added to the deionized water solution, there was no
change in the rejection. In a study by Yoon et al. (2005, out of four water matrices studied,
the rejection of a wide variety of organic compounds was lowest in the feed water matrix
with the highest dissolved organic carbon (DOC) concentration. Obviously, for membrane
experiments, deionized water is preferable to natural water for analytic purposes. However,
on the basis of past research, it appears that the organic matter matrix can significantly affect
rejection.

pH. The pH of a feed water solution changes the surface charge of a membrane and can also
affect the charges of species present in the feed water. As was presented in the electrostatic
effect section, the rejection of charged species generally increases with increasing pH.

The influence of pH and membrane surface charge on membrane pore structure and on the
rejection of uncharged organics as well as on permeate flux is not completely understood. At
high pH values (8—10), it has been reported that the rejection of uncharged solutes decreased,
although permeate flux increased (Braghetta et al., 1997; Berg et al., 1997). This
phenomenon may be the result of an increase in pore size of a membrane caused by the
electrostatic repulsion between the acidic functional groups within the membrane (Braghetta
et al., 1997; Berg et al., 1997). Other researchers have found little dependence of the rejection
of uncharged organics and permeate flux on pH unless ions were present in the feed solution
(Ozaki and Li, 2002; Yoon et al., 1998; Boussahel et al., 2002).

Ionic Strength. As previously mentioned in the electrostatic effect section of this review, the
ionic strength of a solution, particularly when multivalent ions are present, can significantly
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affect the rejection of charged species. For example, Bellona and Drewes (2005) determined
calcium additions could significantly reduce the rejection of negatively charged organics for
membranes with larger pores because Donnan exclusion effects were minimized. However,
diclofenac rejection was minimally affected by additions of sodium chloride, and negatively
charged organic solutes are generally well rejected regardless of the matrix.

Braghetta et al. (1997) used the Debye length parameter to quantify the effects of ionic
strength on the zeta potential and on the structure of a membrane. Findings of this study and
three others revealed that the Debye length was short at higher ionic strengths, the zeta
potential was more positive, electrostatic interaction was minimized within the membrane,
and the pore radii could shrink (Braghetta et al., 1997; Lee et al., 2002; Bellona and Drewes,
2005; Boussahel et al., 2002; Freger et al., 2000). At low ionic strength when the Debye
length is longer and the zeta potential is more negative, pore radii can increase in size to
minimize electrostatic repulsion between the negative functional groups (Braghetta et al.,
1997; Bellona and Drewes, 2005; Boussahel et al., 2002; Freger et al., 2000). Boussahel et al.
(2002) found that calcium additions could increase the rejection of uncharged pesticides by
reducing the pore size of certain NF membranes. Schéfer et al. (2002a) found that, although
the rejection of dissolved organic carbon by UF membranes was affected little by feed water
pH, increasing ionic strength had a significant inverse effect on rejection. It was hypothesized
that ionic strength additions could affect the structure of the organic carbon and also could
reduce the charge of the membrane, leading to reduced electrostatic interaction and lower
rejection. Finally, Bouranene et al. (2007) recently employed a ceramic NF membrane to
investigate the effect of increased ionic strength on rejection because ceramic pores are not
expected to change in size as a function of ionic strength. The researchers found that
increased electrolyte concentrations reduced the rejection of polyethylene glycols and that the
trend in decreasing rejection followed the Hofmeister series and is caused by the dehydration
of molecules, which reduces their hydrated radius. Like temperature, the effect of ionic
strength on rejection may be an important factor to assess when determining model
parameters.

Membrane Fouling. The effect of fouling on the rejection of organic solutes has garnered
increased attention over the past few years. Membrane fouling is defined as the reduction of
membrane performance that is due to reversible and irreversible deposition of solids on the
membrane surface and pores. Fouling results in a decline in permeate flux when a system is
operating at constant pressure or when an increase in pressure is imposed to achieve constant
flux, which increases operational costs. On the basis of what research has been published to
date, the overall effect of fouling on rejection is not completely understood.

Three types of experiment have been conducted to investigate the effect of fouling on
rejection. The first were methods used to measure small concentrations of trace organic
compounds naturally present in wastewater effluent and their rejection in a natural water
matrix over time (Bellona and Drewes, 2007; Drewes et al., 2005). In the second method,
trace organic contaminants were spiked into the feed solution at the beginning of filtration,
and rejection and fouling were measured over time (Ng and Elimelech, 2004). The third
method was to prefoul the membrane with either effluent or a synthetic solution and then to
spike trace organic contaminates to determine rejection (Bellona and Drewes, 2007; Nghiem
et al., 2008; Xu et al., 2006). The third type of experiment is generally performed at bench
scale.

Ng and Elimelech (2004) employed the second method and observed a decrease in trace
organic contaminant rejection with fouling using silica colloids. They observed that cake-
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enhanced concentration polarization associated with fouling facilitated the transport of small
inert organic compounds (ethylene glycol and glycerol) and trace organic contaminants
(estradiol and progesterone). Inert organic compounds with a molecular weight higher than
the MWCO were minimally affected by fouling, because size exclusion was the dominant
removal mechanism. Comerton et al. (2008) found that trace organic contaminates were
consistently rejected by an RO membrane but that variable rejection was observed for two NF
membranes. Comerton et al. (2008) tested 22 compounds by using wastewater effluent-
impacted Lake Ontario water and membrane bioreactor effluent. In general, compounds were
more effectively rejected by membranes with a fouling layer, contrary to the study by Ng and
Elimelech (2004). Comerton et al. (2008) also suggested a correlation between rejection and
hydrophobicity (Log K,), with more hydrophobic compounds having a higher rejection. The
increased organic compound rejection may be attributed to increased adsorption with fouling.

Xu et al. (2006) prefouled membrane specimens and performed rejection experiments and
found that membrane fouling from wastewater effluent affected trace organic rejection by NF
and ULPRO membranes but had a less significant effect on RO membranes. Rejection of
primidone, a hydrophilic nonionic compound, was found to remain the same or to decrease
with fouling for the membranes tested. Bromoform, chloroform, and trichloroethylene
adsorbed more onto fouled membranes than to unfouled membranes, resulting in higher
rejection after 50 h of filtration. Nghiem and Hawkes (2007) and Nghiem et al. (2008)
investigated the removal of the nonionic organic compounds carbamazepine and bisphenol A
with membranes fouled with Sigma-Aldrich humic acid. Rejection was seen to increase with
fouling for a loose nanofilter with large pores and was attributed to pore blocking by the
foulants. A decrease in rejection was observed with the NF-270 membrane, attributed to
cake-enhanced concentration polarization. A slight increase in rejection was observed with a
“tight” NF membrane (NF-90) for bisphenol A, and a slight reduction was observed with
carbamazepine. The authors indicated that cake enhanced concentration polarization. A slight
increase in rejection was observed with a “tight” NF membrane (NF-90) for bisphenol A, and
a slight reduction observed with carbamazepine. The authors indicated that cake-enhanced
concentration polarization also occurred with the NF-90 membrane; however, because of the
small pores, steric exclusion was the dominating effect. Nghiem et al. (2008) also indicated
that increased trace organic adsorption could facilitate diffusional transport and lower
rejection. Further investigation into the effect of fouling on membrane properties and on
solute rejection is needed in order to understand and describe membrane performance during
treatment of wastewater effluent.

2.8.5 Conclusions and Major Findings

The intent of this literature review was to summarize the major factors affecting solute
removal by NF and RO membranes and to identify strategies for solute rejection modeling.
The following conclusions summarize the most important information gained through the
literature review:

e The rejection of organic solutes depends on three major mechanisms: size exclusion,
electrostatic exclusion, and solute—membrane interactions.

e Charged organic solutes are generally well removed by NF and RO membranes
regardless of size; in general, negatively charged solutes exhibited better removal
than positively charged solutes.

¢ Nonionic solutes with solute—_membrane interactions are likely to have incomplete
removal.
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Although size is a dominant factor in the rejection of nonionic solutes,
solute—membrane interactions are an important factor.

Currently, there is no definitive way to predict which compounds will have strong
solute—membrane interactions based on molecular descriptors.

Other than solute and membrane properties, there are a number of factors that affect
rejection, with the most important being operational conditions, feed water
temperature and chemistry, and membrane fouling.

The overall effect of membrane fouling on rejection of organic solutes is not well
established.

Pertinent modeling approaches include mass transfer equations, QSPR models, and
empirical models.

Mass transfer models are advantageous because they integrate operational conditions
and to a limited degree solute and membrane properties.

QSPR models are advantageous because solute properties are easily incorporated.
Empirical models are advantageous because they are simple to use.

Models that rely on solute size as input parameters often overpredict rejection
because solute—membrane interactions are not included.

The solution—diffusion model is advantageous because only one solute input
parameter is required.

The phenomenological model is advantageous because of the “black box™ nature of
the model and possibility of correlating solute properties to the input parameters.
The differential element approach combined with the phenomenological model can
be applied to a full-scale system and could potentially include both operational
conditions and solute and membrane properties.

Adjustments to any model need to be made to account for fouling and for changes in
temperature and feed water chemistry. In addition, experimental replication is needed
to account for differences between different types of membranes.
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Chapter 3
Materials and Methods

3.1 Choosing Trace Organic Compounds for Study

3.1.1 Selection Method to Develop Model Development and Validation
Compounds

For this study, 270 organic solutes were initially selected for model development and model
validation. The list of compounds was compiled from a variety of sources and yielded a
relatively diverse set of organic solutes based on properties (e.g., size, charge,
hydrophobicity/hydrophilicity, etc.), relevance to membrane treatment (e.g., functional
groups affecting rejection, likelihood of permeation), and environmental relevance (e.g., EPA
Candidate Contaminant List, recent advancements in emerging contaminant research, human
health, and environmental relevance). After removal of compounds that caused analytical and
experimental issues (e.g., high volatilization, instability, and poor solubility), a shorter list of
compounds was generated that retained the diversity of the original list for model
development and validation.

All compounds were categorized by expected rejection mechanism based on charge and
hydrophobicity (Table 3.1). Six different categories were developed: hydrophilic neutral
(HN; less than 0.01% charged at pH 6.5; Log K, < 2), hydrophilic/hydrophobic neutral
(HHoN; less than 0.01% charged at pH 6.5; Log K, > 2 and Log K, < 3), hydrophobic
neutral (HoN; less than 0.01% charged at pH 6.5; Log K, > 3), hydrophilic negatively
charged (HCN; greater than 50% negatively charged at pH 6.5), hydrophilic positively
charged (HCP; greater than 50% positively charged at pH 6.5), and hydrophilic negatively
and positively charged (HCNP; having both positive and negative charge at pH 6.5).
Compounds were grouped by these categories, which yielded 51 HoN compounds, 27 HHoN
compounds, 76 HN compounds, 50 HCN compounds, 38 HCP compounds, and 18 HCNP
compounds.

For each rejection mechanism subgroup, principal component analysis and k-means
clustering/discriminate analysis was performed (using XLSTAT) to further group compounds
based on molecular properties determined with the Schrodinger software package. These
descriptors included Log K, solubility, volume, solvent accessible surface area (SASA),
hydrophobic surface area (FOSA), hydrophilic surface area (FISA), polar surface area
(PISA), weakly PISA (WPSA), polarizability, dipole moment, quantum mechanic (QM)
dipole moment, QM energy, solvation energy, and Egomo and Epyvmo energy. For HN, HHoN,
HoN, HCN and HCP compounds, five groups were developed, whereas, for HCNP, three
groups were developed. Random selection was then used to select, at the least, 33% of the
compounds from each grouping (all compounds were selected from groups with only two
compounds, 66% were selected from groups with three compounds, and 50% of compounds
were selected from groups with four compounds).
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Table 3.1. List of Compound Designations and Comparison of Original Compound List
with Final Compound List

Designation | Charge Designation’ Log K,,,” Total No. No. in No. in
Initially Development | Validation
Considered Set Set
HCN >98% negative (acidic | No 50 19 6
group deprotonated) restriction
HCP >98% positive (basic No 38 14 5
group protonated) restriction
HCNP >50% positive (basic No 18 9 5
group protonated), restriction
>50% negative (acidic
group deprotonated),
>98% overall net
charge
HN <2 76 31 5
HHoN >98% uncharged 3>Log 27 12 4
K2
HoN >3 51 14 6
Other <98% negative or No 10 1 1
positive charge restriction
At pH 6.5.

®For certain compounds, Log K., differs depending on source making this classification difficult.

This selection process yielded a group consisting of 132 compounds for model development
and validation (Table 3.2). According to an in-depth analysis, this final list of compounds
retained much of the diversity of the full list based on criteria outlined previously (e.g.,
properties, rejection mechanisms, classes of compounds, environmental relevance, etc.). The
list was then randomized with the 33 top compounds selected for the validation set and the
remaining 101 selected for the model development set (Table 3.2). Figures 3.1 through 3.3
present box and whisker plots of key descriptors such as molecular weight, Log D, and dipole
moment, respectively, for the original list of compounds compared to the final list used as
model development and validation sets.
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Table 3.2. Compound List Used for Model Development and Model Validation

Class Compounds
Acetic acid Enalapril Salicylic acid
Benzoic acid Furosemide Sulfacetamide
Captopril Gemfibrozil Sulfadimethoxine®
Chlortetracycline Ibuprofen Sulfadioxine
HCN Clofibric acid Ketoprofen Sulfamerazine
(Log Kow <2) - —— ——
Dibromoacetic acid Maleic Acid Sulfamethoxazole
Dichloroacetic acid Methotrexate Sulfasalizine
Diclofenac Naproxen Trichloroacetic acid
1,4-Dihydroxybenzoic acid
Anmitriptyline Imiquimod Pseudoephedrine
Atenolol Ketoconazole Ranitidine
Cimetidine Metformin Salbutamol
HCP Diethylamine Methylamine Tamoxifen
(Log Koy <2) —
Diltizaem Metoprolol Trazodone
Diphenhydramine Norfluoxetine Trimethoprim
Guanidine
Alanine Doxycycline Oxytetracycline
Arginine L-Glutamic acid Phenylalanine
HCNP (Log Kow < [MBaglofen Histidine Serine
2) Ciprofloxacin Lysine Tyrosine
Cysteine Norfloxacin
Acetaminophen Meprobamate Phenacetine
Benzyl acetate Methanol Primidone
Benzyl alcohol Methylparaben Propylphenazone
1,4-Butanediol Methyl-tert-butyl-ether Resorcinol
Caffeine NDMA Sucralose
Chloroform NDMA Sucrose
HN Ethanol NDMA Triethylene glycol
(Log£on=2) Fluconazole Tris(1-chloro-2-
2-Fluorophenol N-Nitrosomethylethylamine propyl)phosphate
Glucose N-Nitrosomorpholine
Glycerol N-Nitrosopiperidine TCEP
Hydrocortisone N-Nitrosopyrrolidine Uracil
Isopropanol Pentoxifylline Urea
Atrazine Diethylphthalate
Bromoform Dilantin n-Nitrosodibutylamine
Carbamazepine Estriol Propylparaben
Dibromochloromethane Methyl salicylate Thiabendazole
HHoN Dichlorobromomethane 1-Naphthalenemethanol Warfarin
(3>LogKow=2) rppr 2-Naphthol
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Table 3.2. Compound List Used for Model Development and Model Validation (cont.)

Class Compounds
Benzophenone Estrone 2-Phenylphenol
Bisphenol A Ethynylestradiol Progesterone
Butylparaben Fenofibrate Testosterone
HoN Desloratadine Fluoxetine Triclocarban
(Log Kow >3) : - - - -
2.,4-Dichlorophenol” n-Nitrosodiphenylamine Triclosan
Diethylstilbestrol 4-Nonylphenol
17B-Estradiol Oxybenzone Tbepp

Note: Model validation is shaded in gray.

“Originally classified other: Reported pK, values for 2,4-dichlorophenol were 7.89 (SRC Database) and 8.05
(ACD Lab Software), indicating between 97 and 98 nonionic at pH 6.3. As such, this compound was
included in the HoN designation for model development.

bOriginally classified other: Reported pK, values for sulfadimethoxine are between 5.5 and 5.9, indicating
between 72 and 86% negatively charged at pH of 6.3.
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Figure 3.1. Range of molecular weight for compounds included in model development
and validation compared with the total number of compounds considered.
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Figure 3.2. Range of Log D (pH = 6) for compounds included in model development
and validation compared with the total number of compounds considered.
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Figure 3.3. Range of dipole moments for compounds included in model development
and validation compared with the total number of compounds considered.
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3.1.2 Sources of Descriptor Data

Molecular descriptors were obtained and calculated from a variety of sources and programs
listed in Table 3.3. Properties that could potentially predict steric interactions include
molecular weight, length, width, depth, area, volume, globularity EqDepth, Wilke—Chang
diffusion coefficient, Stokes radius, and molecular volume. Globularity (glob) is defined as
S/Sequivalents, 1N Which Sequivaient 18 the surface area of a sphere of equivalent volume V.
Calculations utilized to obtain the Wilke—Chang diffusion coefficient, Stokes radius, and
molecular volume are summarized in Appendix B. Agenson et al. (2003) observed molecular
weight and molecular width sterically affected rejection. Yangali-Quintanilla et al. (2010)
developed QSPRs incorporating dimension descriptors such as length, width, and EqDepth to
predict rejection.

Log K,w, obtained from the SRC Physical Property Database and Schrodinger QikProp
(QPlogPo/w), is a measure of the compound’s affinity to adsorb to the membrane. Log D
values or Log K, values at a given pH were also calculated by ACD Lab Software. Previous
research by Braeken et al. (2005) observed Log K., can negatively affect rejection; however,
research by Kiso et al. (2001b) observed Log K, has no significant correlation with
rejection. The molecular structure, obtained from NIST WebBook, can help gain an
understanding of possible solute—membrane interactions. Previous research by Williams et al.
(1999) and Matsuura and Sourirajan (1971) revealed interactions between hydroxyl groups
and the membrane surface due to possible hydrogen bonding.

The formal charge for each compound can be determined by pK, and pK,, values at a given
pH. The total formal charge at neutral pH was also calculated by Schrédinger LigPrep. Ozaki
and Li (2002) observed an increase in rejection as the compound under investigation became
negatively charged over a pH range. Verliefde et al. (2007) observed rejection efficiencies
greater than 95% for negatively charged compounds and greater than 85% rejection for
positively charged compounds due to electrostatic interactions. Libotean et al. (2008),
Kimura et al. (2004), and Van der Bruggen et al. (1998) observed that dipole moment, a
measure of a compound’s uneven distribution of positive and negative charges, had a
significant effect on neutral solute rejection because of electrostatic interactions.

Other molecular descriptors that could have an effect on compound rejection and were
investigated include polarizability, ionization potential (IP), electron affinity (EA), Eyomo,
Erumo, hydration energy, aqueous solubility, free energy of solvation, and various surface
area components. Polarizability is a measure of a compound’s electron cloud to be distorted
due to an external force, such as a dipole or ion nearby. IP is the amount of energy required to
remove an electron from a molecule and become ionic. EA is the energy change that occurs
when a molecule gains an electron. Egomo is the highest-energy molecular orbital that
contains an electron, and Ej o is the lowest-energy molecular orbital that does not contain
an electron. Hydration energy is the amount of energy released when 1 mol of a solute is
dissolved in a large amount of water, and aqueous solubility is the maximum amount of a
compound that can dissolve in water at equilibrium. Free energy of solvation in a solution is
the amount of energy released as a solute becomes stable in a solution. The different
descriptors for surface area can be used to quantify membrane interactions because it is a
measure of the different components of the molecule: FOSA is a measure of saturated
hydrocarbons; FISA represents nitrogen, oxygen, and hydrogen attached to heteroatoms;
PISA represents m bonds; and WPSA represents halogens, phosphorus, or sulfur.
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Table 3.3. List of Molecular Descriptors Used for Modeling Approaches with Selected
Programs Utilized to Obtain Descriptors and Descriptions

Program Molecular Description
Descriptor
NIST Mol weight
Chemistry Mol formula
WebBook Mol structure Listed as no. of -OH, -NH,, -halogens, aromatic rings, etc.
SRC Mol wt
R o
Physical Water solubility mg/L
Property Log Ky, Experimental at 25 °C
Database .
pK, Experimental at 25 °C
Length irr;rgest dimension of molecule in optimal configuration,
Width nMHc:dlum dimension of molecule in optimal configuration,
Depth Smallest dimension of molecule in optimal configuration,
nm
Hyperchem
Area Approximate area, A
Vol A
Hydration energy Based on the approximate surface area calculation, kcal/mol
Polarization Atom-based method, A*
pK, Acid dissociation constant
ACD Lab pKy Base dissociation constant
Software LOg D pH 4’ 6’ 73 8’ 9
v.8.14 Vol cm’/mol
PISA A’
Schrodinger
- LigPrep Total Q Total charge of the molecule
Dipole Computed dipole moment of the molecule
SASA Total SASA
Hydrophobic component of SASA (saturated C and
FOSA
attached H)
Hydrophilic component of SASA (N, O, and H on
FISA
heteroatoms)
PISA 7 (C and attached H) component of the SASA
S((:)hiolshnger WPSA Weakly polar component of the SASA (halogens, P, and S)
- QikProp
Vol Total solvent-accessible volume, A®
Glob Globularity descriptor (1.0 for a spherical molecule)
QPpolrz Predicted polarizability, A°
QPlogPoct Free energy of solvation in octanol
QPlogPw Free energy of solvation in water
QPlogPo/w Predicted octanol—water partition coefficient
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QPlogS Predicted aqueous solubility, Log S.

CIQPlogS Conformation independent predicted aqueous solubility

1P PM3 calculated IP, eV

EA PM3 calculated electron affinity, eV

EqDepth Arithmetic mean of the depth and width, nm

Diffusion coefficient | Wilke—Chang, m%/s

Stokes radius LaBas Additive Method, nm

Calculated Mol vol LaBas Additive Method, cm’/mol

Enomo Highest Occupied Molecular Orbital, eV; B3LYP Based
Method

ErLumo Lowest Unocupied Molecular Orbital, B3LYP Based
Method

3.1.3 Statistical Methods

During the course of this study, QSPRs were developed to describe and predict solute
rejection and consisted of four parts: experimental database development, molecular
descriptor evaluation, multiple linear regressions, and model validation.

Experimental Database Development. Bench-scale database development consisted of
compiling average quasi-equilibrium 12-gal-per-sq-ft-and day (gfd) data for each compound
tested for the NF-270 and ESPA2 membranes. Compounds selected for these experiments
represented the six different categories: HN, HHoN, HoN, HCN, HCP, and HCNP. The data
were quality checked before QSPR development continued.

Molecular Descriptor Evaluation. Molecular descriptor evaluation was conducted by using
JMP 8.0.2 (SAS Institute, Inc., 2009), a statistical package employing multivariate methods
and various modeling techniques. Initial cross-validation calculated a root mean squared error
(RMSE) value for each possible multiparameter regression. Cross-validation of all molecular
descriptors investigated calculated the optimum numbered parameter regression for QSPR
development to be 3. To begin evaluating molecular descriptors, a correlation matrix was
developed (presented in Appendix D) to determine which parameters are correlated. PLS with
cross-validation was employed to remove any insignificant parameters before QSPR
development. PLS determines which molecular descriptors contribute to the variability in
rejection. Significant descriptors have a PLS coefficient greater than 0.05 and a variable
importance plot (VIP) value above 0.8 (Wold, 1995).

Multiple Linear Regression. Three parameter correlations were developed by using
descriptors found to be significant in the PLS evaluation. The significant descriptors
employed in each calculation were less than 0.25 correlated with each other (results shown in
the correlation matrix). QSPRs were developed in JMP and determined statistically valid by
using the following statistical tools. The coefficient of determination, R, should be close to 1
and no less than 0.75.

RZ _ 27 (ypred,i _y)z

S s E (3.1)
Zi (yobs,i _y)2
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1

y=—2xy (3.2)
n

obs,i

where y,,.q; are the outputs from the regression, ¥ is the mean observed value, y,,,; are the
corresponding observed values, and # is the number of compounds in the model set. The
overall F-ratio determines the overall significance of the model and should be greater than
2.8, where the larger the value, the more significant the correlation.

2” (ypredl y)/
SSR (33)
(yobsz y)/
SSE

where DF s is the degrees of freedom for the regression sum of squares, the number of
parameters used in the regression. DF g is the degrees of freedom for the error sum of
squares, meaning the number of observations minus the number of parameters used in the
regression. The p value is the probability that correlation happened by chance. A p value less
than 0.05 means there is a 95% chance that the correlation did not happen by chance and that
it is significant. A small RMSE indicates a better fit, generally an RMSE of <0.5.

F —ratio=

2
Z:',l(ypred,i _yobs,i)
n

RMSE = \/ (3.4)

Model Validation. Significant QSPR models were internally validated by using the leave-
one-out (LOO) cross-validation method in which one compound is excluded from the data set
and the model correlated with the remaining data. This method was repeated »n times for n
compounds in the data set. The results from this validation were then combined and a single
QSPR was produced, yielding a ¢” value. A ¢* value greater than 0.5 indicates a good fit, and
a ¢ value greater than 0.9 indicates an excellent fit (Eriksson et al., 2003). After LOO cross-
validation was conducted, the QSPR was externally validated by applying the model to the
validation compounds at bench scale.

3.2 Analytical Methods for Bulk Parameters and TOrCs

3.2.1 Physicochemical Parameters

3.2.1.1 pH and Conductivity

pH was determined by using a Beckman 260 portable pH meter with combination of a gel-
filled electrode (Beckman, Fullerton, CA; Standard Method 4500-H") (Clesceri et al., 1998).
Conductivity was determined by using an Y SI model 85 multimeter (YSI, Inc., Yellow
Springs, OH; Standard Method 2510).

3.2.1.2 Alkalinity

Alkalinity was measured by using the Hach Alkalinity Kit. A 100-mL sample was titrated

with 1.6N sulfuric acid to a pH of 4.3 by using the Hach digital titrator model 16900 (Hach,
Loveland, CO).
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3.2.2 Bulk Parameters
3.2.2.1 Inorganic Anions

Inorganic anions were determined by using a Dionex IS 90 lon Chromatography system
according to Standard Method 4110 B. The anions that were examined are fluoride, bromide,
chloride, nitrate, phosphate, and sulfate. Ammonia was measured according to the Hach
Nessler Method 8038 adapted from Standard Methods 4500-NH; B and C (Clesceri et al.,
1998). Metals were determined by using a Perkin-Elmer Elan 6100 inductively coupled
plasma mass spectrometry system (Standard Method 3125 B) (Clesceri et al., 1998). This
method measured a suite of metals. These metals included Ag, Al, As, B, Ba, Be, Ca, Cd, Co,
Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Sc, Se, Si, Sn, Sr, Ti, U, V, and Zn.

3.2.2.2 TOC/DOC

Total organic carbon (TOC)/DOC was quantified by using a Sievers 5310 TOC analyzer with
autosampler (Ionics Instruments, Boulder, CO) according to Standard Method 5310 B
(Clesceri et al., 1998). The samples were placed in 17-mL sample vials and were acidified
with phosphoric acid. Measurements of TOC are based on calibration with potassium
hydrogen phthalate standards. DOC was measured by the same procedure used for TOC,
except the sample was prefiltered (0.45-um pore size).

3.2.2.3 UV Absorbance and SUVA

UV absorbance (UVA) was analyzed by using a Beckman UV/VIS spectrophotometer with a
1-cm quartz cell (Standard Method 5910 B) (Clesceri et al., 1998). Samples were measured at
wavelengths of 200—400 nm. The specific UVA (SUVA) is defined as the ratio between
UVA (254 nm) and DOC.

3.2.3 HPLC-DAD

Aromatic organic compounds were quantified by using a Hewlett-Packard 1100 high-
performance liquid chromatography (HPLC) system equipped with ultraviolet diode array
detection (UV-DAD) and C-18 reversed-phase column and by applying a variety of different
methods depending on retention times and compound hydrophobicity. A solution of 340-
mg/L monobasic potassium phosphate (KH,PO,) and 3.8 mL of H;PO4 was used as a buffer.
The methods initially utilized eluent concentration ranging from 5% methanol and 95%
buffer to 50% methanol and 50% buffer, utilizing a greater initial concentration of methanol
for hydrophobic compounds in order for separation to occur. UV optimization occurred prior
to HPLC analysis. Samples for UV-DAD analysis were collected in 2-mL autosample vials
and were stored at 4 °C pending analysis. Specific compound standards (0.1, 0.5, 1, and 5
mg/L) were run before and after compound analysis for instrument quality check and
calibration curve and for signs of compound degradation. Integration of peaks was performed
manually. The detection limit for the UV-DAD was 0.1 mg/L.

3.24 HPLC-RID
A Hewlett-Packard 1050 HPLC system equipped with a 1047A refractive index detector was
used to quantify sugars and alcohols. HPLC-refractive index detection (RID) quantifies

concentration by determining the change in refractive index in each sample. Deionized water
was utilized as the eluent, and no analytical column was employed for analysis. Compound
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samples for UV-RID analysis were collected in 2-mL autosampler vials and were stored at 4
°C pending analysis. Integration of peaks was performed manually. The detection limit for
UV-RID analysis was 1 mg/L.

3.2.5 LC/MS-MS

Trace organic compounds were measured by LC with tandem mass spectroscopy (LC/MS-
MS) (Table 3.4) as described by Vanderford and Snyder (2006). This method analyzes
pharmaceuticals and other trace organic compounds in water by isotope dilution LC/MS-MS.
Analytes were extracted by using solid-phase extraction (SPE) followed by LC/MS-MS as
described by Vanderford et al. (2003). The surrogate standards [13C3]-caffeine, [13C3]-
atrazine, [ 13C]-sulfamethazine, carbamazepine-d10, [13C]-ibuprofen, [13C]-triclosan, and
[13C2]-estradiol were spiked into the filtered samples at a concentration of 50 ng/L. Analytes
were extracted in batches of six samples by using preconditioned 500-mg hydrophilic-
lipophilic balance cartridges. All extractions were performed by using an automated SPE
system. The sample was then loaded (15 mL/min) onto the cartridges, after which the
cartridges were rinsed with 5 mL of reagent water and then dried with a stream of nitrogen
for 60 min. Next, the cartridges were eluted with 5 mL of 10/90 (v/v) methanol/methy] tert-
butyl ether (MTBE) followed by 5 mL of methanol into 15-mL calibrated centrifuge tubes.
The resulting extract was concentrated with a gentle stream of nitrogen to a volume of 50 pL.
Then 20 pL of a 2.5-mg/L solution of internal standards (diazepam-d5 and testosterone-d3)
was added, and the extract was brought to a final volume of 1 mL by using methanol. The
final concentration of the internal standards was 50 pg/L. Detection limits for the target
compounds are summarized in Table 3.4.

WateReuse Research Foundation 63



Table 3.4. Theoretical Detection Limit for LC/MS-MS Method

Detection Detection
Compounds Limit (ng/L) Compounds Limit
(ng/L)

Acetaminophen 10 N-Nitrosodibutylamine 1000
Anmitriptyline 10 NDMA 1000
Atenolol 10 NDMA 1000
Atrazine 10 N-Nitrosodipropylamine 1000
Benzophenone 250 NDMA 1000
Bisphenol A 50 N-Nitrosomorpholine 1000
Cafteine 10 N-Nitrosopiperidine 1000
Carbamazepine 100 N-Nitrosopyrrolidine 1000
DEET 50 N-Nitrosodiphenylamine 1000
Diclofenac 25 4-n-Nonylphenol 250
Dilantin 50 Norfluoxetine 25
Diphenhydramine 100 Oxybenzene 10
17B-Estradiol 6.25 Primidone 10
Estriol 16 Progesterone 1
Estrone 6.25 Propylparaben 10
Ethynylestradiol 2.5 Sucralose 250
Fluoexetine 10 Sulfamethoxazole 10
Gemfibrozil 10 TCEP 10
Ibuprofen 100 TCPP 25
Ketoprofen 500 TDCPP 100
Meprobamate 10 Testosterone 1
Metformin 100 Triclocarban 10
Methylparaben 10 Triclosan 10
Naproxen 25 Trimethoprim 10

Note: Detection limit determined by the lowest standard concentration that passes the signal-to-noise ratio (7:1).

3.2.6 GC-ECD

Trihalomethanes (THMs) and haloacetic acids were analyzed by gas chromatography coupled
with an electron capture detector (GC-ECD) following EPA Methods 524.2 and 552.2,
respectively. For EPA Method 551.1, 40 mL of sample solution was collected during the
experiments from the appropriate sampling port in a clean 40-mL EPA vial with a TFE-lined
screw cap. Once the sample was confirmed to be free of air, the vial was labeled and stored in
a refrigerator at 4 °C pending analysis. No sample was ever stored for more than 7 days
before extraction. During each extraction, a set of standards was prepared to provide a quality
assurance check of the equipment and the procedure and to establish a calibration curve for
the run. The set of standards included a series of concentrations designed to provide a
calibration curve that included all concentrations in the samples. For sample extraction, 30
mL of the solution was measured into a clean graduated cylinder. The volume remaining in
the vial was then wasted, and the 30 mL in the graduated cylinder was poured back into the
vial. To each vial 8 g of sodium chloride and 3 mL of MTBE were added, and the vials were
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mixed on a vortex mixer for about 30 seconds, or until inspection indicated that all of the
sodium chloride had dissolved. This sample was then placed in a rack and allowed to stand
and develop an MTBE layer, while the rest of the samples and standards underwent the same
procedure. For the extraction procedure, a pasteur pipette was used to extract 2 mL of the top,
organic layer. This 2 mL was transferred into the appropriate autosampler vial, which was
immediately capped and placed in a rack. After all samples had been extracted, the
autosampler vials were placed in a freezer pending analysis. This freezing always occurred
within 4 days of extraction. Samples were analyzed by using a GC-ECD. The temperature
program included an initial temperature of 35 °C with a 4-min hold time. Subsequently, the
temperature was ramped to 180 °C at 30 °C per min. Integration of the chromatographs was
performed manually with a consistent technique and operator.

3.3 Experimental Methods
3.3.1 Bench-Scale Systems
3.3.1.1 Recycle Mode

Bench-scale experimentation was conducted by using a cross-flow stainless steel SEPA 11
(GE Osmonics) membrane-testing unit employing a 140-cm” flat-sheet membrane (Figure
3.4). The cell holder has a channel height of 31 mil, with the active layer of a membrane
specimen having a width of 9.5 cm and length of 14.6 cm. A flow diagram illustrating the
bench-scale unit is shown in Figure 3.3. A rotary vane pump head was utilized to deliver the
feed solution from a temperature-controlled feed container at 1.5 L/min to the flat-sheet cell.
A supervisory control and data acquisition (SCADA) system collected output signals from
flow, pressure, and temperature sensors and controlled and maintained temperature set-points.
A digital analytical balance was utilized to measure the permeate flow rate.

-

Figure 3.4. SEPA II membrane testing unit employing flat-sheet membrane.

New virgin membrane specimens were used for each experiment to minimize any variability
in results. In addition, fouling effects were not considered in generating bench-scale rejection
data. Membranes were flushed with 20 L of deionized water at 150 psi prior to rejection
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experiments to remove any impurities. Spike solutions were added to the 20-L feed tank to
obtain the desired feed concentration, about 700 pg/L for the NF-270 membrane and 3 mg/L
for the ESPA2 membrane. Rejection experiments were conducted at a constant feed flow rate,
2 L/min, water temperature of 18 °C, and pH of 6.3. The pressure was increased from
approximately 10 to 200 psi to obtain five permeate flux rates between 5 and 70 gfd for the
NF-270 membrane and between 5 and 40 gfd for the ESPA2 membrane. An additional 12-gfd
sample was collected after 18 h to verify that quasi-equilibrium was reached. After 1 h, 250
mL of permeate was collected before sampling to allow the system to equilibrate. Duplicate
samples were collected in the appropriate vials, depending on analytical method, from feed
and permeate stream. Samples were stored at 4 °C pending analysis. A minimum of two
experiments for each set of compounds was performed.

SCADA

LEGEND / E

Flow meter \
7
T

@ Pressure gauge . .
@ Conductivity Permeate
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@ Feed pump

Concentrate

Figure 3.5. Bench-scale membrane testing unit process flow diagram.

3.3.1.2 Once-Through Mode

For the purposes of developing more-accurate rejection models, it is necessary to determine
compound-specific rejection for a given system at a state of equilibrium. This situation
involves reaching a point in an experiment where permeate and feed concentrations are
independent of time. Many compounds tested during our research exhibited stable
concentrations relatively quickly. For some compounds, however, feed and permeate
concentrations failed to stabilize within the course of a 24-h experiment. Of the compounds
considered, THMs displayed the most extreme case of concentration instability. In several
experiments the rejection of these compounds dropped below 0, implying a higher
concentration in the permeate stream than in the feed stream. Figure 3.6 depicts this rejection
decline for bromodichloromethane (BDCM) during a recirculation experiment. This negative
rejection was an artifact of the experimental setup and had to be remedied in order to
understand the behavior of partitioning compounds like the THMs.
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Figure 3.6. Rejection of BDCM by NF-270 membrane in recirculation experiments.

Declining concentration in the feed solution was the main factor that caused negative
rejection results in recirculation experiments. An example of the declining feed concentration
observed for BDCM in recirculation experiments is shown in Table 3.5. Compound mass
from the feed solution was continuously being lost because of adsorption onto various
interfaces within the system and into the membrane matrix. Therefore, as the feed solution
was recycled, it constantly returned to the feed tank with less mass. Increasing the flux rate
increased the mass that was exposed to the membrane. Therefore, the rate of mass lost to the
system increased with the increasing flux rate. This phenomenon made it impossible to
compare compound rejection behavior against flux even if the concentration decline could be
factored out. As a consequence, the team designed a system that eliminated the recirculation
aspect of the experiments.

The main objective in designing a new system was to provide a stable feed concentration to
the membrane. In order to avoid recycling the feed water, a system was devised that did not
require that permeate and concentrate streams be recycled. Two 500-gal tanks connected in
parallel were filled with deionized water and were spiked with compounds to be tested. This
solution was fed to the membrane cell after which both permeate and concentrate streams
were wasted. Figure 3.7 illustrates the system with feed tanks in the background and
membrane cell, pump, and computer in front. Experiments run by using this setup will be
referred to as “once-through” experiments throughout the report.
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Table 3.5. Feed Concentration Measurements Taken Throughout Three Recirculation
Experiments with BDCM

ExpthFO:zi( Set Noégirl:l?;ter Feed Concn (mg/L)
0.0 176
6 gfd 5.8 114
22.2 82
0.0 90
2.9 92
12 gfd 7.0 86
27.3 24
0.0 136
1.5 118
24 gid 53 104
7.0 94

Figure 3.7. Once-through experimental apparatus at Colorado School of Mines.

With a feed flow rate of 1000 mL per min, these experiments could proceed for more than
50 h before the feed water was exhausted. Table 3.6 presents the feed concentration values
for BDCM during two once-through experiments. The data in this table revealed a steady
decline in feed concentration over time. This same trend was observed for the three other
THMs during once-through experiments. It is unclear what mechanism caused these feed
concentration declines, but volatilization and partitioning to tank walls are probably
responsible for most of the mass loss.
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Table 3.6. Feed Concentration Measurements Taken Throughout Two Once-Through
Experiments with BDCM

Expt 1 Expt 2
Time Feed Concn Time Feed Concn
h after h after
s(tartup) (ng/L) s(tartup) (ng/L)
0 504 0 86.8
1 500 1 77.0
2 490 2 84.5
4 474 35 72.3
7 456 6 85.1
22 367 7.5 78.9
25 316 9.5 82.5
27 294 24.5 13.1
32 268 26.5 37.4
47 228 29.5 69.3
52 213 32.5 66.9
53 215 33.5 62.0
58 206 50.5 67.3
59 206 51.5 61.9
55.5 56.2

Although the concentration did steadily decrease throughout the experiments, the decline was
not as rapid as observed in the recirculation experiments. In addition, mass loss was
decoupled from the flux, which was not the case during recirculation experiments. In spite of
the decline, rejection levels did show a stabilizing trend in once-through experiments. This
observation leads to the conclusion that the feed concentration decline was slow enough to
allow the permeate stream to reach steady state and to reflect a concentration gradient
appropriate for that level. Analysis of the results of the THM experiments will be discussed in
Section 4.1.3.

3.3.1.3 Estimating Concentration Polarization

The degree of concentration polarization during bench-scale experimentation was determined
by employing two different methods, velocity variation method and the flux variation
method. These methods are discussed later.

Velocity Variation Method. A series of experiments was conducted on the basis of the
velocity variation method adapted from Geraldes and de Pinho (2006) to estimate the intrinsic
rejection. Velocity and hydraulic diameter calculations utilized methods from Schock and
Miquel (1987). By using the bench-scale flat-sheet setup, caffeine, acetaminophen,
2-naphthol, and resorcinol were separately examined as the feed flow rate was varied from

1 to 7 L/min in increments of 1 L/min at constant permeate flux rate of 55 gfd. Experiments
were conducted at constant water temperature (18.5°C) and a pH of 6.3. After 1 h elapsed and
250 mL of permeate was collected to allow the system to equilibrate, sampling was
conducted. Duplicate samples were collected in HPLC vials from feed and permeate streams
and stored at 4°C pending analysis. A minimum of two experiments for each set of
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compounds was conducted in order to confirm results. New flat-sheet membrane specimens
were inserted for each velocity set-point. Rejection was quantified by using the HPLC UV-
DAD method. The coefficients for the Sherwood equation were calculated and are displayed
in Equation 3.5.

Shom 0,225Rg985 o090 - “Tiﬂ (3.5)

The concentration at the membrane surface and intrinsic rejection can be calculated by using
Equations 3.6 and 3.7, respectively.

g = %} = axp *-:I:- (3.6)

Bgpguy f"[p.*' )}
_‘-fﬁ 3.7
ﬁfi‘ﬁ' - T ';rk. (3.7)

Flux Variation Method. A series of experiments was conducted on the basis of the flux
variation method adapted from Sutzkover et al. (2000). Applying the bench-scale flat-sheet
membrane system, researchers varied permeate flux rates from 12 to 85 gfd at a constant feed
flow rate by using a solution of sodium chloride spiked in deionized water. Experiments were
conducted at a constant water temperature (18.5 °C) and pH of 6.3. After 1 h elapsed and 250
mL of permeate was collected, sampling occurred. Duplicate samples were collected from
feed and permeate streams and were stored at 4 °C pending analysis. A minimum of two
experiments for each set of compounds was conducted in order to confirm results. New flat-
sheet membrane specimens were inserted for each flux set-point. Concentrations were
quantified by using conductivity measurements. The coefficients for the Sherwood equation
were calculated by using

Equation 3.8.

Shom 0165497 0097 - %ﬁ (3.8)

Method Analysis. The coefficients in the empirical correlations (Equations 3.5 and 3.8)
obtained from the two methods described earlier resulted in large deviations between
observed and intrinsic rejections, especially at high permeate flux rates. Even though these
values were determined by two separate peer-reviewed methods, further analysis was
conducted to evaluate whether these coefficients yielded unrealistic intrinsic rejections. It was
observed that, at low Reynolds numbers, between 157 and 1090, rejections significantly
changed; however, at higher Reynolds numbers, between 1090 and 1557, rejection increased
by less than 1%. This finding suggests that the two peer-reviewed methods used to calculate
the Sherwood correlation coefficients resulted in an overestimation of intrinsic rejection at
high permeate flux rates. Assuming limited rejection was reached at a Reynolds number of
1557, the coefficients were recalculated and yielded new coefficients as presented in
Equation 3.9, which were used in this study.

Sh = 0.42Fe%59%3% = K85 (3.9)

&
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3.3.2 Pilot-Scale Membrane System

A pilot-scale NF/RO system at Colorado School of Mines (CSM) was used for controlled
spiking studies in tap water to study the rejection of select nitrosamines by NF membranes.
The pilot-scale system is a two-stage membrane unit that was designed to mimic a two-stage
full-scale treatment system. The unit was built in a four-stage array configuration to minimize
space and consists of six pressure vessels, four in the first stage and two in the second stage.
The pilot-scale unit requires 21 4040 spiral-wound elements, with 14 elements in the first
stage and 7 elements in second stage. The system is equipped with a SCADA system; has a
variable speed feed pump; and can be operated at different recoveries, feed flow rates, and
permeate flux rates. On the basis of the system’s configuration, it requires a feed flow rate
between 15 and 25 gpm and therefore was operated in recycle mode, where permeate and
concentrate streams were returned to the feed water tank. The system is fed water from two
500-gal feed tanks that are temperature controlled by using an in-house chilled process water
stream. The pilot-scale system has multiple sampling locations that allows for samples to be
collected from the feed, permeate from each pressure vessel, combined permeate from the
first stage, combined permeate from the second stage, total combined permeate, concentrate
from pressure vessels, first-stage combined concentrate, and total combined concentrate. A
schematic and picture of the pilot-scale unit with sampling locations are presented in Figures
3.8 and 3.9, respectively.
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| Feed Flow
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Figure 3.8. Schematic of pilot-scale membrane unit and sampling locations.
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Figure 3.9. CSM’s pilot-scale membrane skid.

3.3.3 Full-Scale Sampling Campaign at Orange County Water District

The Orange County Water District (OCWD), CA, Groundwater Replenishment System
(GWRS) Advanced Water Purification Facility (AWPF) utilized reclaimed water after
primary and secondary treatment. Primary wastewater treatment consists of coagulant
addition and sedimentation. Following primary clarification, the primary effluent flow stream
was split and oxidized by using two secondary treatment processes: activated sludge and
trickling filters. Secondary clarifiers at the activated sludge system and trickling filters
produced fully oxidized and clarified secondary effluent. Subsequently, the effluent is
pumped to the GWRS AWPF, where it is treated with MF, RO, and UV-peroxide advanced
oxidation processes. The secondary treated wastewater was first chloraminated prior to MF.
The water was then treated by MF by using Siemens/Memcor submerged hollow-fiber
membranes with a maximum nominal pore size of 0.2 pm. The water is then diverted to RO
(ESPA2 membranes; Hydranautics, Oceanside, CA) system (Figures 3.10 and 3.11).
Upstream of the RO process, the flow was pretreated by adding sulfuric acid for pH
adjustment and scaling inhibitor to prevent precipitation of sparingly soluble salts and by 10-
pm-pore-size cartridge filtration. The system was designed to operate at pH 6.8, an 85%
recovery rate, and at a permeate flux of 12 gfd.

Figure 3.10. OCWD’s RO membrane galler. Flgure 3.11. OCWD’s RO membrane elements
within pressure vessels.
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3.3.4 Challenges

Past work developing models to describe the rejection of organic contaminants has generally
used flat-sheet membrane configurations for experimentation (Kiso et al., 1996, 2000, 2001a;
Kimura et al., 2003a and 2003b). Flat-sheet material can be obtained through two means: the
membrane manufacturers provide dry, flat-sheet specimens, or flat-sheet material can be cut
out of spiral-wound elements. As was found by a study on modeling organic contaminant
removal by KIWA (Hofman et al., 2007), the properties of flat-sheet material can vary
significantly throughout a spiral-wound element. These differences can affect rejection
performance and ultimately lead to the development of models that are not applicable to
large-scale systems with large amounts of membrane area. Because one objective of this
project was to develop modeling approaches at bench scale and to upscale the approaches to
modeling a pilot-scale system, it was imperative that the flat-sheet material be representative
of the membrane properties of an entire large-scale system.

3.4.4.1 Flat-Sheet Specimens

Two years before the start of this project, experiments were conducted to quantify the
removal of organic contaminants by the NF membrane (Dow/Filmtec). The NF membrane
was obtained in rolls of dry, flat-sheet material from Dow/Filmtec, and rejection of a variety
of compounds was determined as a function of permeate flux. During this study, 21 spiral-
wound elements (4 in. x 40 in.) were obtained for pilot-scale experiments and multiple spiral-
wound elements were later sacrificed for bench-scale experiments. Unfortunately, the results
obtained for the rolls of flat-sheet material were not comparable to results obtained by using
the membranes cut from spiral-wound membranes (Figure 3.12). For many of the compounds
tested, the rejection using the flat-sheet material provided by the manufacturer yielded
significantly lower rejection than did flat sheets cut from the spiral-wound elements. Because
these experiments were performed under identical conditions at bench scale, possible
explanations for this discrepancy include that the manufacturer changed the polymer
chemistry during the 2-year period, the roll of flat-sheet material was flawed, the surface of
the spiral-wound material was modified by the manufacturer, or the spiral-wound membrane
was modified (e.g., compacted) during limited pilot-scale experiments.

Additional membrane—organic solute rejection experiments were conducted with NF-270
membranes obtained in flat-sheet rolls from the manufacturer and also cut from virgin spiral-
wound NF-270 modules (4 in. x 40 in.). Similar results were observed (Figure 3.13), with the
membranes cut from the spiral-wound elements providing greater rejection for the solutes
investigated. Whatever the explanation, the discrepancy highlights a few difficulties
associated with developing membrane models. These include the following:

e Models developed from a rejection data set may not be applicable for a data set
generated with the same membrane type but different flat-sheet material.

e Manufacturers may alter membrane chemistries and properties, which may
significantly affect rejection performance and subsequently the applicability of a
previously developed modeling approach.

e Upscaling results obtained at bench scale to larger-scale systems may be difficult

because of the large amount of membrane area in large systems and associated
variability.
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Figure 3.12. Rejection of acetaminophen by NF membrane (Dow/Filmtec) obtained in different
configurations.

Note: Experiments were conducted at 18.5 °C.
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Figure 3.13. Rejection of neutral organic solutes by NF-270 membrane (Dow/Filmtec) obtained
in different configurations.

Note: Experiments were conducted at 18.5 °C and a permeate flux rate of 12 gfd.
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Chapter 4

Bench-Scale Rejection Database

4.1 Bench-Scale Experiments to Augment Rejection Database

Bench-scale experiments were conducted with selected target compounds (see Table 3.2) to
determine their rejection behavior using representative NF and RO membranes. The
compounds investigated, listed in Table 3.2, included zwitterions and HN and HoN, neutral,
negatively charged, and positively charged substances. The rejection behavior was expressed
as percent removal, and solute transport parameters were determined that are specific to
certain modeling approaches. This information was compiled in a rejection database that
provided the foundation to test and improve various modeling approaches with the aim to
mathematically describe and ultimately predict rejection. The NF-270 membrane from
Dow/Filmtec was selected as a representative NF membrane because this membrane had been
employed in previous pilot-scale studies using reclaimed water and exhibited excellent
rejection performance for organic solutes, low fouling propensities, and a significantly lower
specific flux than conventional RO membranes (Bellona and Drewes, 2007; Bellona et al.,
2008). The ESPA2 membrane from Hydranautics was selected as a representative LPRO
membrane because this membrane is employed at several full-scale water reclamation
facilities.

The following sections describe the rejection behavior of the target solutes selected for this
study. The results of these experiments are presented by considering expected rejection
mechanisms and also by highlighting those compounds that exhibited strong
solute—membrane interactions. The findings from these experiments were compiled in a
rejection database that presented the foundation for rejection modeling approaches for the
solute groups described in Chapter 5.

4.1.1 Rejection of Solutes with Expected Behavior
4.1.1.1 Solute Rejection Versus Flux for NF and RO Membranes

Observed and intrinsic rejection was calculated for all compounds at each permeate flux rate
evaluated for both NF-270 and ESPA2 membranes (figures for all compounds in Appendices
E and F for the NF-270 and ESPA2 membranes, respectively). Compounds that have minimal
interactions (i.e., adsorptive effects) with the membrane exhibit increased rejection with
increased permeate flux for the NF-270 membrane as illustrated with acetaminophen
rejection in Figure 4.1. With a small increase in permeate flux, a large increase in rejection
was observed. For example, as the permeate flux rate increased from 5 to 12 gfd,
acetaminophen rejection increased from 19 to 30%. A similar rejection behavior was
observed by Agenson et al. (2003). It is worth noting that average deviation values for flux
and rejection (Figure 4.1) were calculated from replicate experiments by using different
membrane specimens cut from the same spiral-wound element. Permeate flux average
deviations are due to the difficulty in achieving exact permeate flux for replicate experiments.
Similar behavior was observed with the ESPA2 membrane, illustrated with NDMA rejection
in Figure 4.2. As the permeate flux increased from 4 to 8 gfd, NDMA rejection increased
from 35 to 47%.
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As discussed in Chapter 2, for the permeate flux range evaluated during the study, the
transport of solutes towards the membrane is greater than diffusive transport away from the
membrane. Compared to the bulk solution (i.e., feed water) this phenomenon causes an
increased concentration of solutes at the membrane surface and is termed concentration
polarization (Hofman et al., 2007; Sutzkover et al., 2000). Although observed rejection is
linked to the concentration of solutes in the bulk solution, intrinsic rejection (Equation 2.11)
1s linked to the concentration of the solute at the membrane surface, which allows for the
calculation of rejection in the absence of concentration polarization effects. Concentration
polarization increases with increased permeate flux; therefore, the difference between
observed rejection and intrinsic rejection becomes greater at higher permeate flux

(Figures 4.1 and 4.2).

Although the majority of compounds with minimal membrane interactions exhibited
increasing rejection with increasing flux, compounds that are highly rejected (greater than
90%) display rejection that does not change significantly with increasing permeate flux. As
presented in Figure 4.3, observed and intrinsic rejection for estriol for the NF-270 membrane
remains relatively flat with various permeate flux rates. The hydrophobic estriol

(Log D =2.94 at pH 6) with a molecular weight of 288.4 g/mol exhibited rejection greater
than 90% and did not exhibit decreasing rejection over time, contradicting the observation
from Braeken et al. (2005). Braeken et al. (2005) observed rejection of hydrophobic
compounds decreasing over time because of adsorption to the membrane; however, this effect
does not seem to apply to all hydrophobic compounds. This phenomenon will be discussed in
further detail in Section 4.1.3. It should be noted that the variation between duplicate
rejection experiments for estriol was minimal; therefore, error bars are too small to be seen in
Figure 4.3.

® Infrinsic Rejection  ° Cbserved Rejection
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Figure 4.1. Average bench-scale intrinsic and observed rejection over a range of permeate fluxes
for acetaminophen for NF-270 membrane.

Note: Error bars represent average deviation values calculated from replicate experiments.

Compounds that exhibit relatively high rejection (greater than 90%) for the ESPA2
membrane also display rejection that does not change significantly with permeate flux.
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Presented in Figure 4.4, ciprofloxacin is rejected by 98% independent of permeate flux rate.

This was the case for 90% of the compounds tested with the ESPA2 membrane, exhibiting
greater than 90% rejection because of the small pores of the ESPA2 membrane.
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Figure 4.2. Intrinsic and observed rejection as a function of permeate flux for NDMA for
ESPA2 membrane.
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Figure 4.3. Intrinsic and observed rejection for estriol as a function of permeate flux for
NF-270 membrane.
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Figure 4.4. Intrinsic and observed rejection as a function of permeate flux for ciprofloxacin for
ESPA2 membrane.

Benzyl alcohol exhibited increased rejection with increasing permeate flux for the NF-270
membrane (Figure 4.5); however, initial rejection was observed to be negative, suggesting the
concentration in the permeate was higher than the concentration in the feed. Because
observed rejection takes into account only the feed and permeate concentration, a large
concentration buildup at the membrane surface could result in negative observed rejection.
Hydrophilic benzyl alcohol (Log D = 1.01, pH 6) is composed of an aromatic ring with an
attached hydroxyl group. Williams et al. (1999) reported that aromatic structures with an
attached hydroxyl group have strong affinity to a membrane surface. Matsuura and Sourirajan
(1971) also reported this adsorption phenomenon for these types of solutes.
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Figure 4.5. Intrinsic and observed rejection of benzyl alcohol as a function of permeate flux for
NF-270 membrane.

4.1.1.2 Rejection Due to Steric Exclusion

As discussed previously (see Chapter 2), the rejection of nonionic organic compounds (i.e.,
HN, HHoN, and HoN) is mainly influenced by steric effects (Agenson et al., 2003; Bellona et
al., 2004; Kimura et al., 2004; Van der Bruggen et al., 1999). The observed rejection of
ethanol, glycerol, and glucose for the NF-270 membrane is presented in Figure 4.6 as a
function of permeate flux rate. These compounds exhibit increasing rejection with increasing
permeate flux. Rejection also increases for each compound with increasing molecular weight:
glucose (molecular weight of 180 g/mol) exhibits the highest rejection, glycerol exhibits
moderate rejection (molecular weight of 92 g/mol), and ethanol (molecular weight of 46
g/mol) exhibits the lowest rejection. This behavior indicates that steric exclusion is the main
mechanism determining rejection for these nonionic compounds. Similar behavior, though
less pronounced, was observed with the ESPA2 membrane; ethanol, glycerol, and glucose
exhibit increasing rejection with increasing molecular weight (Figure 4.7). These compounds
exhibit the same behavior through both membranes; however, compounds rejected by the
ESPA2 membrane exhibit greater rejection than did those rejected by the NF-270 membrane,
which is likely because the EPSA2 membrane has smaller pores.

Rejection due to steric effects for the NF-270 membrane is also illustrated in Figure 4.8 for
caffeine (molecular weight of 194.2 g/mol) exhibiting the highest rejection, 1-
naphthalenemethanol (molecular weight of 158.2 g/mol) exhibiting moderate rejection, and
resorcinol (molecular weight of 110.1 g/mol) exhibiting the lowest rejection. Rejection due to
steric effects for the ESPA2 membrane is presented in Figure 4.9 with NDMA, N-
nitrosomethylethylamine (NMEA), and N-nitrosopyrrolidine (NPYR). NPYR (molecular
weight of 100.1 g/mol) exhibited the highest rejection, NMEA (molecular weight of 88.1
g/mol) exhibited moderate rejection, and NDMA (molecular weight of 74.1 g/mol) exhibited
the lowest rejection. Compound rejection increased with increasing molecular weight.
Kimura et al. (2004) and Agenson et al. (2003) also reported increasing rejection with
increasing molecular weight for neutral compounds that do not exhibit adsorptive effects.
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From findings presented in Figures 4.6 and 4.9, it is revealed that compounds with similar
molecular weights are rejected to different degrees by the NF-270 and ESPA2 membranes.

The rejection of select HN compounds at a permeate flux of 12 gfd for the NF-270 membrane
(24 h after startup) with increasing molecular weight is presented in Figure 4.10. For these
compounds, rejection increased with molecular weight, confirming findings reported by
Kimura et al. (2004) and Agenson et al. (2003). In addition to results presented in Figure 4.6,
a significant increase in rejection occurred after 180 g/mol, indicating that the MWCO of the
NF-270 membrane is approximately 180 g/mol. The rejection of the same HN compounds at
a permeate flux of 12 gfd for the ESPA2 (24 h after startup) with increasing molecular weight
is presented in Figure 4.11. All compounds are greater than 90% rejected, except for NDMA
(molecular weight of 74.1 g/mol). This finding indicates that the “effective MWCO” for the
ESPA2 membrane is between 74.1 and 108.1 g/mol, much lower than the MWCO for the
NF-270 membrane.

Rejection of HoN compounds at a permeate flux of 12 gfd 24 h after experiment startup is
presented in Figure 4.12 for the NF-270 membrane (molecular weight and Log K, in
parentheses). For the relatively hydrophobic compounds (i.e., Log K, > 3), a clear trend of
increasing rejection with increasing molecular weight was not observed. Hydrophobic
compounds with a molecular weight greater than 314 g/mol, such as progesterone, exhibited
high rejection (greater than 90%). However, if one considers molecular weight alone, most of
the hydrophobic compounds exhibited lower rejection than what was observed for the
hydrophilic compounds. For example, the relatively hydrophilic compound TCEP (Log D of
0.48 at pH 6), with a molecular weight of 285.5 g/mol, exhibited 80% rejection, although
triclosan (Log D of 5.17 at pH 6), with a molecular weight of 289.5 g/mol, had only 50%
rejection. Lower-than-expected rejection of hydrophobic compounds with molecular weights
greater than the MWCO of a membrane was also reported by Agenson et al. (2003). This
finding indicates that, for these compounds, additional solute—membrane interactions besides
steric exclusion may be important.
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Figure 4.6. Observed rejection as a function of flux for ethanol, glycerol, and glucose for
NF-270 membrane.
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Figure 4.7. Observed rejection as a function of flux for ethanol, glycerol, and glucose for
ESPA2 membrane.
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Figure 4.8. Observed rejection as a function of permeate flux for resorcinol, 1-
naphthalenemethanol, and caffeine for NF-270 membrane.
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Figure 4.9. Observed rejection as a function of permeate flux for NDMA, NMEA, and NPYR for
ESPA2 membrane.
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Figure 4.10. Observed rejection for HN compounds (molecular weight) at 12 gfd for NF-270
membrane 24 h after startup.
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Figure 4.11. Observed rejection for HN compounds (molecular weight) at 12 gfd for ESPA2
membrane 24 h after startup.
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Figure 4.12. Observed rejection for compounds that are HoN (molecular weight, Log K,,) at 12
gfd for NF-270 membrane 24 h after startup.

4.1.1.3 Electrostatic Exclusion

High removal (greater than 80%) was observed for the majority of the ionic compounds (i.e.,
HCN, HCP, HCNP) for the NF-270 membrane (Figure 4.13). All ionic compounds exhibited
greater than 80% removal for the ESPA2 membrane (Figure 4.14). Negatively charged
compounds are mainly rejected because of the electrostatic repulsion from the negatively
charged membrane surface, exhibiting greater than 85% rejection for the NF-270 membrane
and greater than 95% rejection for the ESPA2 membrane. The zwitterion compounds (HCNP)
exhibited behavior similar to that of the negatively charged compounds, with most exhibiting
rejection greater than 80% for both membranes. Removal rates for the positively charged
compounds (HCP) were variable and ranged from 60 to >99% for the NF-270 membrane and
80 to 100% for the ESPA2 membrane. The lower-than-expected rejection for positively
charged compounds was also reported by Verliefde et al. (2007). Positively charged
compounds are hypothesized to be attracted to the negatively charged membrane surface,
allowing for permeation through the membrane after a concentration layer builds. The
concentration layer of positively charged compounds at the membrane surface can also result
in lower observed rejection because observed rejection takes into account only the feed and
permeate concentrations. However, low rejection was not observed for all positively charged
compounds, as some were rejected close to >99%. Verliefde et al. (2007) observed higher
rejection of compounds with an increase in compound concentration and theorized shielding
effects were the cause. Positively charged compounds can shield the negatively charged
membrane surface, leading to a lower concentration of positively charged compounds at the
membrane surface and, therefore, result in higher observed rejection.
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Figure 4.13. Observed rejection for ionic compounds at 12 gfd: negatively charged (HCN),
positively charged (HCP), and zwitterions (HCNP) as a function of molecular weight for NF-270
membrane.
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Figure 4.14. Observed rejection for ionic compounds at 12 gfd: negatively charged (HCN),
positively charged (HCP), and zwitterions (HCNP) as a function of molecular weight (ESPA2
membrane).

Negatively charged compounds exhibited greater rejection based on their size, presumably
because of electrostatic interactions with the membrane. For example, negatively charged
compounds displayed greater rejection for the NF-270 membrane than did nonionic
compounds of similar molecular weight (Figure 4.15). The rejection of negatively charged
solutes still slightly increased with increasing molecular weight, indicating that steric
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exclusion might still affect rejection for these compounds. Ozaki and Li (2002) also observed
negatively charged compounds exhibiting higher rejection than did nonionic compounds.
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Figure 4.15 Observed rejection of negatively charged and neutral compounds with similar
molecular weights for NF-270 membrane.

4.1.2 Rejection of Solutes Exhibiting Adsorptive Effects During Recycle
Experiments

During bench-scale rejection experiments, compounds with adsorptive interactions behaved
differently from compounds that are rejected solely by steric interactions for the NF-270
membrane. Adsorptive effects were not observed for the ESPA2 membrane because of the
high rejection (greater than 90%) exhibited for the majority of the compounds independent of
permeate flux. Adsorptive effects from using NF-270 membrane are presented in Figure 4.16
for the rejection of two nonionic compounds with similar molecular weights, 2-naphthol
(molecular weight = 144.2 g/mol) and triethylene glycol (molecular weight = 150.2 g/mol).
Observed rejection values are presented over the range of permeate fluxes evaluated with a
sampling order of 5, 28, 50, 70, and 12 gfd with an additional 12-gfd sample collected 18 h
after the first 12-gfd sample. Because of steric effects, these two compounds were expected to
be similarly removed. However, 2-naphthol with a Log D of 2.71 had significantly lower
rejection than triethylene glycol with a Log D of -1.87 (Figure 4.16) and also exhibited
decreased rejection over time, which is likely due to adsorption (i.e., rejection decreases as
the membrane becomes saturated). Braeken et al. (2005) observed a similar behavior for 3,4-
methylnitrophenol, where rejection decreased significantly over time. Because 3,4-
methylnitrophenol and 2-naphthol do not behave like triethylene glycol, different modeling
approaches may be required to describe rejection of compounds exhibiting adsorptive effects.
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Compounds exhibiting adsorptive effects can also exhibit different behavior with respect to
adsorptive effects among each other. Rejection efficiencies for two HoN compounds,
triclosan (Log D of 5.17 and molecular weight of 289.5 g/mol) and 4-n-nonylphenol (Log D
of 6.17 and molecular weight of 220.4 g/mol), are plotted as a function of permeate flux in
Figure 4.17 for the NF-270 membrane. Both compounds have molecular weights above the
MWCO of the NF-270 membrane. Nevertheless, the solutes exhibited different rejection
behavior. Observed rejection for 4-n-nonylphenol stayed relatively constant at 85% in the
first 12-gfd permeate sample; however, a 15% rejection decrease was observed for the second
12-gfd sample collected after 18 h (circled point in Figure 4.17). Triclosan initially exhibited
high rejection (98%), but rejection decreased over time (as well as with increasing flux rate).
Rejection decreased by 47% from the first 12-gfd sample to the second 12-gfd sample
collected 18 h later (circled point in Figure 4.17).

About 15% of compounds of all solutes tested exhibited adsorptive effects when the NF-270
membrane was used, and these are summarized in Table 4.1 with select solute properties
(molecular weight and Log D [log K, at pH 6]). Two different levels of membrane retention
interactions were qualified: moderate and extreme. Compounds with moderate interactions
are those with increased rejection and increasing permeate flux but greater than 5% decrease
in rejection at 12 gfd after 18 h. Compounds with extreme interactions exhibited decreased
rejection over time, and rejection was observed to be independent of permeate flux.
Compounds with moderate and extreme interactions were comprised of positively charged
compounds and neutral compounds with various molecular weights and log D values.
Positively charged compounds could be permeating through the membrane after 18 h because
a concentration polarization layer occurred because of electrostatic interactions between the
solute and the negatively charged membrane as proposed by Verliefde et al. (2007).

Previous researchers have attempted to predict rejection for compounds exhibiting
solute—membrane interactions by correlating Log K, values with solute rejection (Braeken et
al., 2005; Kiso et al., 2001a; Verliefde et al., 2007). Rejection of neutral compounds during
NF-270 membrane bench-scale experiments was compared to Log K., values, and results are
presented in Figure 4.18. Based on these results, no correlation was observed. This
observation is consistent with findings reported by Kiso et al. (2001a); however, Braeken et
al. (2005) and Verliefde et al. (2007) observed a decrease in rejection with increasing Log
K., values. Even though Log K, does not directly correlate to rejection, compounds with a
Log K, value above 2 tend to adsorb to the membrane material.

Of all solutes tested, 70% of the compounds with adsorptive effects are composed of aromatic
rings with an attached proton donating group. Williams et al. (1999) and Matsuura and
Sourirajan (1971) also observed these compounds exhibiting adsorptive effects during
membrane filtration. These compounds have the ability to form hydrogen bonds with
functional groups on the membrane surface, similar to water molecules, which results in
adsorption and partitioning through the membrane. Chloroform and bromoform are relatively
hydrophobic and also exhibit adsorptive effects, which is consistent with findings observed
by Kiso et al. (2001b).
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Figure 4.16. Observed rejection as a function of permeate flux for 2-naphthol and triethylene
glycol for NF-270 membrane.
Note: The sampling order of permeate flux was 5, 28, 50, 70, 12, and 12 gfd (18 h after the first 12-gfd sample).
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Figure 4.17. Observed rejection for triclosan and 4-n-nonylphenol as a function of permeate flux
for NF-270 membrane.

Note: The sampling order of permeate flux was 5, 28, 50, 70, 12, and 12 gfd (18 h after the first 12-gfd sample).
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Table 4.1. Compounds that Exhibit Adsorptive Effects Including Their Molecular

Weight and Log D at pH 6
Level of
Compound Name Class Inte:]‘?t;tion R}ejzeftfi((i)n Rl?egtfi?)n Il/IVotl Log D(6)
Membrane after 18 h

Imiquimod HCP Moderate 0.94 0.86 240.3 1.76
Diltiazem HCP Moderate 0.97 0.88 414.5 0.92
Trazodone HCP Moderate 0.88 0.80 371.9 0.85
Metformin HCP Moderate 0.74 0.60 129.2 -4.31
TCPP HoN Moderate 0.97 0.94 430.9 1.79
N-Nitrosodibutylamine HHoN Moderate 0.77 0.69 158.2 2.55
4-n-Nonylphenol HoN Moderate 0.87 0.70 220.4 6.19
Oxybenzone HoN Moderate 0.97 0.91 2283 3.63
Estrone HoN Moderate 0.94 0.90 270.4 3.69
Resorcinol HN Moderate 0.04 0.02 110.1 0.76
Bisphenol A HoN Moderate 0.77 0.74 2283 3.43
Ethynylestradiol HoN Moderate 0.96 0.93 296.4 4.52
17B-Estradiol HoN Moderate 0.92 0.89 272.4 4.13
Trimethoprim HCP Extreme 0.78 0.71 290.3 -0.42
Chloroform HN Extreme 0.54 0.26 1194 1.76
Bromoform HHoN Extreme 0.91 0.41 252.7 2.29
Dibromochloromethane | HHoN Extreme 0.85 0.21 208.3 2.2
Bromodichloromethane | HHoN Extreme 0.79 0.15 163.8 2.02
Benzyl acetate HN Extreme 0.49 0.27 150.2 1.93
Benzophenone HoN Extreme 0.76 0.66 182.2 3.18
n-Nitrosodiphenylamine | HoN Extreme 0.82 0.53 198.2 3.13
Methylparaben HN Extreme 0.30 0.26 152.2 1.86
Benzyl alcohol HN Extreme 0.01 0.08 108.1 1.03
Propylparaben HHoN Extreme 0.43 0.32 180.2 2.92
2,4-Dichlorophenol HoN Extreme 0.36 0.18 163.0 2.99
2-Fluorophenol HN Extreme 0.16 0.01 112.1 1.71
2-Phenylphenol HoN Extreme 0.33 0.24 170.2 2.94
Triclosan HoN Extreme 0.77 0.50 289.5 5.17
2-Naphthol HHoN Extreme 0.18 0.09 144.2 2.71
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Figure 4.18. Observed rejection for neutral compounds as a function of Log D (pH = 6) at 12 gfd
for NF-270 membrane 24 h after startup.

4.1.3 Rejection of Solutes Exhibiting Adsorptive Effects During Once-Through
Experiments

Depending on the class of solute, it can take considerable time to reach stable or equilibrium
conditions. Given that full-scale membrane applications operate continuously with a single
set of membranes for long periods, it is the steady-state rejection, not the initial rejection, that
is relevant for performance assessments. Bench-scale rejection experiments with
recirculation, discussed in Section 4.1.2, proved to be limited in their ability to demonstrate
equilibrium rejection for compounds that reach equilibrium slowly. To solve the problems
associated with the recycling experiments, a once-through system was devised. The system
was implemented specifically to examine THMs, which are representing extreme examples of
delayed equilibrium during membrane experiments. A thorough explanation of the once-
through experimental apparatus and of the problems it was designed to resolve is provided in
Section 3.3.1.2.

For the THM compounds, equilibrium rejection conditions were not observed during the span
of the once-through experiments using the cross-flow apparatus, although it appeared that
rejection was stabilizing towards the end of the experiment after 55 h (Figures 4.19 and 4.20).
This transient behavior can cause problems in membrane research and operation, because
short-term experiments that may fail to adequately characterize long-term rejection of a
contaminant are commonly performed. If transient rejection is used to characterize the
removal of a constituent by a given membrane, the rejection levels for the
compound/membrane pair will be overpredicted (Kimura et al., 2003a). The goal of this
project was to develop a representative rejection data set so that rejection values from a full-
scale treatment system that has been using the same set of membranes for extended periods
could be characterized.

Recent publications have hypothesized that the decline in rejection level occurs although
molecules “fill” specific sites within the membrane matrix, of which there are a limited
number (Braeken et al., 2005). Steady-state rejection for these compounds is the result of a
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membrane reaching a saturation point, after which there is no site to which a molecule can
attach and become “stalled.” With the absence of available binding sites, the molecule will
diffuse across the membrane without interrupting or replacing another molecule, forcing it
into solution (Steinle-Darling and Reinhard, 2008). Although this phenomenon can be
observed during simple, yet sufficiently long, bench-scale experiments, the reasons and
mechanisms behind it are still poorly understood. It is commonly accepted that uncharged,
“moderately” hydrophobic compounds are more prone to these types of interactions (Steinle-
Darling and Reinhard, 2008). However, there have been few hypotheses that go beyond this
vague generalization and attempt to quantify the specific characteristics that are responsible
for this behavior.

Flow-through experiments for THMs depict a clear, declining rejection trend versus time for
both membranes evaluated (NF-270 and ESPA?2), indicating that these solutes form strong
solute—membrane interactions and partition through the membrane. Results presented in
Figures 4.19 and 4.20 illustrate THM rejection versus time during two flow-through
experiments at a permeate flux of 12 gfd with the NF-270 and the ESPA2 membranes,
respectively. Although the trend of decreasing rejection was observed for both membranes,
the magnitude of the drop in rejection was dependent upon the type of membrane. With the
ESPA2 membrane, rejection of the THMs stabilized near the end of the experiments (at
approximately 70%), although rejection by the NF-270 membrane appeared to be decreasing
at the termination of the experiment. The higher rejection by the ESPA2 membrane than by
the NF-270 membrane was likely associated with a denser polymer matrix that inhibits
partitioning and contributes to the high monovalent salt rejection. Neither of the experiments
provides conclusive data on final, steady-state rejection values, though the curve does
indicate that the end of the transient behavior was nearly achieved by the end of each
experiment. More experimental run time would be necessary to provide definitive steady-
state rejection values. Unfortunately, in the once-through apparatus, tank capacity limited the
ability to run longer experiments.
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Figure 4.19. Rejection of THMs over time by NF-270 membrane at a flux of 12 gfd.
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Figure 4.20. Rejection of THMs over time by ESPA2 membrane at a flux of 12 gfd.
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The data presented in Figures 4.19 and 4.20 demonstrate the importance of molecular
structure in the transient behavior of the THMs. It is evident that the time it takes for rejection
levels to drop varied among the different compounds. Bromoform and chloroform were both
rejected by the NF-270 membrane at percentages between 10 and 20% at 50 h. However after
10 h, bromoform exhibited a rejection of 60%, although chloroform has already reached its
final rejection level near 10%. The trend is less clear from the ESPA2 membrane
experimental data, but upon closer inspection, it is obvious that, especially in the early hours,
the rejection of chloroform decreased more quickly than that of bromoform. It is evident from
these experiments that the larger the solute, the longer it takes for the compound to reach
steady state. This observation will be important to consider in the design of future
experiments as it adds a complication to the experimental process used in determining steady-
state rejection values for various compounds. Larger, heavier partitioning compounds likely
require long experimental run times to reach steady state.

By the end of one of the membrane experiments performed with the ESPA2 membrane, the
feed water spiked with THMs that had been running through the system for multiple days was
replaced with deionized water. Permeate samples were taken at timed intervals and were
tested for THM concentrations. Summarized results from this experiment are presented in
Figure 4.21. It appeared that there was a great deal of mass accumulated within the
membrane, as THMs continue to occur in permeate samples collected for hours after the
spiked feed water was replaced with deionized water.

The fact that THM permeate concentration decreased at a greater rate for the smaller solutes
provides further evidence of the hindered transport of larger THMs through the membrane.
The permeate concentration of each compound in the final sample is plotted against its
respective molar mass in Figure 4.22. Although bromoform was quantified at relatively high
concentrations in the permeate water at the conclusion of the experiment, the concentration of
chloroform almost reached zero. This observation is the opposite of what was observed for
rejection experiments; i.e., the same phenomenon that hinders the achievement of steady-state
rejection for the larger THMs was likely responsible for the continual leaching of THMs from
the membrane. Larger molecules diffuse more slowly through the membrane matrix and
therefore desorb at a lower rate.
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Figure 4.21. Concentration of THMs in permeate stream of deionized water experiment.
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Figure 4.22. Concentration of THMs in final permeate sample from deionized water experiment
plotted by molecular mass.
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THM rejection by the NF-270 membrane was also examined at various permeate fluxes.
Figures 4.23 and 4.24 summarize the rejection of THMs versus time by the NF-270
membrane at 30 and 6 gfd, respectively. In both experiments a sharp decline in rejection was
observed at the very end of the experiments. This phenomenon is attributed to a
corresponding sharp decline in the feed concentration that occurred at the end of the
experiments. Unfortunately, the resolution of the data does not allow for a thorough analysis
of the relationship between flux and rejection for THMs. The rejection values over time in the
6- and 30-gfd experiments were very similar to those witnessed during the 12-gfd
experiment, making it impossible to generate flux-versus-rejection curves essential to

modeling exercises.
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Figure 4.23. Rejection of THMs over time by NF-270 membrane at flux of 30 gfd.
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Figure 4.24. Rejection of THMs over time by NF-270 membrane at flux of 6 gfd.

4.1.3.1 Challenges

These investigations revealed that partitioning compounds require complex and resource-
intensive experiments to elucidate steady-state rejection values for membrane
characterization and modeling purposes. As discussed in Section 3.3.1.2, the original issue
that the team reacted to with a modified experimental apparatus was the mass of compound
lost into the membranes during recycling experiments. For a flow-through apparatus, the
period of transient behavior proved to vary among the THMs and, for the heavier THMs,
appeared to exceed the maximum 55 h that the once-through setup could be operated. Given
the structural differences among other compounds with solute—membrane interactions, it is
probable that their periods of transience will also be unique. This finding points to a need for
experimental protocols to be tailored to each specific partitioning compound to extract the
relevant rejection values.

Recent research by Steinle-Darling et al. (2010) reveals that the issue of competitive sorption
further complicates the study of partitioning compounds in membrane systems. If the theory
that there exist specific “sites” to which compounds may sorb is correct, it is likely that the
degree of affinity between various molecules and these sites will vary. This variable affinity
implies that the different compounds will “compete” to occupy them (Steinle-Darling et al.,
2010). Future experiments will need to be designed to incorporate this possibility. It is clear
that, if competitive sorption affects partitioning behavior to a large degree, then single-
compound (or even several-compound) experiments will not provide data relevant to real-
world systems that certainly contain a plethora of compounds in the feed stream.
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4.2 Rejection Databases for NF-270 and ESPA2 Membranes

Bench-scale rejection experiments were conducted to evaluate different modeling
approaches, as well as the adsorption-partioning behavior of solutes in membrane systems.
For example, the phenomenological model, hydrodynamic model, solution—diffusion model,
and SFPM all require evaluating rejection as a function of permeate flux. In addition, to
determine which solutes adsorb and partition through membrane materials, 24-h rejection
experiments were conducted at an operationally relevant permeate flux (i.e., 12 gfd). Once
rejection experiments had been conducted, intrinsic rejection was calculated on the basis of
feed-brine channel cross-flow velocity maintained during each experiment. For each
membrane evaluated (i.e., NF-270 and ESPA2), Excel databases consisting of rejection data
and solute properies were developed to investigate different modeling approaches to describe
and predict the rejection of organic solutes. These databases were used in conjunction with
Excel, Mathematica (Wolfram Research), MatLab (The Mathworks Inc.), and JMP statistical
software (SAS) to evaluate and develop modeling approaches to describe and predict the
rejection of organic solutes.
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Chapter 5
Modeling of Solute Rejection at Bench Scale

5.1 Introduction

The following sections describe various modeling efforts using the rejection database
generated in controlled experiments described in Chapter 4 for the NF-270 and ESPA2
membranes. The modeling approaches examined consist of QSPR, the phenomenological
model, the hydrodynamic model, the solution—diffusion model, and empirical models.

5.2 Quantitative Structure Property Relationship Model

Previous research revealed that solutes rejected by electrostatic interactions exhibit high
rejection, with negatively charged compounds exhibiting greater than 90% rejection and
positively charged compounds exhibiting greater than 75% rejection (Bellona et al., 2008;
Verliefde et al., 2007). Neutral compounds are more difficult to predict because of steric
interactions and potential adsorptive effects. Membrane properties can vary and lead to
different interactions with solutes. Thus, molecular descriptors can differ with respect to
expressing the degree of solute rejection for different membranes. Therefore, developing a
universal QSPR was not feasible. Instead, a QSPR was developed for each membrane tested
(i.e., NF-270 and ESPA2 membrane) as described later.

5.2.1 QSPR Development for the NF-270 Membrane

A QSPR was developed for neutral compounds (i.e., HN, HHoN, and HoN) by utilizing the
NF-270 membrane bench-scale database at 12 gfd developed during this study. The NF-270
membrane bench-scale data set includes 77 neutral compounds (64 solutes of the
development and 13 solutes of the validation set, respectively) encompassing a wide variety
of molecular descriptors, including compounds rejected by adsorptive effects. The goal of
this QSPR development was to determine if all neutral compounds can be predicted by using
one model. QSPR development consists of four parts: experimental database development,
molecular descriptor evaluation, multiple linear regressions, and model validation.

Experimental Database Development. Rejection experiments were conducted for 77 neutral
compounds by using the same operating conditions (figures in Appendix E). A database was
created with the average quasi-equilibrium (i.e., rejection after 24 h of operation) rejection
data generated at a permeate flux of 12 gfd. It is important to note that the bench-scale
rejection database was created with virgin membranes. The solutes selected were separated
into model development compounds and model validation compounds.

Molecular Descriptor Evaluation. The molecular descriptors for these compounds were

separated into different categories based on their properties and possible interactions with the
membrane listed in Table 5.1.
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Table 5.1. Molecular Descriptors Separated into Different Categories on the Basis of
Their Properties”

. Component Electron - -
Size Surface Area Distribution Hydrophobicity Solubility
SASA (solvent Hydration
Mol wt accessible) Enowo Log D (Log Kow) energy
FOSA (saturated Solvation energy in Aqueous
Length hydrocarbons) Eruovo octanol solubility
Width FISA (nitrogen and P Solvation energy in
oxygen) water
Depth PISA (m bonds) Electron affinity
Area WPSA (weakly polar) | Dipole
Volume PISA Polarization

Stokes radius

Mol vol

Diffusion
coefficient

Globularity

“Description of properties listed in Table 3.1.

A wide variety of molecular descriptors were initially evaluated. Size parameters were
expected to have a significant effect on the rejection of neutral compounds as observed in
previous studies (Agenson et al., 2003; Bellona et al., 2004; Kimura et al., 2004; Van der
Bruggen et al., 1999). Component surface area descriptors represent the contribution of
different components that could potentially interact with the membrane, such as 7 bonds or
saturated hydrocarbons. Descriptors for electron properties also include the dipole moment,
which has been reported to affect neutral compound rejection (Kimura et al., 2004; Libotean
et al., 2008; Van der Bruggen et al., 1998). Hydrophobicity descriptors include Log D values.
Braeken et al. (2005) and Verliefde et al. (2007) observed that Log D negatively correlated
with rejection, although Kiso et al. (2001b) reported no correlation between Log D and solute
rejection. Solubility descriptors that could affect solute transport through the membrane
include hydration energy and solubility.

To determine which descriptors contribute to the variability in rejection, a PLS evaluation
was conducted in JMP 8.0.2. For the PLS evaluation, all of the molecular descriptors were
evaluated (Table 5.2). Parameters with the least weight, parameter coefficient less than 0.05,
and VIP less than 0.8 were removed from model development (Wold, 1995). Twelve
parameters out of the 30 initial parameters were found to significantly affect rejection for the
selected compounds.

On the basis of the PLS outcome, size parameters such as Stokes radius, molecular volume,

volume, and molecular weight were found to account for a significant portion of variability in
the rejection data. All four size parameters have relatively equal weights and a positive effect
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on rejection, meaning that, as steric parameters increase, rejection also increases as observed
by Agenson et al. (2003), Kimura et al. (2004), and Van der Bruggen et al. (1999). From the
PLS evaluation, FOSA and FISA would both have a positive effect on rejection. FOSA is the
measure of the solvent accessible surface area of saturated carbons and attached hydrogen,
and FISA is the measure of the solvent accessible surface area of nitrogen and oxygen. This
finding indicates that aliphatic compounds and compounds containing nitrogen and oxygen
atoms would exhibit greater rejection than would aromatic compounds and compounds
without oxygen and nitrogen. PISA positively affects solute rejection. Kimura et al. (2004)
observed solute rejection to increase with increasing polarity. Both Eyonmo and Epymo were
negatively correlated with solute rejection (i.e., the greater the energy in the Egomo or Erumo,
the less a solute is rejected). Eyomo is the highest-energy molecular orbital that contains an
electron, and E; ymo is the lowest-energy molecular orbital that does not contain an electron.
This finding indicates that compounds with a larger Egomo or ELymo Will have a decrease in
rejection because the compound is more likely to interact with the membrane polymer. IP and
polarization were positively correlated with rejection. This finding indicates that compounds
that are less likely to interact with the membrane will have higher rejection. No significant
correlation was found with Log K, during the PLS evaluation, indicating that Log K., is not
a good descriptor for estimating rejection, contradicting observations from Braeken et al.
(2005) and Verliefde et al. (2007).

A correlation matrix was developed in order to avoid using multiple parameters that highly
correlate with each other in a QSPR model (full correlation matrix summarized in Appendix
D). Uncorrelated parameters were employed in QSPR development in order to capture other
solute—membrane interactions besides steric interactions, the main rejection mechanism for
neutral compounds. All size parameters were correlated with one another; thus, only one size
parameter was used in a given QSPR. Polarizability and SASA also correlated with size
parameters; therefore, these size parameters were not used in QSPR models that already
contained one size parameter. Egomo was found to be negatively correlated (-90%) to IP.
FOSA was marginally correlated with molecular volume (38%), although PISA, FISA, and
ELumo did not correlate with any other parameters found to be significant during PLS
calculations.

Multiple Linear Regressions. A multiple linear regression approach was employed to relate
a combination of molecular descriptors to solute rejection. The number of descriptors utilized
is important to model development; using too many parameters can result in overfitting and
using too few parameters can result in solute behavior not being captured. To determine the
optimum number of parameters, initial cross-validation in JMP was utilized. Cross-validation
calculated an RMSE value for each possible multiparameter regression. Cross-validation of
all molecular descriptors investigated calculated the optimum (lowest RMSE) numbered
parameter regression for QSPR development to be 3. On the basis of this finding, QSPR
development will consist of a three-parameter regression.

Multiple linear regressions were conducted by using JMP. Regressions were valid and further
explored if the statistics met the criteria listed later (see also Section 3.1.3).
P <0.05

F-ratio > 2.8
RMSE < 0.5
R?>0.75
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Table 5.2. Parameters Significant to a 3-Parameter Correlation for All Neutral
Compounds in Experimental Database

Category Molecular Descriptor PLS Wt VIP
Stokes radius (nm) 0.072 1.360
Mol vol (cm’/mol) 0.071 1.323
Size Vol (AY) 0.068 1356
MW (g/mol) 0.054 1.247
FOSA (AY) 0.125 1.133
SASA (A?) 0.068 1.341
Component surface area FISA (A7) 0057 0.835
PISA (AY) 0.050 0.934
Erumo (au) -0.087 0.727
Enomo (au) -0.063 0.824
Electron distribution P (¢V) 0.084 0.803
Polarization (A’) 0.061 1.290

Every possible three-parameter correlation was explored where all descriptors were
uncorrelated with each other. For example, volume and molecular volume, two highly
correlated size descriptors, were not used in the same correlation. Out of the 84 correlations
examined, nine were found to meet the criteria listed earlier and are listed in Tables 5.3 and
5.4 along with relevant statistical data. The QSPRs contain one size parameter: volume,
molecular volume, Stokes radius, or SASA, along with FOSA, PISA, Egomo, or IP. The
developed correlations always contained a size parameter, as steric exclusion is expected to
be the main rejection mechanism for nonionic compounds (Agenson et al., 2003; Kimura et
al., 2004; Van der Bruggen et al., 1999). Models containing the FOSA parameter were found
to be more statistically significant and to provide better fits than models that included the
FISA parameter. This finding indicates that the amount of saturated hydrocarbon surface area
affects rejection more than the amount of nitrogen and oxygen surface area. PISA positively
affected solute rejection, indicating polar compounds will be rejected more than will nonpolar
compounds. Kimura et al. (2004) observed increasing rejection with increasing dipole
moment for neutral compounds. IP also positively affects rejection. The greater the IP, the
less likely a compound will interact with the membrane, therefore increasing rejection. Eyomo
negatively affects rejection, indicating that a compound more likely to interact with the
membrane polymer will have lower rejection.

Each correlation yielded an R* value above 0.8 and RMSE below 0.5, meeting the criteria of
R value above 0.75 and RMSE below 0.5. The overall F-ratio was relatively high (61-67.3)
where individual F-ratio values ranged from 4.5 to 138, above the criteria of greater than 2.8.
As expected, the size parameters obtained the highest F-ratio and the Stokes radius was the
most significant size parameter. Each parameter had a P of less than 0.05, indicating a low
probability that the parameters are correlated by chance.

It is worth noting that this QSPR modeling approach has limits. If the QSPR predicts
rejection to be less than 0, rejection is assumed to be 0. If the QSPR predicts rejection to be

greater than 1, rejection is assumed to be 1.

If Rej <0,Rej=0; If0<Rej<1,Rej=QSPR; IfRej>1,Rej=1
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Table 5.3. Parameters Significantly Correlated to Rejection Listed with Significant Statistics

Overall Coefficient
Parameter 1 | Parameter 2 Parameter 3 g ve . RMSE

F-Ratio

1 2 3 Intercept
Volume FOSA PISA 0.845 62.2 0.397 | 0.10343 | 0.04611 | 0.16315 -26.03
Mol volume FOSA Enomo 0.852 63.35 0.388 | 0.12029 | 0.04475 | -215.62 -83.25
Stokes FOSA PISA 0.848 61.63 0.393 | 0.36188 | 0.04366 0’261102 -18.21
Stokes FOSA PISA 0.843 64.1 0.400 | 221.894 | 0.04974 | 0.15899 -40.48
Stokes FOSA Enomo 0.845 63.55 0.397 | 254.049 | 0.04961 187_971 -92.00
SASA FOSA 1P 0.854 67.32 0.386 263.68 | 0.04158 | 7.6937 -122.30
0.18414
SASA FOSA PISA 0.831 61 0.415 | 0.20931 | 0.04789 3 -44.06
SASA FOSA Enomo 0.833 63.36 0.412 | 0.25056 | 0.0461 259789 -116.78
PISA Enomo 0.833 614 0.412 | 0.25121 | 0.14851 | -228.92 -108.61
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Table 5.4. Parameters Significantly Correlated to Rejection Listed with Significant
Statistics

Parameter 1 | Parameter 2 | Parameter 3 F-Ratio P
1 2 3 1 2 3

Volume FOSA PISA 94.40 5.32 5.10 | <0.0001 | 0.0252 | 0.0283
Volume FOSA Enomo 131.96 5.07 5.88 | <0.0001 | 0.0287 | 0.0189
Mol volume FOSA PISA 93.27 4.69 14.06 | <0.0001 | 0.0351 | 0.0005
Stokes FOSA PISA 97.80 6.43 4.94 | <0.0001 | 0.0143 | 0.0307
Stokes FOSA Enomo 132.40 6.35 4.56 | <0.0001 | 0.0149 | 0.0376
Stokes FOSA 1P 138.29 4.53 7.16 | <0.0001 | 0.0383 0.01
SASA FOSA PISA 92.12 5.68 6.51 <0.0001 | 0.0209 | 0.0137
SASA FOSA Enomo 131.99 5.42 8.26 | <0.0001 | 0.0239 | 0.0059
SASA PISA Enomo 125.30 4.04 597 | <0.0001 | 0.0497 | 0.018

The two QSPR models with the highest R* value and lowest RMSE value are listed in
Equations 5.1 and 5.2.

Ref(9q) m 0.1208Velume + 0.04475P0SA — 215.62B5000— 83,282 (5.1)

Ref(Ie) = 363 68T rokes + O4LEEFOTA + T.694IF — 122.3 (5.2)

The result of applying Equations 5.1 and 5.2 to the development compounds in the bench-
scale database is illustrated in Figure 5.2. The error bars on the figures in the x direction
represent the individual 95% confidence intervals and in the y direction represent the
experimental deviation. The two QSPR models did yield high R* values (0.852 for Equation
5.1 and 0.854 for Equation 5.2); however, there were a few outliers. Compounds containing
low FOSA values but not exhibiting adsorptive effects were underpredicted, such as
thiabendazole. A low FOSA value usually indicates low removal because aromatic
compounds have a greater affinity to adsorb to the membrane than do aliphatic compounds.
Compounds that were overpredicted are compounds that exhibit extreme adsorptive effects
(i.e., decreasing rejection with increasing permeate flux and time), such as propylparaben and
2-fluorophenol.

Model Validation. All of the models considered significant were internally validated by
using the LOO cross-validation method; one compound was excluded from the data set and
the model correlated with the remaining data. This method was repeated # times for n
compounds in the data set. The results from this validation were then combined, and a single
QSPR was produced yielding a ¢* value. A ¢ value greater than 0.5 indicated a good fit, and
a ¢” value greater than 0.9 indicated an excellent fit (Eriksson et al., 2003). The results from
the internal validation are summarized in Table 5.5. All ¢* values were greater than 0.5,
indicating a good fit. The greatest ¢° value was obtained from the QSPR containing volume,
FOSA, and Exomo and Stokes, FOSA, and IP described by Equations 5.1 and 5.2.
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Table 5.5. Results from the LOO Cross-Validation for QSPR Internal Validation

Parameter 1 Parameter 2 Parameter 3 7

Volume FOSA Polar SA 0.802
Volume FOSA Enomo 0.819
Mol volume FOSA Polar SA 0.804
Stokes FOSA Polar SA 0.795
Stokes FOSA Enomo 0.808
Stokes FOSA 1P 0.816
SASA FOSA Polar SA 0.785
SASA FOSA Enomo 0.798
SASA Polar SA Enomo 0.798

The two QSPR models yielding the highest ¢* value, Equations 5.1 and 5.2, were externally
validated by applying the models to the validation compounds for the NF-270 membrane
bench-scale data (Table 3.2). Results of this comparison are presented in Figures 5.3 and 5.4.
Equation 5.1 (Figure 5.3) yielded an R value of 0.734, and Equation 5.2 (Figure 5.4) yielded
an R” value of 0.758, suggesting that utilizing Stokes radius, FOSA, and IP was a better fit for
this data set consisting of neutral compounds with a wide variety of molecular descriptors and
rejection mechanisms including adsorptive effects. Most compounds were predicted within
20%. Compounds that were underpredicted, such as carbamazepine and dilantin, had low
FOSA values but did not adsorb to the membrane. Compounds that were overpredicted are
the ones that exhibited extreme adsorptive effects, such as 2,4-dichlorophenol and 2-
phenylphenol.

Experimental

0 0.2 0.4 0.6 0.8
Predicted

—

Figure 5.1. QSPR (volume, FOSA, Eyomo) for neutral compounds developed from bench-scale
NF-270 membrane data.
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Figure 5.2. QSPR (Stokes, FOSA, IP) for neutral compounds developed from bench-scale
NF-270 membrane data.
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Figure 5.3. QSPR (volume, FOSA, Eyomo) for F-270 membrane applied to validation

compounds.
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Figure 5.4. QSPR (Stokes, FOSA, IP) for NF-270 membrane applied to validation compounds.

5.2.2 QSPR Development for the ESPA2 Membrane

QSPR development for neutral compounds was also conducted for the ESPA2 membrane by
using the same procedure previously applied to the NF-270 membrane data set (Section
5.2.1).

Experimental Database Development. Rejection experiments were conducted for 64 neutral
compounds using the same operating conditions (figures in Appendix F). A database was
created with the average steady-state (i.e., rejection after 24 h of operation) rejection data
generated at a permeate flux rate of 12 gfd by using virgin membranes. For model
development, the rejection data were transformed into a Log scale because the majority of
compounds were greater than 90% removed. The compounds were then separated into model
development compounds and model validation compounds.

Molecular Descriptor Evaluation. The molecular descriptors (Table 5.1) were investigated
to determine which descriptors contribute to the variability in rejection by employing a PLS
evaluation in JMP 8.0.2. Parameters with the least weight, parameter coefficient less than
0.05, and VIP less than 0.8 were removed from model development (Table 5.6). Ten
parameters out of the 30 initial parameters were found to significantly affect rejection for the
selected compounds based on the PLS evaluation.
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Table 5.6. Parameters Significant to a 3-Parameter Correlation for All Neutral
Compounds in Experimental Database

Category Molecular Descriptor PLS Wt VIP
Length (nm) 0.145 1.060
Width (nm) 0.091 0.987
W121ke—Chang diffusion coefficient 0234 1258
. (m/s)
Size
Stokes radius (nm) 0.088 1.132
Vol (cm?/mol) 0.117 1.125
Vol (A”) 0.106 1.146
FOSA (A% -0.110 0.819
Component surface area
SASA (A%) 0.130 1.170
Enowmo (au) 0.159 0.881
Electron distribution
IP (eV) -0.083 1.031

Size parameters were again found to account for a significant portion of variability in the
rejection data, which was expected for neutral compounds. All size parameters have a
positive effect on rejection, except for the Wilke-Chang diffusion coefficient, which is
negatively correlated with size. From the PLS evaluation, FOSA, IP, and Egomo affect solute
rejection with the ESPA2 membrane differently from how they affect it with the NF-270
membrane. FOSA has a negative effect on rejection for the ESPA2 membrane. This finding
indicates that aliphatic compounds would have lower rejection than aromatic compounds.
Compounds did not show strong adsorptive effects with the ESPA2 membrane because most
compounds exhibited higher than 90% rejection. Because the adsorptive effects were not
observed, aromatic compounds tend to have higher rejection than aliphatic compounds, given
their larger size. [P was negatively correlated with rejection, which indicates compounds that
are less likely to interact with the membrane will have lower rejection. Eyonmo was positively
correlated with solute rejection (i.e., the greater the energy in the Egomo, the more a solute is
rejected). This finding indicates that compounds with a larger Egonmo will have an increase in
rejection.

Multiple Linear Regressions. A three-parameter multiple linear regression approach was
employed to relate a combination of molecular descriptors to solute rejection by using JMP.
Regressions were valid and further explored if the statistics met the criteria previously
defined (Section 3.5):

P <0.05
F-ratio > 2.8
RMSE < 0.5
R*>0.75
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All combinations of molecular descriptors found to be significant during the PLS evaluation
were investigated, and only one correlation was found to be significant, listed in Equation
5.3.

ReflogPemeval) m =111s™3F05A + 6.207 Egops + 4726735454~ 1333 (53)

This correlation includes FOSA, Egomo, and SASA and yielded an R? value of 0.75 and
RMSE of 0.346. The overall F-ratio was relatively high, 43, where individual F-ratios ranged
from 5 to 89 and P values were below 0.05, listed in Table 5.7, indicating a low probability
that the parameters are correlated by chance. The size descriptor, SASA, obtained the greatest
F-ratio and the most significance. This finding was expected because steric exclusion is
expected to be the main rejection mechanism for nonionic compounds (Agenson et al., 2003;
Kimura et al., 2004; Van der Bruggen et al., 1999).

Table 5.7. Parameters Significantly Correlated to Rejection Listed with Significant
Statistics

Parameter | Parameter | Parameter F-Ratio P
1 2 3 1 2 3 1 2 3
FOSA Enomo SASA 5.134 | 8.711 | 89.091 | 0.028 | 0.005 | <0.0001

Applying the QSPR Equation 5.3 to the development compounds in the ESPA2 bench-scale
database revealed results that are illustrated in Figure 5.5 (tables containing QSPR-predicted
rejection versus experimental rejection are listed in Appendix F). The error bars on the
figures in the x direction represent the individual 95% confidence intervals and in the y
direction represent the experimental deviation. The QSPR model does contain a few outliers.
Compounds exhibiting a high FOSA value but with a lower rejection based on size were
overpredicted, such as ethanol, methanol, and urea. A higher FOSA value usually indicates
low removal from the ESPA2 membrane because aromatic compounds usually have a larger
volume, indicating compounds rejected by steric interactions.

Model Validation. The model was internally validated by using the LOO cross-validation
method, yielding a ¢* value of 0.66 and indicating a good fit (Eriksson et al., 2003). The
QSPR model was also externally validated by applying the model to the validation
compounds for the ESPA2 membrane bench-scale data (Table 3.2). Results of this
comparison are presented in Figure 5.6, and an R” value of 0.7414 was yielded. All
compounds were predicted within 7%.
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Figure 5.5. QSPR (FOSA, Egomo, SASA) for neutral compounds developed from bench-scale
ESPA2 membrane rejection data described as Log removal.
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Figure 5.6. QSPR (FOSA, Eyomo, SASA) for ESPA2 membrane applied to validation
compounds.

5.3 Phenomenological Model

5.3.1 Phenomenological Model for NF-270 Nanofiltration Membrane

Rejection data for all of the organic solutes analyzed and documented in Chapter 4 were fit
with the phenomenological model by manipulating model coefficients (o, P;). To achieve the
best fit, a nonlinear fitting program in Mathematica (Wolfram Research, Champaign, IL) was
used. Fitting the phenomenological model requires increased rejection with increased
permeate flux and certain organic compounds studied displayed rejection-versus-flux trends
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that cannot be described by the phenomenological model. These compounds generally
exhibited rejection trends synonymous with solute—membrane interactions, which included
decreasing rejection as a function of experimental run time and decreased rejection with
increased permeate flux. In addition, a few compounds exhibited highly variable rejection
that may be due to analytical error or degradation in the feed water container or collection
vessel. A list of compounds whose rejection data could not be fit with the phenomenological
model is provided in Table 5.8. Many of the compounds displaying solute—membrane
interactions are phenol-type compounds with hydroxyl groups attached to aromatic rings
(e.g., benzyl alcohol, 2,4-dichlorophenol, methylparaben, and 2-naphthol). The THM
compounds (i.e., chloroform, bromoform, BDCM, and dibromochloromethane) adsorb
strongly to membrane materials and are poorly removed after a matter of hours. These
compounds are hypothesized to form hydrogen bonds with the active layer of
polyamide/polypiperazine membranes and are difficult to model. Additionally, relatively
hydrophobic solutes with carbonyl or ester functional groups (e.g., benzophenone, benzyl
acetate, and N-nitrosodiphenylamine) were observed to adsorb to membrane material.
Somewhat surprisingly, two positively charged compounds, trimethoprim and trazodone, also
displayed adsorption behavior and rejection data that could not be described by the
phenomenological model.

Table 5.8. List of Compounds Not Fitting with Phenomenological Model

Compound Class Log Kow Notes
Benzophenone HoN 3.18
Benzyl acetate HN 1.93 Strong interactions with membrane
Benzyl alcohol HN 1.03
Chlortetracycline HCN -2.87 Unstable results, may degrade in feed water
2,4-Dichlorphenol HoN 3 Strong interactions with membrane
Chloroform HN 1.76
Bromofc_irm HHoN 2.23 Very strong interactions with membrane
Bromodichloromethane HHoN 2.02
Dibromochloromethane HHoN 222
Oxytetracycline HCN -4.03 Unstable results, may degrade in feed water
2-Fluorophenol HN 1.7
Methylsalicylate HHoN 2.23
Methylparaben HN 1.86
2-Naphthol HHoN 2.71
2-Phenylphenol HHoN 2.94 Strong interactions with membrane
Triclosan HoN 5.17
Trimethoprim HCP -0.42
Trazodone HCP 0.85
N-nitrosodiphenylamine HoN 3.13

Several compounds exhibited relatively constant rejection versus permeate flux, which can be
difficult to describe with the phenomenological model (Table 5.9). Rejection data for these
compounds were fit with the phenomenological data; however, suboptimum model fits were
obtained. With the exception of norfloxacin (carrying negative and positive charges) and
resorcinol (phenolic compound), most of the solutes exhibiting this behavior were relatively
hydrophobic with hydroxyl groups attached to aliphatic or aromatic ring structures.
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Table 5.9. List of Compounds with Less-than-Optimal Phenomenological Model Fits

Compound Class Log Kow Notes

1-naphthalenemethanol HHoN 2.26
Estrone HoN 3.69
17-B-estradiol HoN 4.13 Fl L . lichtly d d
Ethynylestradiol HoN 452 at rejection curve or rejection slightly decrease

with increasing permeate flux, minimal (<10%)
Progesterone HoN 4.04 d S :

ecrease in rejection over time

Testosterone HoN 3.47
Norfloxacin HCNP -0.9
Resorcinol HN 0.76
Propylparaben HHoN 2.92 Some rejection data points indicate adsorption

With the exception of the compounds described earlier, the phenomenological model
provided sufficient fits of intrinsic rejection-versus-flux data for HN, HHoN, HoN, HCN,
HCP, and HCNP compounds. Several examples of these phenomenological model fits of
rejection data are provided in Figure 5.7. This fitting exercise resulted in the characterization
of each compound with two model parameters, sigma (o) and solute permeability (P). Sigma
is considered limiting rejection and is defined as rejection at infinite flux or the reciprocal of
the sieving coefficient. The solute permeability parameter (Ps) controls the shape of the
rejection curve at low permeate flux and represents solute diffusion through the membrane. A
complete list of phenomenological model parameters for the organic compounds evaluated is
provided in Table 5.10.

Once sigma (o) and solute permeability (Ps) are known for a compound, rejection can be
calculated for any permeate flux value, which does not apply to QSPR models. By correlating
model parameters with molecular descriptors, model parameters for unknown compounds
could potentially be calculated, which would allow the prediction of rejection at any permeate
flux. Therefore, once model parameters were determined for the suite of compounds,
correlations between model parameters and solute descriptors were developed. To achieve
this, compounds were grouped into neutral (HN, HHoN, HoN, and all three grouped
together), negatively charged, positively charged, and both positively and negatively charged
compound bins. Because the value of solute permeability is very small, the base-10 logarithm
of the solute permeability was used to develop correlations.
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Table 5.10. Phenomenological Model Coefficients for All Organic Compounds (NF-270 Membrane)

Reflection  Permeability Reflection  Permeability Reflection | Permeability

Reflection Permeability coefficient  coefficient coefficient  coefficient coefficient  coefficient

Compound cocfficient (o) cocfficient (P) Compound (o) (P) Compound (3) (P Compound (a) (P)

- m's - m's - m's - m's
2.4-Dihydroxybenzoic acid 0.9294 7.522E-07 Alanine 0.9399 6.053E-07 Dilantin 0.9520 1.926LE-07 | Nitrosomorpholine 0.9461 5.028E-06
Acetic acid 0.8627 5.508E-06 Arginine 09112 2.613E-07 Estriol 0.9414 1.095E-07 Pentoxyfilline 0.9336 3.722E-07
Benzoic acid 10,9244 2.775E-07 Baclofen 0.9795 5.547E-08 N-nitrosodibutylamine (NDBA) 0.8865 5.533E-07 Phenacetin 0.9315 7.400E-06
Captopril 0.9996 1.419E-06 Cysteine 0.9671 4.350E-07 Propylparaben 0.6853 6.316E-06 Primidone 0.9405 6.588E-07
Ciprofloxacin 0.9832 1.219E-07 Lysine 0.9685 1.247E-06 Thiabendazole 0.9214 5.024E-06 | Propyphenazone 0.9575 3.218E-07
Clofibric acid 0.9582 1.616E-07 Norfloxacin 0.6713 1 447E-06 Tyrosine 0.9491 6.493E-07 Rescorcinol 0.3094 3.274E-05
Dibromoacetic acid 0.9449 5.276E-08 Serine 0.9039 5.328E-07 Warfarin 0.9753 3.143E-08 Sucralose 0.9320 2.699E-07
Dichloroacetic acid 0.9382 1LOMME-07 Amitriptyline 0.9946 B.O19E-09 I-nitrosopiperidine (L.EROY 2.920E-06 Sucrose 0.9922 T.774E-08
Diclofenac 0.9861 9.910E-08 Atenolol 0.9320 5.382E-07 L-nitrosopyrrolidine 0.8712 6.943E-06 TCEP 0.9355 TA74E-07
Enalapril 0.9788 3.041E-07 Cimetidine 0.9188 1.277E-06 1. 4-Butanediol 0.8333 8.708E-06 TCPP 0.9428 3.087E-08
CGemfibrozil 0.9807 1.163E-07 Dilitiazem 0.9650 2.978E-07 Acetaminophen 08318 9.669E-06 | Triethyleneglycol 0.9401 1.437E-00
Glutamic acid 0.9659 8.33TE-07 Guanidine 0.9894 8.399E-07 Caffeine 0.9511 6.665E-07 Uracil 0.7843 2.647E-05
Histidine 0.9057 2.108E-06 Imiguimod 0.9760 4481E-07 Chlortetracycling 0.8842 3.A444E-07 Urea 0.2321 3.675E-05
Thuprofen 0.9749 2.204E-07 Ketoconazole 0.9953 7.558E-00 Cortisol 0.9852 3.258E-07 17-B-Estradiol 0.9645 2.930E-08
Ketoprofen 0.9910 1.318E-07 Metformin 0.8278 6.411E-07 Ethanol 0.4073 1.585E-05 Bisphenol A 0.9708 2.019E-06
Maleac acid 0.9793 2.073E-07 Metoprolol 0.9353 T.269E-07 Fluconazole 0.9334 3 AGOE-07 Desloratitidine 0.8794 2.206E-07
Methotrexate 0.9801 1LO41E-07 Norfluoxeting 0.9946 1.509E-08 Furosemide 0.9715 8.76TE-08 | Diethylstilbesterol 0.9158 1.246E-07
Naproxen 0.9825 4.221E-08 Pseudoephedrine 0.8799 1L.026E-06 Glucose 0.9723 1.735E-07 Estrone 0.9752 1.O16E-08
Phenylalanine 0.9556 6.360E-07 Ranitidine 0.8981 3.802E-07 Glycerol 0.8546 6.222E-06 | Ethinylestradiol 0.9804 9.583E-09
Salicylic acid 0.9800 4.503E-07 Salbutamol 0.9786 5.084E-08 Isopropanol 0.7969 1. 375E-05 Fenofibrate 0.9930 1.055E-08
Sulfacetamide 0.9812 B 15TE-08 Sulfamethoxazole 0.9578 4.6T8E-07 Meprobamate (1.9348 4.849E-07 Fluoxetine 0.9951 BO0M0E-09
Sulfadimethoxine 0.9817 6.4978E-08 I-Naphthalenemethanol 0.5611 9.356L-06 Methanol 0.0799 1.634E-05 1s0-Butylparaben 0.9226 8. 188E-06
Sulfadoxine 0.9465 6.274E-07 Atrazine 0.9310 1.240E-07 MtBE 0.9383 8.417E-07 Nonylphenol 0.9151 2.675E-07
Sulfamerazine 0.9791 2409E-07 Carbamazepine 0.9428 3.970E-07 N-nitrosodicthylamine (NDEA) 0.8331 4.388E-06 Oxybenzone 09816 1.425E-08
Sulfasalazine 0.9887 4.772E-08 DEET (1.9497 4. T81E-07 N-nitrosodimethylamine (NDMA) (1.3586 2.B94E-05 Progesterone 09910 3.634E-08
Trichloroacetic acid 0.9504 2.145E-08 Diethylphthalate 0.9278 4.705E-07 N-nitrosodipropylamine (NDPA) 0.9063 1 408E-06 TDCPP 0.9808 2.340E-08
Triclocarban 0.9950 8.067E-09 | N-nitrosomethyethylamine (NMEA) 0.8164 1.195E-05 Testosterone (.9583 3.168E-08
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The ranges of phenomenological model coefficients for the different major classes of
compounds along with the range of molecular weights are presented in Figure 5.8. With the
exception of the HN compounds, sigma values generally fell within a small range, especially
for the HCN compounds. The range of sigma values for HN compounds was broader than for
the other classes because of the impact of molecular size on rejection. Ranges of the Log P
parameter for each compound class were larger than for sigma. On first inspection, it
appeared that HCNP compounds exhibited a Log P; range different from that of other ionic
compounds. However, the HCNP tended to be of less molecular weight, which may explain
why Log P values for these compounds tended to be less negative than for other ionic
compounds. Significant effort was undertaken to develop correlations between
phenomenological model coefficients and molecular descriptors to predict model coefficients
for “new” compounds. These efforts are discussed later.
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Figure 5.8. Comparison of molecular weight and phenomenological coefficients for the major
classes of compounds investigated.

WateReuse Research Foundation 117



5.3.1.1 Neutral Compounds—Solute Permeability (P,)

Cross-validation PLS analysis was performed to determine the most important solute
descriptors for developing correlations with Log P; for all neutral compounds as well as the
optimum number of descriptors in a regression. Somewhat surprisingly, the RMSE of the best
correlations could not be significantly improved by including more than one descriptor. In
addition, solute size descriptors were found to be the most important for describing Log P; for
all of the neutral organic compounds analyzed. Size descriptors such as molecular volume,
Stokes radius, second moment of the charge density (S, Sy, and S,), molecular weight, and
surface area descriptors were found to be the most important factors for Log P,. Examples of
correlations developed between Log P and size descriptors are presented in Figure 5.9.
Recursive partitioning was also implemented to find the best descriptors for use in multiple
linear regressions. Partitioning identified that the best descriptors for a multiple linear
correlations would be the equivalent width (square root of width multiplied by depth) and the
base-10 logarithm of solubility (Log S). The developed multiple linear regression; however,
was not statistically significant (on the basis of ¢ and F values for descriptor coefficients).
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Figure 5.9. Correlations between Log P, and molecular size descriptors for all neutral
compounds.
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For HN compounds (minus the validation compounds), the most important factors
determining rejection included molecular volume, Stokes radius, second moment of the z axis
charge density (S,), solvent accessible surface area, depth, diffusion coefficient, and
molecular weight. Correlations developed between Log P and molecular volume, S,, Stokes
radius, and molecular weight are provided in Figure 5.10. Molecular volume and S, provided
the best fit of Log P, data; however, more-accessible descriptors such as Stokes radius and
molecular weight provided statistically significant fits of Log P data (on the basis of the 7 and
F statistic). Recursive partitioning identified depth and diffusion coefficient as the two best
parameters for use in multiple linear regression; however, the correlation was not as
significant as using molecular volume alone. These results indicate that, for organic solutes
with Log K, values less than 2 (our definition of HN compounds), molecular size is the most
important factor for the rejection of solutes at relatively low permeate flux ranges.
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Figure 5.10. Correlations between HN Log P and molecular size descriptors.
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The cross-validation PLS analysis was repeated for Log P; values for the HoON compounds
(Log Kow > 3). The most important factors for the HoN compounds were identified as critical
point descriptors (S, Sy, and S,) and solubility; however, bivariate correlations were much
less significant than for the HN compounds (R* < 0.4, Figure 5.11). As was previously
mentioned, solutes that interact with membrane materials are not well described by the
phenomenological model. Solutes that were identified as having moderate membrane
interactions during rejection experiments exhibited relatively “flat” rejection-versus-
permeate-flux curves, which was more common among the compounds with Log K, values
greater than 3 (see Table 5.10). The other compounds that could not be fit with the
phenomenological (presented in Table 5.9) model exhibited decreased rejection with
increased flux and significant change in rejection over 24 h. On the basis of these
observations, the phenomenological model is not a good approach for describing the rejection
of hydrophobic compounds (Log K, > 3) or certain compounds with functional groups that
interact with membrane polymers (e.g., phenols). Therefore, compounds displaying
solute—membrane interactions will be left out of further phenomenological model
development discussion.
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Figure 5.11. Correlations between Log 7 and molecular descriptors for HoN compounds.

Recursive partitioning was used to identify the best descriptors for multiple linear
correlations to calculate Log P for HN, HHoN, and HoN compounds that exhibited minimal
solute—membrane interaction. The most statistically significant correlation included depth,
Log S, and Sy. This correlation was used to predict Log P for the training set and the
correlation between experimental Log P, and predicted Log P;. As a comparison, a
correlation was developed by using molecular volume to predict Log P;. Experimental versus
predicted Log P values are presented for both correlations in Figure 5.12.
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Figure 5.12. Experimental versus predicted Log 7, values for neutral compounds that exhibited
minimal solute—membrane interactions.

5.3.1.2 Neutral Compounds—Sigma (o)

No statistically significant correlations could be developed between sigma values and
molecular descriptors by using common statistical techniques (i.e., recursive partitioning,
PLS, multiple linear regression, and bivariate regression). Past studies have used sigma
values obtained through phenomenological fitting to determine a monomodal pore size
distribution (Van der Bruggen and Vandecasteele, 2002). At infinite flux, solute transport is
dominated by convection and diffusion can be assumed to be negligible. Therefore, a sigma
value for a given molecule represents the reciprocal of the sieving coefficient—for example,
the proportion of pores that are smaller than the given molecule. By running of several
molecules of different size, a pore size distribution can be determined from reflection
coefficients, which has been demonstrated to fit best with the Log-normal cumulative density
function (Van der Bruggen and Vandecasteele, 2002; Bellona and Drewes, 2010).

This exercise was carried out for different groupings of neutral compounds: all neutral
compounds and only the aliphatic compounds with little environmental relevance (alcohols,
sugars, urea, and uracil). The compounds with minimal environmental relevance were chosen
because they span a wide range of molecular size (Stokes radius between 0.1 and 0.6 nm) and
exhibited no membrane interaction. Fitting the reflection coefficients for these compounds
with the Log-normal cumulative density function resulted in an average pore size of 0.196 nm
and standard deviation of pore size of 0.229 nm (Figure 5.13). Using all of the neutral
compounds to calculate a pore size distribution yielded a marginally larger average pore size
(0.197 nm) and standard deviation of pore size (0.293 nm [Figure 5.13]). A significant
number of reflection coefficients for the neutral compounds investigated were overpredicted
by the monomodal Log-normal pore size distribution, indicating the Stokes radius is not the
best size descriptor for these compounds, the pore size distribution is bimodal, or other
molecular properties influence the reflection coefficient. Similar statistical analysis as
discussed previously for Log P was carried out for the reflection coefficient; however, no
statistically significant correlations were found with descriptors other than size descriptors.
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Figure 5.13. Log-normal cumulative density function fits for sugars, alcohols, urea, and uracil
(left) and all neutral organic compounds with resulting pore size average and deviation values.

5.3.1.3 Predicting Rejection of Neutral Validation Compounds Using the
Phenomenological Model

Several correlations developed in the previous sections were used to predict bench-scale
rejection for the neutral validation compounds with minimal solute—-membrane interactions:
carbemazepine, dilantin, fenofibrate, MTBE, 1-nitrosopyrrolidine, and isobutylparaben
(Figures 5.14 through 5.19). With the exception of isobutylparaben, and of MTBE for the
volume correlation, this approach provided reasonably good fits of rejection data spanning a
wide permeate flux range. For the validation compounds evaluated, adding additional
parameters to linear regression to predict Log P only significantly improved the model fit for
MTBE. Therefore, it is presumable that, to characterize a given membrane, rejection
experiments over a flux range could be run with sugar- and alcohol-type compounds spanning
a range of size or pore size distribution (PSD) (e.g., ethanol, isopropanol, urea, glycerol,
glucose, and sucrose) and several environmentally relevant compounds with minimal
solute—membrane interactions (e.g., NDMA, carbamazepine, caffeine, DEET, and
primidone). Similar correlations could be developed between phenomenological coefficients
and molecular size to predict the rejection of neutral compounds expected to have minimal
solute—membrane interactions. However, precaution should be taken to conduct the
experiments so that concentration polarization is minimized.
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Figure 5.14. Carbamazepine rejection versus permeate flux with predicted rejection.
Top figure: Predicted model used 3-parameter correlation for Log P (Figure 5.12) and sugar and

alcohol PSD (Figure 5.13).
Bottom figure: Used 1-parameter correlation for Log P; (Figure 5.12) and sugar and alcohol PSD

(Figure 5.13).
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Figure 5.15. NPYR rejection versus permeate flux with predicted rejection.

Top figure: predicted model used 3-parameter correlation for Log P, (Figure 5.12) and sugar and

alcohol PSD (Figure 5.13).

Bottom figure: used 1-parameter correlation for Log P, (Figure 5.12) and sugar and alcohol PSD

(Figure 5.13).
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Figure 5.16. MTBE rejection versus permeate flux with predicted rejection.

Top figure: predicted model used 3-parameter correlation for Log P, (Figure 5.12) and sugar and
alcohol PSD (Figure 5.13).

Bottom figure: used 1-parameter correlation for Log P (Figure 5.12) and sugar and alcohol PSD
(Figure 5.13).
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Figure 5.17. Dilantin rejection versus permeate flux with predicted rejection.

Top figure: predicted model used 3-parameter correlation for Log P, (Figure 5.12) and sugar and

alcohol PSD (Figure 5.13).

Bottom figure: used 1-parameter correlation for Log P, (Figure 5.12) and sugar and alcohol PSD

(Figure 5.13).
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Figure 5.18. Fenofibrate rejection versus permeate flux with predicted rejection.

Top figure: predicted model used 3-parameter correlation for Log P, (Figure 5.12) and sugar and
alcohol PSD (Figure 5.13).

Bottom figure: used 1-parameter correlation for Log P (Figure 5.12) and sugar and alcohol PSD
(Figure 5.13).
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Figure 5.19. Isobutylparaben rejection versus permeate flux with predicted rejection.

Top figure: predicted model used 3-parameter correlation for Log P, (Figure 5.12) and sugar and
alcohol PSD (Figure 5.13).

Bottom figure: used 1-parameter correlation for Log P, (Figure 5.12) and sugar and alcohol PSD
(Figure 5.13).

5.3.1.4 LOO Model Validation—Neutral Organic Contaminants

To evaluate the phenomenological-QSPR modeling approach, one compound was kept out of
Log Ps correlation calculations using the three-parameter multiple linear regression model
and the multiple regression model using only molecular volume. The reflection coefficient
was calculated by using the PSD developed for sugars, alcohols, urea, and uracil discussed
previously (Figure 5.13). This approach was used to calculate the rejection at 12-gfd
permeate flux for the environmentally relevant neutral compounds that exhibited minimum
membrane interactions during experiments (Figure 5.20). Three solutes, acetaminophen,
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phenacetine and isobutylparaben, were found to be poorly fit by this approach using both
models. Interestingly, these compounds have very similar structures, that is, a benzene ring
with two functional groups in the para substitution pattern. Isobutylparaben and
acetaminophen both have a phenolic moiety attached to the benzene ring, with the only
difference being that acetaminophen has an amide group and isobutylparaben has an ester
group in the para position. Phenacetine does not have a hydroxyl group and instead has an
ester group and an amide group in the para position. Other similar compounds, such as
methylparaben, benzyl acetate, and methyl salicylate, exhibited significant membrane
interactions, had lower-than-expected rejection on the basis of size, and could not be
described by using the phenomenological approach.

0.8 - o 0.8 - o

0.4 - B 0.4 il

12 gfd Experimental rejection [-]
o
o

12 gfd Experimental rejection [-]
()
o

(¢} ¢}

1 1 1 1 O 1 1 1 1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
12 gfd Predicted rejection [-] 12 gfd Predicted rejection [-]

Figure 5.20. LOO model correlations with experimental 12-gfd rejection data.

5.3.1.5 Ionic Compounds—Sigma (o) and Solute Permeability (P,)

Sigma and especially Log P; values for ionic compounds spanned a significantly narrower
range than did neutral compounds (Figure 5.8). This finding may partially explain why
developing statistically significant correlations between molecular descriptors and
phenomenological coefficients was more difficult for ionic compounds than for neutral
compounds. As an example, correlations developed between phenomenological model
coefficients and size parameters were poor (Stokes radius presented in Figure 5.21). Cross-
validation PLS identified the most important descriptors for describing Log P; as being the
number of halogens, WPSA, FOSA, Erymo, number of six-membered rings, and solubility,
respectively. Increasing numbers of halogens and six-membered rings tend to result in more-
negative Log P; values (increased rejection at low permeate flux), although an increase in
hydrophobicity tends to make Log P, values less negative (decreased rejection at low
permeate flux).

Recursive partitioning and PLS analysis were used to develop multiple linear regressions for
predicting Log P; for all ionic compounds from molecular descriptors. The multiple linear
regression resulting in the best correlation (R* = 0.66) with statistically significant
coefficients (based on ¢ and F-ratios) included the number of halogens, solubility, and E; ymo
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and is presented in Figure 5.22. Although significant, this approach did not provide a high
degree of predictive power and additional analysis was performed.
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Figure 5.21. Correlation between phenomenological model coefficients and Stokes radius for
ionic compounds (HCN, HCP, HCNP).
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Figure 5.22. Experimental versus predicted Log P, values for ionic compounds at pH 6.3 (HCN,
HCP, HCNP).

5.3.1.6 Ionic Compounds—HCP and HCNP

Through trial and error and by using PLS analysis, it was observed that HCNP and HCP
phenomenological coefficients had correlations with similar descriptors. Therefore, HCNP
and HCP compounds were grouped together and were analyzed by using PLS analysis and
multiple linear regression. Statistically significant multiple linear regression models were
developed to describe Log P by using the number of halogens and a size parameter such as
Stokes radius, second moments of inertia, and molecular weight. The two most statistically
significant and correlated regressions are presented in Figure 5.23. As previously described,
increasing the number of halogens resulted in more-negative Log P; values, especially for
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HCP compounds (increased rejection at low permeate flux). As expected, increasing
molecular size also resulted in a more negative Log P value. Two validation compounds for
each class of compounds (HCP and HCNP) were subsequently left out of multiple regression
development to evaluate this modeling approach. Because second-moment-of-inertia
descriptors are difficult to calculate, the regression using molecular weight was used to
predict Log P for validation compounds. Unfortunately, no significant correlations could be
developed between sigma values and molecular descriptors likely because of the small
variation in sigma values for HCNP and HCP compounds. The average of HCNP and HCP
compound sigma values was used with the standard deviation (plus and minus) for inclusion
into the phenomenological model.
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Figure 5.23. Experimental versus predicted Log Z; values for HCP and HCNP compounds
at pH 6.3.

The results of the rejection prediction exercise described earlier are presented in Figure 5.24.
Because two sigma values were used (average sigma plus or minus standard deviation), a
range of rejection was predicted across the permeate flux range investigated. In general, this
approach resulted in predicted rejection within the range of experimental values, although
baclofen rejection was underestimated at several permeate flux values. On the basis of this
analysis, it is possible that several HCNP and HCP compounds could be selected (e.g.,
ciprofloxacin, lysine, ketoconazole, and metoprolol) to characterize a membrane’s rejection
of HCNP and HCP compounds.
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Figure 5.24. Experimental rejection with predicted phenomenological model predictions using
the multiple linear regression approach presented in Figure 5.23 for baclofen (upper left,
HCNP), ciprofloxacin (upper right, HCNP), dilitiazem (lower left, HCP), and imiquimod (lower
right, HCP).

Note: Sigma values used were the average of all HCNP and HCP compounds minus the validation compounds
(0.945) plus and minus the standard deviation (0.40).

5.3.1.7 Ionic Compounds—HCN

Similar correlations between phenomenological coefficients and molecular descriptors
described earlier were explored for HCN compounds. However, no strong correlations could
be developed among sigma, Log Ps, and molecular descriptors. One possible explanation for
the lack of correlation with descriptors could be the fact that the range of Log P; values for
HCN compounds was narrow (Figure 5.8). Including either HCNP or HCP compounds only
marginally improved the significance of developed multiple linear correlations. Recursive
partitioning could be used to develop a modeling approach with good correlations (R* ~ 0.8)
between predicted and experimental Log P; values; however, there is no straightforward way
to determine the significance of the descriptors used in the model. For example, a recursive
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partitioning model for predicting Log P values for all ionic compounds was comprised of
eight descriptors in the form of a decision tree. Although the model provided relatively good
fits of experimental Log P, data, a user would be required to calculate relatively complicated
descriptors, such as second moments of the charge density, E;ymo, and surface area
descriptors such as FOSA, PISA, and WPSA. It is worth noting that all of the HCN
compounds evaluated, with the exception of acetic acid, exhibited greater than 90% rejection
by the NF-270 membrane at permeate fluxes equal to or greater than 12 gfd. In addition, all
of the HCN compounds considered to be organic contaminants were more than 94% rejected
at permeate flux equal to or greater than 12 gfd.

5.3.2 Phenomenological Model for the ESPA2 Membrane

As with the NF-270 membrane, ESPA2 membrane rejection data (for most of the organic
solutes evaluated) were fit with the phenomenological model by manipulating model
coefficients (o, P;). As previously discussed, a number of NF-270 membrane organic solute
rejection curves could not be described by the phenomenological model because of
hypothesized solute—membrane interactions. This issue was not as pronounced with the
ESPA2 membrane, however, and the phenomenological model could be used to describe the
rejection of the majority of compounds evaluated. Compounds that could not be described
include the THMs (chloroform, bromoform, BDCM, and dibromochloromethane),
ketoconazole, trazodone, and trimethoprim. Compounds exhibiting a flat or slightly declining
rejection-versus-flux curve resulting in less than optimal fits included 2-phenylphenol and
propylparaben. Examples of phenomenological model fits are presented in Figure 5.25, and a
list of phenomenological coefficients is presented in Table 5.11.

The ranges of reflection coefficients and solute permeability coefficients for each solute
classification is presented in Figures 5.26 and 5.27. The range of ESPA2 membrane reflection
coefficients was much narrower than for the NF-270 membrane, as the majority of
compounds exhibited rejection greater than 95% at elevated permeate flux. In addition, the
ranges of reflection coefficients and solute permeability coefficients for compound
classification were relatively similar to one another as the ESPA2 provided high rejection of
almost all the solutes evaluated. Notable exceptions included methanol, ethanol, urea, and
NDMA because of their small molecules.

Reflection coefficients for sugars, alcohols, urea, and uracil were fit with the Log-normal
cumulative Log-normal density function to determine the effective average pore radius and
standard deviation of pore radius (Figure 5.28, left). On the basis of this approach, the
effective average pore radius was determined to be 0.16 nm, which is approximately 20%
smaller than the NF-270 membrane. Analysis by PLS indicated that the most significant
descriptor for Log P; was a solute’s diffusion coefficient, which was significantly correlated
with Log P values for the sugars, alcohols, urea, and uracil (Figure 5.28, right). The
correlation between Log P; and diffusion coefficients for all of the nonionic organic
compounds was less significant, and the correlations could not be improved by adding more
descriptors to the regression. It is worth noting that, because the ESPA2 membrane provides
such high rejection, the reflection coefficient and Log Ps data were skewed toward reflection
coefficients of 1 and negative Log P, values between 6 and 8.
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Figure 5.25. Examples of phenomenological model fits of ESPA2 rejection data.

134 WateReuse Research Foundation



Table 5.11. Phenomenological Model Coefficients for All Organic Compounds (ESPA2 Membrane)
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Figure 5.26. Distribution of reflection coefficients (left) and Log P, values (right) for ionic
compounds with ESPA2 membrane.
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ESPA2 membrane.
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5.4 Hydrodynamic Model

5.4.1 Model Theory

The hydrodynamic modeling approach assumes that NF membranes are composed of a
bundle of cylindrical pores with the same radius and that the transport or flux of a nonionic
solute within a pore is due to hindered convection and diffusion:

J. =-K,D, de +K.cJ,
' dx

(5.1)
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where Ki,c and Ki,d are hindrance coefficients. The average solute flux is obtained by
integrating Equation 5.1 over the length of the pore and relating the pore concentration to the
external feed and permeate solute concentration through solute partitioning expressions

(Cm = ®C,, cr = PC, ). The solute steric hindrance (&) is defined as the ratio between the
solute radius and the characterized average pore radius:

1=
Fr (5.2)

If one assumes a parabolic profile of the Hagen—Poiseuille type (Bowen and Mohammad,
1998), the solute hindrance factors for convection and diffusion are given as

K.,=A+BA+CX+DX (5.3)
K,=E+FA+GX +HX (5.4)

For the case of 0 <A < 0.8, the coefficients in Equations 5.3 and 5.4 are defined as
A=1.0,B=0.054,C=-0.988,D=0.441,E=1.0,F=-2.30,G=1.154, and H = 0.224
For the case of 0.8 <A < 1.0 the coefficients are defined as

A =-8.830,B=19.348,C=-12.518, D=0, E=-0.105, F = 0.318, G=-0.213,and H=0

For relatively narrow and long pores with fully developed velocity profiles, Deen (1987)
reported that Equation 5.3 should be multiplied by (2-¢) where

d=0-1) (5.5)

As it is speculative to assume the nature of the pore structure of NF membranes, Equation 5.5
was used in combination with Equation 5.3 to determine the convective hindrance factor
(Kc). By rearrangement and integration of Equation 5.1 and introduction of the Peclet
number, the ratio between the bulk permeate and feed solute concentrations, rejection can be
defined as

PK.

R=1-
1-[1-®K:]exp(-Pe)

(5.6)
As has been reported by Bowen et al. (1998), the Peclet number can be described as

Ker'J, Ko AP
e = =
SD;;??”LP SDpn[J

(5.7)

This representation of the Peclet number eliminates the need to characterize the thickness-to-
porosity ratio of a membrane, which is discussed later. The rejection of an uncharged solute
(Equation 5.6), therefore, is a function of pore radius, solute size and diffusivity, and
permeate flux. Past modeling efforts have defined the Peclet number as
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Pe = —KCJV (i]

K,D,\ 4, 55)

where the term /A4y is the membrane thickness-to-porosity ratio. This term has been
neglected by introducing the Hagen—Poiseuille model

)4z 69
4,) L,\8n

and substituting into Equation 5.8 to get the middle term in Equation 5.7. One limitation to
using Equation 5.9 to calculate the Peclet number is that an additional fitting parameter is
introduced, which must be determined for each solute. If one uses Equation 5.7 to calculate
the Peclet number, 6/4 is neglected and rejection is mostly a function of solute size,
membrane pore size, and permeate flux. The use of Equations 5.7 and 5.8 is discussed in the
following section.

5.4.2 Determination of NF-270 Pore Size

Initially, an attempt was made to use an average membrane permeability constant determined
through permeate flux and pressure data generated for all rejection experiments (~200) in
Peclet number determination. The result of this exercise is presented in Figure 5.30.
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Figure 5.30. Determination of membrane permeability constant (L) using permeate flux data
from all NF-270 rejection experiments (n = 200).

For each of the permeate flux set-points, actual permeate flux and pressure were averaged and
the standard deviation calculated. Fitting the average permeate flux-versus-pressure curve
resulted in a very good correlation; however, standard deviations of pressure were relatively
large. Therefore, during calculations of the Peclet number for modeling rejection of a given
solute, the membrane permeability was calculated from each individual experiment.

Intrinsic rejection-versus-permeate-flux curves for sugars (glucose and sucrose), alcohols
(1,4-butanediol, ethanol, isopropanol, glycerol, and triethyleneglycol) and urea were fit with
the hydrodynamic model by manipulating the membrane pore radius (7,) to minimize the
error between modeled and experimental rejection values. The resulting pore radius
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compared with each solute’s Stokes radius is presented in Figure 5.31. Because the two
largest compounds, glucose and sucrose, were not completely rejected by the NF-270
membrane, the pore radii for these compounds are significantly longer than for the other
compounds. Although this result indicates that the membrane pore radius depends on the
solute used to characterize the membrane, this approach was investigated further as a method
to predict the rejection of nonionic organic solutes.
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Figure 5.31. NF-270 membrane pore size determination using sugar, alcohols, and urea.

The use of the hydrodynamic model for the purpose of predicting the rejection of nonionic
organic solutes would require a determination of an average pore radius for use in the model.
For example, the average value for the sugar, alcohols, and urea was determined to be 0.4 nm.
The same exercise was repeated for all of the nonionic solutes evaluated during the course of
this study, whereby a new membrane pore radius was calculated to achieve the best fit of
rejection data. Several examples of hydrodynamic model fits are presented in Figure 5.32. In
general, the hydrodynamic model provided good fits of experimental data, although the shape
of rejection curves was not always well described by this approach.
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Figure 5.32. Sample hydrodynamic model fits of intrinsic rejection versus permeate flux data.
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The resulting membrane pore radii from this process are presented in Figure 5.33 (left). As
can be observed from Figure 5.33, the pore radius generally increased with increasing
molecular size, although there are obvious outliers. On closer inspection, many of the outliers
included compounds exhibiting solute—membrane interactions. Many of these outliers are
aromatically based compounds with phenolic functional groups, including 1-
naphthalenemethanol, resorcinol, acetaminophen, and isobutylparaben. Past research has
demonstrated that these compounds interact with membrane materials and that rejection is not
only a function of size. Therefore, the hydrodynamic model might not be appropriate for
these compounds. Removing the outlier compounds resulted in a significant correlation
between Stokes radius and pore radius (Figure 5.33). This finding indicates that, for the NF
membrane evaluated, there is a distribution of pores and that the hydrodynamic approach
using one pore radius will result in a poor fit of rejection for compounds with a large
distribution of molecular size. The pore size distribution approach is evaluated further in the
phenomenological modeling section.
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Figure 5.33. NF-270 membrane pore size determination using all nonionic organic solutes.

The hydrodynamic model using the Peclet number with the thickness-to-porosity ratio [6/Ay,
Equation 5.8] was also investigated. Using the Peclet number presented in Equation 5.7
resulted in a one-fitting-parameter model (A), which did not always adequately describe the
rejection versus permeate flux curve for each compound (Figure 5.34). The inclusion of 6/A4y
improved model fits significantly (examples given in Figures 5.32 and 5.34); however, it
resulted in an additional term that needs to be predetermined to predict the rejection of a
“new” compound. Bowen and Mohammad (1998) demonstrated by using four nonionic sugar
compounds that 8/4y decreased with increasing molecular size as smaller molecules can take
a more tortuous path through the membrane. An analysis of 6/4 values obtained for all
nonionic compounds did not support this finding, as 6/4 did not correlate with the Stokes
radius (Figure 5.35).
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Figure 5.34. Sample hydrodynamic model fits of intrinsic rejection when incorporating 6/A4
into the Peclet number.
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The advantage of the hydrodynamic model is that it incorporates a membrane pore radius and
describes hindered transport through a theoretical pore structure. Theoretically, the pore
radius of a membrane could be easily characterized by conducting rejection experiments with
a few sugar and alcohol compounds. Describing the rejection of any nonionic solute would
then require only a determination of a solute’s Stokes radius. This work demonstrates,
however, that the characterized membrane pore radius increases with increasing size of the
characterization compound employed. This finding indicates that there is a significant pore
size distribution and that using an average pore size results in poor model predictions for
nonionic solutes. In addition, the model accounts only for steric effects on rejection and
therefore cannot adequately describe the rejection of compounds that associate with the
membrane.
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Figure 5.35. Thickness-to-porosity ratio (6/4y) versus Stokes radius for all nonionic solutes
evaluated.

5.5 Solution—Diffusion Model

The theory of the solution—diffusion model is explained with further detail in Section 2.6.1.
For a thorough review of the theoretical background of this model, the reader may refer to
Wijmans and Baker (1995). To summarize, the major assumption implicit in this model is
that the polymer matrix of the membrane is a solvent into which a molecule may partition.
Once a compound has partitioned into this “solvent,” it will diffuse across the membrane,
following a concentration gradient, according to Fick’s law. As a result, this model cannot be
used to model compound behavior for membranes that contain pores within their structure.
Pores provide an avenue for molecules to move across a membrane without partitioning into
its polymer matrix, avoiding the type of behavior that the solution—diffusion model attempts
to describe. ESPA2, an LPRO membrane, is thought to be relatively free of pores although
the NF-270 membrane as an NF membrane likely contains a network of pores. Again, it is
important that the polymer structure of membranes is not thoroughly understood and that the
presence or absence of pores therefore is largely based on conjecture. What is clear is that the
quantity of pores must be greater for an NF-270 membrane than for an ESPA2 membrane.
Therefore, the solution—diffusion model is more appropriately applied to the ESPA2
membrane than to the NF-270 membrane.
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5.5.1 Bench-Scale Modeling

We examine the solution—diffusion model first by using the bench-scale ESPA2 experimental
data and the simplified model equation to develop a list of solute MTCs for all of the
compounds. Equation 5.10 represents the simplified equation used for the solution—diffusion
model and was adopted from Zhou’s doctoral dissertation focusing on modeling mass transfer
through diffusion-controlled membranes (Zhou, 2004).

C K (5.10)
p= 2-2R '
k (AP - Am +K.
W ) 2—R) s

The terms in Equation 5.10 are as follows:

C,= Permeate concentration

C;= Feed concentration

K,= Water’s MTC

(AP - Arm) = Pressure drop across membrane
K, = Solute MTC

R =Recovery

The first term in the denominator of this equation describes the permeate flux using k.,

2-2R
(AP - Am), and ( T R
Zhou’s dissertation to incorporate the effects of recovery. For bench-scale modeling, this
entire term is replaced by Jy, the permeate flux, which is a set-point that is recorded with
each sample taken in the bench-scale experiments performed under this study. This
simplification can be done because, by definition, k, (AP — Arm) is equal to J,, and because
the manipulation for recovery is negligible under bench-scale experimental conditions. The
highest recovery value observed was 0.993 at 30 gfd.

), which is a manipulation empirically developed in studies cited in

Another alteration made to Equation 5.10 is the substitution of C,, for C;. C,, is the membrane
wall concentration determined with the film theory diffusion model, described in Section
2.6.1. This model takes into account hydrodynamic conditions and their effects on
concentration polarization. The membrane wall concentration is more appropriate for the
solution—diffusion model because it is the concentration that is actually “experienced” by the
membrane at the feed water—membrane interface. With these alterations, the working
equation simplifies to

Equation 5.11.

K
Cp=ﬂ (5.11)
J +K

w N
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Manipulating this equation allowed K to be isolated from the other variables in Equation
5.12, which were known for each given data point.

J.C,

Ks=c"_c
M~ P

(5.12)

This new equation was incorporated into a program developed by using MATLAB technical
computing software to calculate K values. With a total of 112 compounds, it was desirable to
have a somewhat automated method of calculating the K, values. For this, an Excel workbook
was created that incorporated all of the necessary data to calculate K values for each
compound. Each of the 112 compounds had its own worksheet within the workbook with
columns for Jy, C,, C,, and rejection. The results for glutamic acid from this workbook are
shown as an example in Table 5.12.

Table 5.12. Sample Data Table Used for Solution—Diffusion Modeling Program*

J, C, C, lnFrin.sic
Rejection
(gfd) (mg/L) (ng/L)
2.92 1.4 16.97 0.915
2.92 1.3 16.98 0.922
7.63 1.2 17.30 0.928
7.63 1.1 17.30 0.934
10.53 0.8 18.69 0.957
10.53 0.7 18.71 0.965
10.53 0.3 18.15 0.984
10.53 0.4 18.14 0.980
19.08 0.6 19.64 0.970
19.08 0.6 19.65 0.971
27.72 0.4 21.58 0.982
27.72 0.5 21.56 0.978

“Data are from bench-scale experiments with glutamic acid and ESPA2 membranes.

In Table 5.12, each row represents a single data point from an experiment with glutamic acid
and the ESPA2 membrane. The MATLAB program calculated a unique K value for each
experimental data point and then averaged these values together to come up with a single
MTC for each compound. The list of these MTCs is provided in Table 5.13
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Table 5.13. Solution—Diffusion Model MTCs for All Compounds Processed with ESPA2 Membrane

K K K K
Compound (m/s)  Compound (m/s) Compound (m/s) Compound (m/s)
Acetaminophen 1.74  Diclofenac 0.28 Methylparaben 5.85 Ranitidine 0.02
Acetic acid 2.07  Diethylphthalate 0.35 Methyl salicylate 1.85 Resorcinol 0.61
Alanine 3.57  Diethylstilbestrol 0.22 MTBE 0.06 Salbutamol 4.50
Amitriptyline 0.05 1,4-Dihydroxy-benzoic 113 Metoprolol 0.86 Salicyclic acid 1.57
Arginine 0.61 acid ' 1-Naphthalenemethanol 0.21 Serine 0.75
Atenolol 5.10  Dilantin 0.73 Naproxen 0.42 Sucralose 1.20
Atrazine 0.54  Diltiazem 0.07 2-Naphthol 0.23 Sucrose 0.32
Baclofen 0.99  Diphenhydramine 0.10 N-Nitrosodibutylamine 0.40 Sulfacetamide 0.91
Benzoic acid 1.70  Enalapril maleate 0.00 N-Nitrosodiethylamine 1.34 Sulfamethoxazole 0.78
Benzophenone 0.24  Ethanol 42.53 NDMA 15.14 Sulfadimethoxine 0.86
Benzyl acetate 0.48  Fenofibrate 0.00 N-Nitrosodiphenylamine 0.15 Sulfadoxin 0.24
Benzyl alcohol 1.57  Fluconazole 0.29 N-Nitrosodipropylamine 1.03 Sulfamerazine 1.09
Bisphenol A 0.77  Fluoexetine 0.04 NMEA 5.94 Sulfasalazine 0.15
1,4-Butanediol 1.82  2-Fluorophenol 2.89 N-Nitrosomorpholine 2.08 Tamoxifen 0.00
Butylparaben 0.24  Furosemide 0.62 N-Nitrosopiperidine 1.48 TCPP 0.48
Caffeine 1.33 Gemfibrozil 0.17 NPYR 2.56 TCEP 0.85
Captopril 2.00  Glucose 0.38 4-n-Nonylphenol 0.28 TDCPP 0.21
Carbamazepine 0.75 Glutamic acid 0.74 Norfluoxetine 0.04 Thiabendazole 0.57
Chloretracycline 1.36  Glycerin 2.46 Oxybenzone 0.27 Trazodone 1.33
Cimetidine 1.67  Guanidine 3.66 Pentoxifylline 0.94 Trichloroacetic acid 0.27
Ciprofloxacin 0.91 Ibuprofen 0.68 Phenacetine 0.25 Triclocarban 0.11
Clofibric acid 0.81 Isopropanol 1.72 Phenylalanine 3.66 Triclosan 0.30
Cysteine 0.30  Ketoconazole 1.03 2-Phenylphenol 1.18 Triethylene glycol 1.12
DEET 0.70  Ketoprofen 0.73 Primidone 1.21 Trimethoprim 1.65
Dibromoacetic acid 0.25  Lysine 3.50 Propylparaben 0.90 Tyrosine 1.44
Dichloroacetic acid 0.27  Maleic acid 0.00 Propyphenazone 0.41 Uracil 3.30
2,4-Dichlorophenol 0.89  Methotrexate 0.56 Pseudoephedrine 1.10 Urea 42.93
Desloratadine 0.20 Warfarin 0.08
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After calculating the MTC, the MATLAB program generated a figure of rejection
versus permeate flux for each of the compounds. These figures display all of the data
points used in the calculation as circles and the model curve, predicting rejection with
the calculated MTCs, as dots connected with a dashed line. Figure 5.36 provides three
examples of predicted rejection for the compounds alanine, 1,4-butanediol, and
NDMA. These figures are included here to demonstrate the approach that was used
by the research team to visually understand the accuracy of the model for each of the
compounds and to group them accordingly.

As with the phenomenological model, the degree to which the solution—diffusion model
could estimate rejection varied by compound. Solutes that expressed flat or declining
rejection-versus-flux curves were inaccurately modeled with the solution—diffusion method.
Furthermore, many of the compound MTCs summarized in Table 5.13 were calculated to be
near 0 (e.g., amitriptyline and triclocarban). Very low MTCs result when a compound is
efficiently rejected by the ESPA2 membrane. With a cluster of MTCs that are

approximately 0, correlations between quantitative molecular parameters and MTCs lose
resolution. As a result, the approach taken to correlate descriptors with modeled MTC values
was performed in groups.

By sorting through the model plots and visually examining each of figures (examples shown
in Figure 5.36), it was possible to qualitatively group the compounds into categories
according to the model’s accuracy. Categories for “modelability” of high, medium, and low
were created for compounds whose models fit data accurately, moderately, and poorly,
respectively. These groups served two purposes. One is to eliminate inaccurate MTCs from
molecular descriptor correlation exercises. Second, it may be possible to determine if there
are common descriptors among the compounds of each group. This understanding could
provide a method of predicting the applicability of the solution—diffusion model for a given
molecule.

Table 5.14 lists the compounds that were deemed to have high modelability with the
solution—diffusion method. Next to the names of the compounds are several important
molecular descriptors. There is a broad range of values for molecular weight and Log K.,
and all classes are represented in this list. It seems that the most consistent trend is that, with
only three exceptions, all of the compounds have “normal” interactions with the membrane.
This finding demonstrates the shortcoming of the solution—diffusion model. As stated before,
this model is developed to describe diffusion of a compound through a medium. If there are
interactions (either repellent or attractive) between the molecule and the polymer matrix, then
the compound is not able to freely dissolve and therefore the transport phenomenon pertinent
to the compound—membrane couple is more complex than described by Fickian diffusion.
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Figure 5.36. Plot produced by the MATLAB model for solution—diffusion, showing rejection

versus flux in LMH for alanine, 1,4-butanediol, NDMA, and urea.
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Table 5.14. List of Compounds that Demonstrate High “Modelability” with

Solution—Diffusion Method

Level of

Compound Name Class Interaction Mol Wt (Da) Log K,
1,4-Butanediol HN Normal 90.12 -1.02
Amitriptyline HCP Normal 277.41 1.57
Arginine HCNP Normal 174.2 -5.29
Baclofen HCNP Normal 213.67 -0.94
Benzyl alcohol HN Extreme 108.1 1.03
Butylparaben HoN Normal 194.23 3.46
Cysteine HCNP Normal 121.2 -2.27
Diethylphthalate =~ HHoN Normal 222.2 2.7
Enalapril maleate HCN Normal 376.46 0.08
Ethanol HN Normal 46.1 -0.19
Fenofibrate HoN Normal 360.8 4.8
Fluoxetine HoN Normal 309.3 1.03
Glucose HN Normal 180.2 -3.17
Glycerin HN Normal 92.1 -2.32
Lysine HCNP Normal 146.2 -4.53
Maleic acid HCN Normal 116.07 -4.49
MTBE HN Normal 88.2 1.15
NDMA HN Normal 74.1 -0.64
Norfluoxetine HCP Normal 295.3 1.58
Pentoxifylline HN Normal 278.3 0.32
Phenacetine HN Normal 179.2 1.63
Ranitidine HCP Normal 3144 -1.09
Resorcinol HN Moderate 110.1 0.76
Tamoxifen HCP Normal 371.52 5.33
Triethylene
glycol HN Normal 150.2 -1.87
Uracil HN Moderate 112.1 -0.71
Urea HN Normal 60.1 1.69
Warfarin HHoN Normal 308.34 1.91

5.5.2 Correlating Mass Transfer Coefficients with Molecular Descriptors

In an attempt to create correlations between molecular descriptors and MTCs, a number of
categories had to be considered. First, the category of “modelability” was used to eliminate
compounds that could not be fit with the solution—diffusion equation. This group includes
compounds that had declining and straight rejection-versus-flux curves. Using solute MTCs
that did not effectively describe the rejection curves would only degrade correlations;
therefore, these solutes were not included in the correlation exercises. By using the remaining
compounds, different categories were included and excluded from correlations in an attempt
to find strong correlations with a single descriptor. Examining only compounds that fit into a
certain category is a process that would mimic the modeling of an untested compound with a
decision tree. If one knows certain properties, including charge, Log Ky, and size-related
descriptors, a compound can be included in an appropriate model to determine its MTC.
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As described in Section 5.3, which discusses molecular descriptor correlations with the
phenomenological model variables, it is most useful to compare molecules within the same
class as they are likely subject to the same rejection mechanisms. First, all neutral compounds
that did not exhibit low “modelability” were examined as a group. This group includes HN,
HHoN, and HoN compounds. The strongest correlation with a single parameter for neutral
compounds was found to be the Wilke—Chang diffusion coefficient with an R* value of 0.60
(Figure 5.37). It is not surprising that the best correlation for MTC was with a coefficient
developed specifically to model diffusion. However, the fact that even this coefficient
correlated rather poorly with MTCs suggests that mechanisms other than diffusion are likely
involved in transmembrane transport. When the same correlation was examined for the
individual, neutral classes alone (i.e., HN, HoN, and HHoN) and for charged and negative
compounds, the R? value decreased, indicating a weakening of the correlation.

1.5

0 5 10 15
Wilke Chang Diffusion Coefficient
(*10°10 m¥/ s)
Figure 5.37. Correlation between Wilke—Chang diffusion coefficient and solution—diffusion
MTCs (K;) for neutral compounds.

The second best R*value to come from the modeling efforts was for a correlation with the
Stokes radius and the MTC with an R*value of 0.50 (Figure 5.38). Diffusion is largely related
to molecule size, so again the relative strength of this correlation, compared to other
descriptors, is logical.

WateReuse Research Foundation 151



0.1 0.2 0.3 0.4 0.5 0.6
Stokes Radius

Figure 5.38. Correlation between Stokes radius (nm) and solution—diffusion MTCs (K;) for
neutral compounds.

5.5.3 Conclusions

Considering the theoretical concept of the solution—diffusion model, this model shouldn’t be
used to describe solute transport in NF and LPRO membranes for two main reasons. First, the
fact that many NF membranes are thought to contain a network of pores, through which
molecules can pass, undermines the concept that they dissolve into the membrane and diffuse
across. Second, the solution—diffusion model does not take into account the possibility of
membrane-solute interactions that alter the rate of diffusion. In essence, findings of this study
suggest that the solution—diffusion model is too simple to incorporate the complex nature of
membrane behavior with organic compounds. Furthermore, the model creates curves similar
to those of the phenomenological model but has only one fitting parameter, although the
phenomenological model has two. Stronger correlations were found with molecular
descriptors for the phenomenological fitting parameters than for the solution—diffusion
MTC:s. For these reasons, the phenomenological model is deemed to be a superior method of
modeling the rejection-versus-flux curves of organic compounds in NF membrane
applications. Thus, the solution—diffusion model was not applied to model pilot- and full-
scale systems used in this study.

5.6 Empirical Models—Rejection Diagram

In this section, the rejection diagram approach developed by Bellona et al. (2004) was
investigated by utilizing the NF-270 membrane bench-scale rejection database. The model
was updated by employing molecular descriptors that are relatively simple to calculate and by
utilizing the hydrodynamic model to optimize the rejection ranges. The updated rejection
diagram was also applied to the ESPA2 membrane bench-scale rejection database to evaluate
applications to different membranes.

5.6.1 Optimization using the NF-270 Rejection Database
A decision diagram approach for predicting rejection developed by Bellona et al. (2004) was

evaluated as a method to predict NF-270 membrane bench-scale rejection data qualitatively.
A slightly modified version of the diagram presented in Section 2.6.7 was utilized with key

152 WateReuse Research Foundation



molecular descriptors and membrane properties to calculate rejection. A summary of
predicted versus experimental data derived in this study is provided in Figure 5.39. Because
of the nature of the approach, only ranges of rejection can be calculated for a given solute,
which are represented by the error bars in Figure 5.39. More than half of the compounds in
the database had experimental rejection values outside the range predicted by the diagram
approach; therefore, the rejection diagram was updated to provide better model fits.
Particularly, the diagram was improved by adding molecular descriptors more readily
available than the Taft number, as it can be very difficult to obtain these values. In addition,
the predicted ranges can be narrowed to better fit the data.

5.6.1.1 Updated Rejection Diagram

Considering the findings of this study, an attempt was made to improve the precision of the
rejection diagram. Compounds with electrostatic interactions with the membrane are highly
rejected; however, on the basis of observations from bench-scale experiments and previous
research by Verliefde et al. (2007), positively charged compounds exhibit lower rejection
than do negatively charged compounds; therefore, the rejection of charged solutes was split
into negatively charged and positively charged. Negatively charged compounds were listed as
exhibiting greater than 90% rejection, and positively charged compounds were listed as
exhibiting greater than 75% rejection.

Compounds with adsorptive effects, decreasing rejection over time, exhibit two main
properties: hydrophobic (Log K, > 2) or a proton donating group attached (-OH or -NH,)) to
a benzene ring. The rejection diagram was updated not to include the Taft number based on
the difficulty of calculating this descriptor. Considering the findings of this study, it was
assumed if a compound has a proton donating group attached to a benzene ring or a Log K,
greater than 2, the compound will adsorb to the membrane. A compound with a proton
donating group not attached to benzene or a Log K, < 2 will not adsorb to the membrane. It
should be noted that the hydrophobic cutoff was changed from Log K., of 3 to Log K, of 2
because the vast number of compounds observed to adsorb to the membrane exhibited Log
K, values between 2 and 3 as reported by Braeken et al. (2005). Compounds with a proton
donating group, hydroxyl group, or amine group attached to a six-ring aromatic structure can
adsorb to the membrane surface through hydrogen bonding as reported by Williams et al.
(1999). Compounds with adsorptive effects have lower-than-expected rejection beause of
steric exclusion.

The steric exclusion mechanism is split into two different pathways: one for compounds with
adsorptive effects and one for compounds that have no interactions with the membrane. On
the basis of the bench-scale database, steric interactions have some effect on the rejection of
compounds that adsorb. Rejection of compounds with adsorptive effects is difficult to predict;
therefore, the rejection ranges are very broad depending on a compound’s size. Compounds
with r/r, or molecular weight/ MWCO ratios of less than 0.9 will be poorly removed,
qualified as less than 30% rejected. Compounds with ¢/, or molecular weight/MWCO ratios
between 0.9 and 1.0 will have moderate removal, specified as 30 to 70% rejected and
compounds with ry/r,, or molecular weight/ MWCO ratios greater than 1.0 will be highly
removed, representing rejection greater than 70%.

To determine the r/r;, ratios for compounds that do not interact with the membrane, the
hydrodynamic model was used (Bowen et al., 2004). The hydrodynamic model predicts
rejection based solely on solute size (Stokes radius) and the pore size of the membrane.
Rejection predicted by the hydrodynamic model is presented as a function of r/r, in
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Figure 5.40. From the hydrodynamic model, compounds with r/r, ratios greater than 0.75
will be highly rejected (greater than 80% rejection). Compounds with ry/r, ratios between 0.6
and 0.75 exhibit moderate rejection (30 to 80%). This category is difficult to narrow down
because of the steepness of the hydrodynamic curve between r/r, ratios of 0.6 and 0.75.
Compounds with r/r, ratios of less than 0.6 exhibit poor rejection (less than 30%).

Figure 5.41 presents the updated rejection diagram.

In Figure 5.42, predicted rejections from the updated rejection diagram using all compounds
are presented. Only 11% of the experimental compounds were predicted out of range with the
updated rejection diagram. Charged compounds had a few outliers. Four negatively charged
compounds were predicted out of range but only by a few percentage points: 90% predicted
rejection compared to 87 and 88% experimental rejection. Only two positively charged
compounds were overpredicted; metformin and trimethoprim exhibited 60% and 71%
rejection, respectively. Metformin and trimethoprim did exhibit a decrease in rejection over
time; initially, metformin exhibited 74% rejection but then decreased after 18 h to 60%,
although trimethoprim exhibited only a 7% decrease in rejection after 18 h. The decrease in
rejection could be due to a concentration layer buildup at the membrane surface, resulting in
lower observed rejection because rejection takes into account only feed and permeate
concentration (Verliefde et al., 2007).

Only 7 of the 67 neutral compounds were predicted out of range: triethylene glycol,
Nitrosodipropylamine (NDPA), NMEA, triclosan, acetaminophen, 2-phenylphenol, and
bromoform. Triethylene glycol, NMEA, and acetaminophen were predicted out of range by
only a few percentage points: 3, 6, and 1%, respectively. Bromoform was predicted to be
poorly removed, less than 30%; however, the data supported that it was rejected by 41%. 2-
Phenylphenol exhibited only 24% rejection, where predicted rejection was between 30 and
70%. NDPA and triclosan were greatly overpredicted, by 15 and 35%, respectively. Both of
these compounds exhibited adsorptive effects that seem to be independent of steric
interactions.

Experimental

0.6
Predicted

Figure 5.39. Experimental NF-270 rejection as a function of predicted rejection values based on
the qualitative rejection diagram.
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Figure 5.40. Experimental rejection data as a function of r/r;, compared to the
hydrodynamic model.
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Figure 5.41. Modified solute rejection diagram.
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Figure 5.42. Experimental NF-270 membrane rejection as a function of rejection predicted by
updated rejection diagram for compounds in Table 3.2.

5.6.2 Applying the Updated Rejection Diagram to ESPA2 Membrane Rejection
Database

The updated rejection diagram was applied to all compounds (Table 3.2) in the ESPA2
membrane 12-gfd rejection database. The updated rejection diagram was able to successfully
predict rejection for the ESPA2 membrane bench-scale data, and results are presented in
Figure 5.43. Only 4 out of the 111 experimental compounds were predicted out of range with
the updated rejection diagram. Ethanol, chloroform, and dichlorobromomethane were
predicted out of range by only 5%. Isopropanol was underpredicted by 24%. This finding
could be due to experimental error or due to isopropanol being close to the MWCO
estimation.
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Figure 5.43. Experimental ESPA2 rejection compared to predicted rejection from updated
rejection diagram.
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Chapter 6
Validation of Rejection Models at Pilot Scale

6.1 Introduction

Although a significant amount of past work has been undertaken evaluating the rejection of
organic solutes by various membranes at the bench scale, minimal work has been performed
evaluating rejection at larger scales: specifically, on systems capable of achieving overall
system recoveries of 60 to 85%. In addition, very little information exists on how bench-scale
organic solute rejection trends relate to pilot- or full-scale trends and whether bench-scale
rejection data can be used to model pilot- and full-scale rejection. The objective of this
portion of the study was to compare the rejection of organic solutes at the bench and pilot
scales with the ultimate goal of developing a modeling approach to describe rejection at the
pilot and full scales. Different pilot-scale experiments using NF and RO membranes were
conducted to support this task.

6.2 Pilot-Scale Rejection Experiments Using Nanofiltration
Membranes and Rejection Modeling Using QSPR and Empirical
Models

6.2.1 Comparing Bench- and Pilot-Scale Nanofiltration Testing

Pilot-scale experiments were conducted on a two-stage membrane unit employing 21 4040
spiral-wound NF-270 membranes treating microfiltered tertiary wastewater effluent provided
by a full-scale water reclamation facility. The rejection data generated at pilot scale were used
to evaluate models developed at bench scale including the QSPR models and the empirical
rejection diagram.

For this comparison, the bench- and pilot-scale systems represent different configurations that
are operated under different conditions. Bench-scale experimentation was conducted at a low
feed flow rate (1.5 L/min) and very low recovery (1%), although pilot-scale testing was
conducted at a high feed flow rate (83 L/min) and high recovery (85%). Bench-scale systems
are flat-sheet systems with a small membrane area, whereas pilot-scale systems employed
spiral-wound configurations with a large membrane area. To compare bench scale to pilot
scale, rejection behavior of select solutes was first examined.

Bench-scale rejection data for caffeine and acetaminophen as a function of recovery and
permeate flux are presented in Figure 6.1 for the NF-270 membrane. Small variations in
recovery resulted in large changes in permeate flux rate at bench scale for caffeine and
acetaminophen. As recovery changed between 0.1 and 1.4%, permeate flux increased from 5
to 60 gfd. Caffeine rejection stayed relatively constant (greater than 90%), whereas
acetaminophen rejection increased from

40 to 70% over the permeate flux range. Observed rejection results for acetaminophen and
caffeine as a function of recovery and permeate flux rate at pilot scale for the NF-270
membrane are presented in Figure 6.2. Differing from bench-scale behavior, larger variations
of recovery resulted in small variations in permeate flux at pilot scale. At pilot scale, recovery
increased from 60 to 85%, whereas permeate flux increased only from 9 to 13 gfd. Rejection
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of caffeine and acetaminophen stayed relatively constant as recovery and permeate flux rate
varied.

The bench- and pilot-scale rejection data for the NF-270 membrane are compared in Figure
6.3. Most compounds had equal or higher rejection at pilot scale than at bench scale. This
finding could be due to potential fouling that occurred, given that the pilot-scale feed water
was wastewater effluent. Comerton et al. (2008) also observed higher organic solute rejection
with fouled membranes than with virgin membranes. At pilot scale, negatively charged
compounds were greater than 90% removed and positively charged compounds were greater
than 84% removed. This behavior was reported by Verliefde et al. (2007) and Bellona et al.
(2008). Bench-scale data for ionic compounds were comparable; however, trimethoprim was
rejected by only 71% at bench scale. Most neutral compounds exhibited higher rejection at
pilot scale than at bench scale and were greater than 80% removed, except for propylparaben,
bisphenol A, and triclosan. All three compounds exhibited adsorptive effects at bench scale.

Triclocarban, triclosan, and propylparaben also exhibited adsorptive effects at pilot scale for
the NF-270 membrane. Initially high rejection (90%) was observed for triclocarban, whereas
the compound adsorbed to the membrane, presented in Figure 6.4. As time progressed and as
the membrane became saturated, permeation through the membrane occurred and rejection
decreased drastically, resulting in only 44% rejection after 600 h. Triclosan and
proplyparaben exhibited the same behavior as triclocarban, with a 50% and 30% decrease
after 600 h, respectively.

The bench- and pilot-scale rejection data are compared in Figure 6.5 for the ESPA2
membrane. Rejection of most compounds was similar except for acetaminophen, caffeine,
propylparaben, and urea. On the basis of the size of acetaminophen (molecular weight of 151
g/mol), caffeine (molecular weight of 194 g/mol), and propylparaben (molecular weight of
180 g/mol) and the MWCO of the ESPA2 membrane (about 100 Da), acetaminophen,
caffeine, and propylparaben should exhibit rejection greater than 90% based on steric
exclusion (Agenson et al., 2003; Bellona et al., 2004; Kimura et al., 2004; Van der Bruggen
et al., 1999). This unexpected observation at pilot scale could be due to experimental errors.
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Figure 6.1. Bench-scale rejection for caffeine and acetaminophen as a function of permeate flux
(primary x axis) and recovery (secondary x axis) for NF-270 membrane.
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Figure 6.2. Pilot-scale rejection for caffeine and acetaminophen as a function of recovery
(primary x axis) and permeate flux (secondary x axis) for NF-270 membrane.
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Figure 6.4. Observed rejection as function of time for triclocarban at pilot scale for
NF-270 membrane.
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Figure 6.5. Pilot-scale rejection at 12 gfd compared to 12-gfd bench-scale rejection for
ESPA2 membrane.

6.2.2 QSPR Model To Describe Pilot-Scale Nanofiltration Rejection Data

The QSPR model developed based upon the NF-270 membrane bench-scale data, restated in
Equation 6.1, was applied to the NF-270 membrane pilot-scale data for neutral compounds.
Rejection results of these experiments are presented in Figure 6.6.

Refi%) = 163.685c0kes + 04156F0TA + T.O9HF = 122.3 ©6.1)

This QSPR model yielded the highest R2 value and lowest RMSE value for the NF-270
membrane bench-scale database. During internal validation at bench scale, the QSPR model
obtained the highest q2 value and was externally validated with bench-scale data yielding an
R2 value of 0.75. Only three compounds were predicted within the confidence interval range
seen in Table 6.1. Bisphenol A, carbamazepine, and dilantin rejection was underpredicted on
the basis of relatively low FOSA values. Usually, compounds with low FOSA exhibit low
rejection because of adsorptive effects; this was not the case for bisphenol A, carbamazepine,
and dilantin. Propylparaben, triclosan, and triclocarban were overpredicted because these
compounds exhibit extreme adsorptive effects, causing very low rejection (<50%). All of the
compounds were predicted within 40%, with the majority predicted within 20%.
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Figure 6.6. Developed QSPR (Stokes, FOSA, IP) applied to neutral NF-270 membrane
pilot-scale data.

Table 6.1. NF-270 Membrane Pilot-Scale Rejection, Predicted QSPR Rejection, and
Percentage Difference from Experimental Pilot-Scale Data

Pilot-Scale Avg QS.PR Percentage
Compound Name Class 1.5-gf.d Prefdlc.ted Difference
Rejection Rejection

Propylparaben HHoN 0.21 0.59 38%
Atrazine HHoN 0.80 0.73 -7%
Carbamazepine HHoN 0.92 0.60 -32%
DEET HHoN 0.86 0.73 -13%
Dilantin HHoN 0.91 0.69 -21%
Thiabendazole HHoN 0.70 0.45 -25%
Acetaminophen HN 0.43 0.36 -7%
Caffeine HN 0.96 0.58 -38%
Methylparaben HN 0.26 0.42 16%
Phenacetine HN 0.47 0.54 7%
Propylphenazone HN 0.99 0.75 -24%
Primidone HN 0.97 0.65 -32%
Meprobamate HN 0.93 0.80 -13%
TCEP HN 0.79 0.87 8%
Fluoxetine HoN 0.97 0.93 -4%
Butylparaben HoN 0.63 0.67 4%
Bisphenol A HoN 0.88 0.67 -20%
Triclosan HoN 0.49 0.68 19%
Triclocarban HoN 0.44 0.70 26%
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6.2.3 Application of the Empirical Rejection Diagram to the NF-270
Membrane

The rejection diagram developed with the NF-270 membrane bench-scale database provided
an excellent fit for the pilot-scale data. The results after application of the rejection diagram
to pilot-scale data are presented in Figure 6.7 and Table 6.2. The experimental and predicted
rejections are listed in Table 6.2 with the respective rejection ranges and error percentages.
Figure 6.7 presents the predicted rejection as it relates to the experimental rejection, with
error bars representing the rejection range predicted. Overall, the rejection diagram was an
excellent fit with only four compounds (TCEP, propylparaben, triclocarban, and triclosan)
overpredicted. Propylparaben, triclocarban, and triclosan are very hydrophobic with Log K
values of 2.92, 5.75, and 5.17, respectively. These compounds had high initial rejection,
triclocarban and triclosan experiencing greater than 90% rejection initially, and
propylparaben experiencing greater than 50% rejection. After saturation of the membrane
occurred, rejection of triclocarban and triclosan decreased to below 50% and rejection of
propylparaben decreased to 21%. These compounds can be very difficult to predict because
of the affinity for the membrane. Besides compounds with adsorptive properties, all other
compounds were predicted within range. The model is simple to use and can predict rejection
for most compounds, including ionic compounds.
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Figure 6.7. Rejection diagram applied to NF-270 membrane pilot-scale data.
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Table 6.2. Pilot-Scale Rejection and Predicted Rejection from Rejection Diagram for
Experimental NF-270 Pilot-Scale Data

Pilot-Scale Avg lf)il egcrt::: Rejection

Compound Name Class Rl.z-gf‘d Predicted Range

ejection Rejection (+-)
Sulfamethoxazole HCN 0.97 0.95 5%
Diclofenac HCN 0.97 0.95 5%
Gemfibrozil HCN 0.99 0.95 5%
Ibuprofen HCN 0.97 0.95 5%
Ketoprofen HCN 0.90 0.95 5%
Naproxen HCN 0.95 0.95 5%
Atenolol HCP 0.84 0.88 12%
Norfluoxetine HCP 0.84 0.88 12%
Trimethoprim HCP 0.93 0.88 12%
Propylparaben HHoN 0.21 0.50 20%
Atrazine HHoN 0.80 0.90 10%
Carbamazepine HHoN 0.92 0.85 15%
DEET HHoN 0.86 0.85 15%
Dilantin HHoN 0.91 0.85 15%
Thiabendazole HHoN 0.70 0.50 20%
Acetaminophen HN 0.43 0.15 15%
Caffeine HN 0.96 0.90 10%
Methylparaben HN 0.26 0.15 15%
Phenacetine HN 0.47 0.50 20%
Propylphenazone HN 0.99 0.85 15%
Meprobamate HN 0.93 0.90 10%
TCEP HN 0.79 0.90 10%
Primidone HN 0.97 0.85 15%
Butylparaben HoN 0.63 0.50 20%
Fluoxetine HoN 0.97 0.85 15%
Bisphenol A HoN 0.88 0.85 15%

166 WateReuse Research Foundation



6.3 Pilot-Scale Rejection Experiments Using Nanofiltration
Membranes and the Phenomenological Pilot-Scale Model

6.3.1 Introduction

A 16- to 28-gpm pilot-scale membrane system (two-stage system with 21 4040 membrane
elements) was installed in a pilot laboratory at CSM to conduct controlled-rejection
experiments. The pilot system was fed by using two 500-gal tanks and experiments were
conducted in recycle mode where concentrate and permeate were returned to the feed water
tank to extend the length of experiments. Additionally, the membrane system was also
deployed at a water reclamation facility in California and was tested with microfiltered,
tertiary-treated wastewater effluent (California Title 22). Two different but very similar NF
membranes were tested: the NF membrane (Dow/Filmtec, termed NF-4040) was used for
controlled pilot-scale experiments in the pilot laboratory and the NF-270 membrane
(Dow/Filmtec) was used for pilot experiments at the water reclamation facility. Pilot
experiments conducted in the laboratory were used to develop approaches for describing
pilot-scale rejection data, whereas data generated at the water reclamation facility were used
to validate the modeling approaches developed previously.

6.3.2 Model Theory

6.3.2.1 Differential Element Approach

Because pilot- and full-scale systems are operated at high recoveries and have large
concentration gradients across a system, models developed for bench-scale systems, which
are operated at extremely low recovery, are not directly applicable. To remedy this problem,
the differential element approach (Sharma and Chellam, 2008) is a method that conceptually
divides a membrane element or series of membrane elements into identical sub-elements that
are treated as completely mixed reactors. Each sub-element is connected to its immediate
neighbor by using appropriate flow and solute mass balances at steady state. The following
equations are used for the differential element approach. The flow mass balance is given by

Q,()=0,)- Y0,k
kel 6.1)

where Q/(j) is the feed water flow rate of the current element, and Q1) and O, (k) are the feed
and permeate flow rate of the previously evaluated element. The solute mass balance is given
by

_92W\WE(M-0,(NE, ()

C,(j+D) ‘ 6.2
! 0,(j+1) (62)
The permeate flow rate O, (j) for each sub-element j can be calculated as
: LA 1A
Q,())=J,()==L,[AP -7())]—
n n (6.3)
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where J,(j) is the local permeate flux for sub-element j, 4 is the active membrane area, n is
the number of sub-elements, L, is the membrane solvent permeability constant, AP is the
hydraulic pressure across the membrane, and An(j) is the osmotic pressure difference
calculated on the basis of the Van’t Hoff equation:

Az (j) =2RT[C,(j)-C, ()] (6.4)

or other empirical relationships between TDS and osmotic pressure. For experiments with
extremely low feed concentrations, the effect of osmotic pressure on flux is expected to be
small. The pressure drop is assumed to be linear across the membrane system, and the
following equation can be used to calculate the driving force for permeate flow from each
sub-element:

P()-P(j+1)

AP(j) =((P(l)—(j—0-5) " ©5)

The permeate C,(j) and feed concentrations for each sub-element can be related by using a
one-dimensional film theory model as

C,\ _ exp(J, () /k()))
CD - EalD=EI | s Gy (6.6)
C,()
The expression
C.()H-Cp())
C, () 6.7

can be calculated from membrane transport models including the solution—diffusion model,
the hydrodynamic model, the ENP equation approach, and the phenomenological model. For
these models, parameters related to the membrane and the solute are inputs and the
differential element approach is used to model the concentration gradient through the system.
For this study, the phenomenological model was used:

l-o
C,-C, O[I_exp(_ P Jﬂ (68

C (1-0)

r

with the model parameters previously described. Once Cp(j) for each sub-element is
determined, the weighted average permeate concentration over the entire element can be
calculated by using

o 20060
P E:_] Q,() (6.9)
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6.3.2.2 Characterization of Hydrodynamic Conditions

In order to apply the differential element approach, a few requirements have to be fulfilled.
First, the hydrodynamic conditions of the system need to be characterized, including an
understanding of the cross-flow velocity across the system and the geometry of the feed-brine
spacer and a way to calculate the MTC £ in Equation 6.6. For this information, we followed
the approach of Sharma and Chellam (2008), which was based on the approach of others
working with large-scale membrane systems (Schock and Miquel, 1987; Geraldes and de
Pinho, 2006). In order to calculate &, we used a commonly employed empirical mass transfer
correlation presented as Equation 3.5 (see Chapter 3). To use the mass transfer correlation,
the cross-flow velocity of element j is needed. It is calculated by

() (6.10)
A

c

where Q/(j) is the feed flow rate of element j, and 4. is the channel area. The feed-brine
channel and spacer of a membrane need to be characterized to calculate the hydraulic
diameter (d.) and the channel area (4.). The hydraulic diameter (d..) has been calculated by
assuming the channel has a variable cross-section because of the spacer:
4¢
d, = L (6.11)
—+(1-9)S, ¢,
h V .S5F

where ¢ is the spacer porosity, /4 is the channel height, and Sy spis the specific surface of the
spacer. The porosity of the spacer can be calculated by using the average filament thickness
and mesh size of the spacer according to

1-V.
g (6.12)

Tor

where Vp is the volume of the spacer and Vypr is the volume occupied by the spacer. The
specific surface of the spacer (Sysp) is calculated by

S 4 (6.13)
v.sp _ .
spacer — thickness

To get the information necessary to calculate the cross-flow velocity, it was necessary to
sacrifice membrane elements and to measure channel dimensions and spacer characteristics.
However, to calculate k in Equation 6.6 [given as k(j)], a relationship similar to that in
Equation 3.5 is needed. The coefficients in Equation 3.5 have been reported to be dependent
on the type and size of spiral-wound element, spacer type, and scale of membrane system
(Sutzkover et al., 2000; Geraldes and de Pinho, 2006; Sharma and Sharma, 2008). Geraldes
and de Pinho (2006) performed a study of spiral-wound NF-200 membrane elements, which
were the previous generation of the NF-4040. Therefore, this mass transfer correlation was
adopted for the determination of the mass transport coefficient [k(j)] for each element and is
the same as in Equation 3.5.
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6.3.2.3 Spreadsheet Model Development

An additional requirement for model development was to understand and model the permeate
flux rate [J,(j)] in any given element throughout the pilot-scale system. A database was
constructed that included the inlet and outlet pressures of each individual pressure vessel and
first- and second-stage permeate flux rates at each overall system feed flow rate and recovery
set-point. Linear regressions between inlet pressure and outlet pressure and recovery for each
pressure vessel at each feed flow rate evaluated were then constructed. The regression
equations allowed for the calculation of the driving pressure throughout the system, given the
recovery and the feed flow rate and, therefore, the permeate flux rate in the system’s four
stages if one used Equation 6.3 with the pressure data and L, as a fitting parameter. To do
this, the feed flow rate of the pilot-scale system was manipulated between 53 Lpm and 98
Lpm (14 and 26 gpm) and at each flow set-point, the recovery was manipulated. During this
exercise, the inlet and outlet of each pressure vessel were measured and the flow rates across
the system recorded. The membrane permeability constant was measured during bench-scale
experiments by using the sacrificed membrane elements.

By using all of the gathered information and equations, an Excel-based differential element
model was constructed that allowed for the evaluation of rejection over a range of recovery
(50-90%) and feed flow rate (53 Lpm and 87 Lpm [14 and 26 gpm]). The model was
calibrated with rejection data generated during this study, which is discussed in subsequent
sections.

6.3.3 NF-4040 Bench-Scale Results and Model Evaluation

Feed water for the laboratory pilot-scale experiments was prepared by producing 1800 L of
NF-4040 permeate from dechlorinated drinking water. This NF-4040 permeate was
characterized by TOC analysis, electrical conductivity, ion chromatography, and inductively
coupled plasma analysis and exhibited TOC concentrations of less than 0.3 ppm, low
conductivity (<150 uS/cm), and a low concentration of ions (mainly sodium and chloride,
<20 mg/L each). This feed water was spiked with the organic compound of interest at a
nominal concentration of 700 ppb. The feed water temperature was set at 17 to 18 °C, and if
needed, pH was adjusted to approximately 6.3. Most of the organic solutes evaluated were
analyzed by using HPLC-DAD analysis. Experiments were conducted over a range of
recovery and subsequent permeate flux rate set-points. Most experiments were performed at a
constant feed flow rate of 17 gpm with system recovery manipulated by increasing the system
back-pressure. For these experiments, system recovery values between 50 and 85% were
evaluated and the actual values depended on where the system was operating when samples
were collected. Samples were collected from the various sampling ports directly into HPLC
vials and subsequently were analyzed by the HPLC-DAD method. In order to cut down on
the number of samples, a full sampling of the system was performed only at the lowest and
highest recovery set-points. Full sampling (14 samples total) included collecting a feed
sample, permeate samples from each pressure vessel, all concentrate streams, and combined
permeate streams. Otherwise, samples were collected from the feed, concentrate (first and
second stages), and permeate (first stage, second stage, combined) streams.
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6.3.3.1 Rejection of Organic Solutes

Rejection data generated at bench scale for the organic solutes were fit with the
phenomenological model by manipulating the reflection coefficient (c) and the solute
permeability coefficient (P). The phenomenological model satisfactorily described the
rejection of all solutes at bench scale, and predicted values were generally within 5% of
experimental values for all solutes evaluated. The rejection of acetaminophen, caffeine, and
phenacetine with model fits is presented in Figure 6.8. For the NF membrane, rejection of the
tested solutes at bench scale followed the decreasing trend of propyphenazone > DEET >
caffeine > thiabendazole > acetaminophen. Rejection generally increased with increased
molecular size as measured by the Stokes radius.

O Acetaminophen O Caffeine ¢ Phenacetin

Rejection [-]

O 1 1 1
0 5E-6 1E-5 1.5E-5 2E-5 2.5E-5 3E-5

Permeate flux, JV [m/s]

Figure 6.8. Intrinsic rejection and phenomenological model fits for acetaminophen
(phenomenological model coefficients ¢ = 0.921, P=3.15E-6 m/s), caffeine
(6 =0.983, P=2.13E-7 m/s), and phenacetine (¢ = 0.989, P=1.76E-6 m/s).

6.3.3.2 Effect of Solute Concentration on Rejection and Model Parameters

Because solute concentrations change dramatically throughout a pilot- or full-scale treatment
system, bench-scale experiments were conducted to evaluate the effect of solute
concentration on rejection and the phenomenological model parameters. Acetaminophen and
phenacetine experiments were conducted at three feed water concentrations: 300, 1000, and
1500 pg/L (Figure 6.9). Feed water concentrations in the range of 300 to 1300 pg/L were
found to have an undetectable influence on rejection and phenomenological model
coefficients. Past research has demonstrated that solutes with strong solute—membrane
interactions have increased rejection with increased concentration because of the affinity of
the solute for the membrane and the limited sites for adsorption (Ahmad and Tan, 2004;
Matsuura and Sourirajan, 1971). It is worth noting that acetaminophen is a compound that
could be expected to exhibit solute—membrane interaction effects, as it has a hydroxyl group
attached to a benzene ring. As previously mentioned, the rejection of acetaminophen is
difficult to predict because of lower-than-expected rejection on the basis of size; however,
acetaminophen was not observed to exhibit solute—membrane interaction (i.e., decreased
rejection over time and decreased rejection with increased permeate flux). Acetaminophen
behavior is significantly different from other solutes with similar structure, i.e.,
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methylparaben, benzylacetate, and methylsalicylate, which tend to sorb to membrane
materials.
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Figure 6.9. Observed rejection of acetaminophen (left) and phenacetine (right) versus permeate
flux (J,) at different feed water concentrations (low = 300 pg/L, medium = 1000
pg/L, high = 1500 pg/L).
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6.3.3.3 Effect of Experimental Run Time on Rejection

Experiments were conducted to determine the effect of experimental run time on rejection, as
past research has demonstrated that, for certain organic solutes, equilibrium takes up to
several days to achieve (Kimura et al., 2003a; Hofman et al., 2007). Experiments with
acetaminophen (Figure 6.10) and the other solutes revealed that rejection stabilized within 1 h
and that minimal changes were observed over 20 h of continuous operation of bench-scale
experiments.

O Element1 - 12 gfd
1 O Element 2 - 10 gfd
T T

0.8 R
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Observed rejection [-]
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Figure 6.10. Bench-scale rejection of acetaminophen by membrane specimens extracted from
two separate spiral-wound elements versus experimental run time.

6.3.3.4 Effect of Membrane Variability on Rejection and Model Parameters

The pilot-scale system consisted of 21 spiral-wound elements, whereas the bench-scale
system requires only 139 cm” of membrane material. Therefore, three spiral-wound elements
were sacrificed to evaluate the variability of membrane material on the rejection of
acetaminophen and phenomenological model parameters (Figure 6.11).
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Figure 6.11. Acetaminophen rejection versus permeate flux rate for membranes extracted from
three spiral-wound membrane elements.

Note: Each membrane element was evaluated in replicate. Model fits yielded the following parameters: element 1
(0 =0.96, P =3.51E-6 m/s), element 2 (¢ = 0.99, P = 4.50E-6 m/s), and element 3 (¢ = 0.88, P =2.92E-6 m/s).

The rejection of acetaminophen was found to be fairly consistent among the membrane
elements tested; however, model parameters differed more significantly with reflection
coefficients differing by approximately 11% and the solute permeability differing by
approximately 54%. The effect of the variability of model parameters on pilot-scale modeled
results is presented in the next section.

6.3.4 Pilot-Scale Model Development
6.3.4.1 Observations from Pilot-Scale Experiments

Pilot-scale experiments with acetaminophen and caffeine were performed by adjusting the
overall system recovery between set-points of 50% and 90%. Sampling was performed at
locations across the pilot-scale unit to generate a data set that could be used to calibrate the
pilot-scale model, which is discussed in detail in the next section.

Two separate recovery experiments were conducted: constant feed flow rate and variable
permeate flux rate and variable feed flow rate and constant permeate flux rate. Past research
examining pilot-scale membrane systems has reported a significant decrease in rejection with
increasing system recovery (Hofman et al., 2007). However, rejection of both caffeine and
acetaminophen for constant feed flow rate experiments was relatively constant over the range
of recovery investigated (Figure 6.12). Rejection of both solutes, however, decreased with
increasing recovery when the permeate flux rate was kept constant and when feed flow rate
decreased.
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Figure 6.12. Rejection of acetaminophen and caffeine versus recovery for constant feed flow rate
and variable feed flow rate experiments.

Notes: Constant feed flow rate experiments were performed at a feed flow rate of 64.4 Lpm (17 gpm) with a
variable permeate flux rate to achieve recovery set-points between 50 and 90%. Variable feed flow rate
experiments were performed at a feed flow rate of 68.1 Lpm (18 gpm), 56.8 (15), 53.0 (14), 49.2 (13), and 45.4
(12), with the permeate flow rate held constant at 37.9 Lpm (10 gpm).

During variable feed flow rate experiments, the cross-flow velocity was significantly reduced
when recovery was increased, which led to concentration polarization. Because permeate flux
was held constant, decreased rejection was observed. However, at a constant feed flow rate,
the concentration polarization effect appeared to be offset by the increase in permeate flux as
recovery increased, which resulted in relatively constant rejection versus recovery.

Caffeine concentrations across the pilot-scale membrane unit during constant feed flow rate
experiments at 60 and 80% recovery are summarized in Figures 6.13 and 6.14. As was
expected, caffeine concentrations increased significantly (~6 times) between the feed water
and the second-stage concentrate during 80% recovery experiments (Figure 6.13). During
both recovery experiments, combine permeate concentrations were observed to be very
similar, although concentrate concentrations differed significantly. It appears that, although
increased recovery resulted in higher concentration polarization within the system (i.e., cross-
flow velocity decreased significantly), increasing recovery also raised permeate flux, which
counteracted the effect of concentration polarization. As recovery rose, first-stage rejection
increased because of higher permeate flux (Figure 6.14) and second-stage rejection decreased
because of concentration polarization effects. Possibly by coincidence, these effects tended to
cancel each other out and rejection was very stable as a function of recovery. These findings
indicate that, for the system studied, recovery had a minimal impact on the rejection of
nonionic organic solutes when the feed flow rate was kept constant and operated in a normal
flow range for the elements.
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Figure 6.14. Caffeine concentrations in permeate as a function of recovery.

6.3.4.2 Pilot-Scale Model Calibration

As pointed out in the previous section, the hydrodynamics of the pilot-scale system resulted

in relatively constant rejection over a wide range of recovery set-points, which is

hypothesized to be caused by the contradictory effects of concentration polarization and
permeate flux on rejection. On the basis of the caffeine concentration data presented in Figure
6.14, it appears that the second stage of the system played a large role in this phenomenon, as

recovery had a large effect on second-stage concentrate concentrations, indicating that

permeate flux rates changed significantly in the second stage as recovery increased. To
effectively capture this finding in the model, caffeine data from two experiments were used to
calibrate the model, specifically to ensure that model outputs of flow rates (e.g., permeate and
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concentrate) and concentration fit with the experimental data. To meet this goal, it was
necessary to use the membrane solvent permeability coefficient (L) as a fitting parameter so
that the permeate flux rate of each stage of the system could be manipulated to achieve the
correct flow rates, concentrations, and mass balances throughout the system.

A routine was performed to find the best model fit for caffeine rejection and caffeine
concentrations across the system by manipulating the phenomenological model parameters (¢
and P) and the membrane solvent permeability constant in each stage of the pilot-scale
system. The results of this procedure are presented in Figure 6.15. The ideal model
parameters for fitting caffeine rejection and describing the concentration and flow rate
distribution across the system were ¢ = 0.987, P = 6.24E-8 m-s”', first-stage L,=1.15E-6 m’-
m™-s"-bar”, and second-stage L, = 9.9E-7 m’-m™-s”'-bar"'. These L, values used with the
pressure data yielded model outputs of permeate flow and flux rates and permeate and
concentrate concentrations that most satisfactorily fit the experimental data for caffeine
(Figure 6.15).
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Figure 6.15. Left: Rejection of caffeine from two experiments with model fit (average feed concentration = 530 pg/L, 6 = 0.987, P= 6.24E-8 m/s);
middle: 1st-stage, 2nd-stage, and combined permeate concentrations with model fit; right: 1st intrastage, 1st-stage concentrate,
2nd intrastage, and 2nd-stage concentrate with model fit.
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The model describes a decrease in the second-stage permeate concentration as recovery grew
from approximately 50 to 70%, followed by an increase from 70 to approximately 89%. The
initial decrease was due to the second-stage permeate flow and flux increasing enough to
offset the effect of the mounting first-stage concentrate concentration and concentration
polarization. Eventually, however, the concentration polarization effect in the second stage
increased enough that the growth in rejection associated with higher permeate flux was not
enough to maintain a constant second-stage permeate concentration. On the contrary, the
first-stage permeate concentration stayed relatively constant, although the combined permeate
increased marginally.

6.3.4.3 Rejection of Acetaminophen, Phenacetine, DEET, and Thiabendazole

Phenomenological model parameters determined from bench-scale experiments were used to
model the rejection of acetaminophen, DEET, phenacetine, and thiabendazole at pilot scale.
For acetaminophen, the highest and lowest reflection coefficient (o) and solute permeability
coefficient (P) as determined from bench-scale experiments with specimens taken from
different elements were used for modeling. Acetaminophen rejection and permeate and
concentrate concentrations with model fits are presented in Figure 6.16. The highest
measured model coefficients determined during pilot scale provided the best model fit, with
the lowest model parameters underpredicting rejection by approximately 10%. Unlike the
case for caffeine, the rejection curve was more dependent upon recovery, exhibiting a 3 to 5%
decline as recovery increased above 70%; however, the acetaminophen rejection figures
appeared to decline slightly as well with increasing recovery. The second-stage permeate
concentration was overpredicted by the model, which led to the combined permeate model
output being greater than the experimental data. However, model output concentrate data
were similar to measured data.

DEET rejection by the NF membrane was the highest of all solutes tested, approximately
98% for all recoveries investigated (Figure 6.17). Similar to acetaminophen, second-stage
permeate concentrations were overpredicted, which led to the model rejection output being
lower than the experimental values. It is worth noting that, because of high rejection,
permeate concentrations of DEET were near the detection limit for the HPLC-DAD method.
Phenacetine and thiabendazole pilot-scale data are summarized in Figures 6.18 and 6.19,
respectively. For phenacetine, the first-stage permeate concentration was overpredicted,
which led to an overprediction of rejection and of the concentrate concentrations. The
thiabendazole model output was similar to that of phenacetine, with rejection and concentrate
concentration overpredicted for all recoveries.

It is worth noting that, through the development of the pilot-scale model, numerous sources
of error were identified because of the largeness of the system. The model was partially
calibrated to mimic the operational set-points during experiments as measured by the
SCADA system, flow meters, and pressure gauges. The pilot-scale unit’s feed flow rate was
controlled by a variable frequency drive that in turn was controlled by a proportional-integral-
derivative loop, which caused fluctuations in the feed flow rate, permeate flow rate, recovery,
and pressure. Therefore, defining the conditions under which each sample was collected was
a difficult task and could be considered a good estimate. In addition, sample concentrations
were subject to the same overall effect of variability inherent to the system. Finally, this
approach used phenomenological model parameters determined through bench-scale testing
with a membrane specimen with 0.15 ft* of area to describe the rejection of a membrane
system with approximately 1722 ft* of membrane area. Variation in membrane properties can
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have a large effect on phenomenological model parameters determined at bench scale and on
overall rejection at the pilot and full scales. Therefore, model fits for DEET, phenacetine, and
thiabendazole were deemed to be acceptable, and this approach was evaluated for describing

and predicting the rejection of organic contaminants by the NF-270 membrane during a pilot-
scale evaluation at a water reuse facility.
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Figure 6.16. Left: Rejection of acetaminophen with model fit (feed concentration = 560 pg/L, solid
rejection line: o = 0.99, P=2.92E-6 m/s, dashed rejection line: ¢ = 0.88, P=4.5E-6 m/s); middle: 1st-
stage, 2nd-stage, and combined permeate concentrations with model fit using ¢ = 0.99, P=2.92E-6

m/s; right: 1st interstage, 1st-stage concentrate, 2nd interstage, and 2nd-stage concentrate with
model fit using ¢ = 0.99, P=2.92E-6 m/s.
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Figure 6.19. Top left: Rejection of thiabendazole with model fit (feed concentration =270 pg/L,

6 =0.909, P=5.08E-7 m/s); top right: 1st-stage, 2nd-stage, and combined permeate concentrations
with model fit; bottom left: 1st interstage, 1st-stage concentrate,

2nd interstage, and 2nd-stage concentrate with model fit.

6.3.4.4 Effect of Feed Flow Rate on Rejection and Model Output

The model was built to incorporate different feed flow rates, and phenacetine samples were
collected to evaluate the effect of feed flow rate on rejection (Figure 6.20). In general,
reducing the feed flow rate decreased rejection as a result of concentration polarization
because of reduced cross-flow velocity. Experimental phenacetine rejection generally
displayed the same phenomenon, with 20-gpm experiments resulting in the highest rejection
followed by 19 and 17 gpm. This result indicates that organic contaminant rejection can be
increased by running membrane systems at a higher feed flow rate and permeate flux.
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Figure 6.20. Rejection of phenacetine versus recovery at three feed flow rates.

6.3.5 Model Development and Validation—Pilot Testing of NF-270 Membrane
6.3.5.1 Observations

The NF-270 membrane was pilot tested for approximately 1500 h at a water reuse facility in
Southern California for a separate WateReuse Research Foundation project (WRRF-08-010).
Feed water for water reuse facility pilot-scale experiments was microfiltered (pore size = 0.1
um) tertiary-treated wastewater effluent that was pH adjusted to 6.3, with 2- to 3-mg/L
antiscalant (King Lee Pretreat Plus) and 2- to 3-mg/L chloramine concentrations. A list of
average concentrations of major bulk constituents in wastewater effluent feeding the pilot-
scale system is presented in Table 6.3. Pilot testing was conducted for approximately 1500 h,
during which several operational settings were evaluated and membrane cleanings were
performed. Four organic contaminant sampling and analysis campaigns were performed
during testing of the NF-270 membrane. During testing, samples were collected across the
two-stage pilot-scale system and were analyzed by LC/MS-MS for the quantification of
organic contaminants. Rejection was evaluated under different operational settings, including
feed flow rate and recovery. Rejection data were used to validate modeling approaches
developed during this study.
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Table 6.3. Average Bulk Wastewater Quality for Major Constituents

Constituent Average StDev
Conductivity (uS/cm) 1023.2 96.4
UV-254 (cm™) 0.13 0.01
Constituent Average (mg/L) StDev (mg/L)
DOC 6.4 0.9
NO3-N 2.7 1.0
Alkalinity (as CaCOj3) 216.0 21.0
Chloride 123.1 15.6
Calcium 54.2 9.4
Magnesium 14.5 4.0
Phosphate 0.4 0.4
Sodium 136.3 16.1
Silica 10.7 1.4

A summary of feed water concentrations of quantified organic contaminants over the course
of pilot testing is provided in Figure 6.21. Concentrations of organic contaminants ranged
from low nanograms per liter to low micrograms per liter with atenolol, TCEP, meprobamate,
carbamazepine, DEET, sulfamethoxazole, triclocarban, and primidone displaying the greatest
concentrations, respectively. Depending on when samples were collected, the concentration
of certain compounds varied significantly.

A comparison of rejection of the various organic contaminants as a function of time is
presented in Figure 6.22. During the first 500 h of operation, the NF-270 process was
operated at a feed flow rate of 22 gpm and a recovery of 85%, resulting in a permeate flux of
approximately 15 gfd. Under these conditions, operation was very stable, with almost no
membrane fouling observed from operational data (e.g., specific flux decreased negligibly).
Rejection determined after 24 and 500 h of operation was similar for most organic
contaminants, with the major exception being triclocarban, which decreased significantly
between 24 and 500 h. Triclocarban is a relatively hydrophobic (Log K., = 4.74) antibacterial
compound that is replaced with chlorine atoms. The observed decrease in rejection is
hypothesized to be due to adsorptive interactions with the membrane, which resulted in
relatively high initial rejection that decreased after some time. The rejection of several
compounds (naproxen, diclofenac, sulfamethoxazole, and dilantin) increased slightly (~10%)
over time, although ibuprofen, TCEP, and DEET rejection decreased slightly (~10%) over
time. As a comparison, the rejection of major cations and anions and of bulk organic carbon
is presented in Figure 6.23. Slight differences (~10%) in rejection for 24 h and 500 h of
operation were also observed for certain inorganic constituents. These small discrepancies
cannot be explained with certainty; however, possible explanations include membrane fouling
and compaction, analytical error, and changes in feed water composition. Whatever the
explanation, these factors are extremely difficult to incorporate into modeling approaches and
any predictive modeling approach should be considered an estimate of rejection.
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and a pharmaceutically active compound (meprobamate).

& 500 hours
24 hours

Naproxen [777727200 07 A
Ibuprofen e
Triclocarban [Edeargar™ A
Gemfibrozil [Eescaecasaaaardariaiaiiasdasdiaacaiaaieasy
Diclofenac :
Trimethoprim [EEestaassiariaannianianianiin).
TCEP (deeeedaiaciaiarieicaiesaaccaca™™
Sulfamethoxazole EEEiesisasaiaaiaiaii il
Primidone |
Meprobamate EEEasiastassaaiaiaiiaiiaiaiisaizazal
Fluoxetine [Eeeidecaicecartecaririaiiriairitadaitececdy
o e )
DEET [Eeseiiaiadatiniaiiadadacaia”
Carbamazepine [ELEeeedeacadarsadiriatirieaeidaacececcecy

Atenolol

0 0.2 0.4 0.6 0.8 1
Rejection []
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rate, 85% recovery) over a period of 500 h.

6.3.5.2 Phenomenological Model

Bench-scale-derived phenomenological model coefficients were used to describe the rejection
of organic contaminants at pilot scale. Similar to the NF-4040 pilot-scale modeling approach,
the NF-270 membrane pilot-scale model was calibrated to describe pilot flow distributions at
different recoveries and feed flow rates during treatment of wastewater effluent. This
approach assumes that the feed water matrix has minimal effect upon rejection as bench-scale
experiments were conducted with synthetic feed water (i.e., deionized water) and as the pilot
system was fed with wastewater effluent. Given the many factors that could potentially affect
rejection at pilot scale (e.g., analytical error, fouling, scaling, compaction, membrane
variability, and variability in operational conditions), we believe that feed water matrix
effects are likely insignificant. It is worth pointing out that feed water pH, which is likely to
have the largest impact on rejection, particularly for ionic compounds, was 6.3 for both pilot-
and bench-scale experiments.

Model calibration was first investigated by fitting rejection data and evaluating model outputs
of permeate and concentrate concentrations. For this process, the average measured feed
water concentration was used in the model (averaged over the three recovery sets of
conditions evaluated). Examples of this exercise for meprobamate and carbamazepine are
presented in Figures 6.24 and 6.25. For most compounds, measured concentrate and permeate
concentrations were in agreement with the model output, although some discrepancies were
observed (see Figures 6.24 and 6.25). These differences likely occurred because these
contaminants were quantified at very low concentrations and because there were multiple
steps in the LC/MS-MS method including SPE, leading to some analytical error. Care was
taken to minimize and correct for any analytical error by using radiolabeled isotope standards
for each compound evaluated.
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Figure 6.24. Meprobamate rejection (top left), permeate concentrations (top right, and
concentrate concentrations (bottom left) as function of system recovery (20-gpm feed flow rate).

Note: Model fits calculated by using bench-scale-derived phenomenological model coefficients.
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Figure 6.25. Carbamazepine rejection (top left), permeate concentrations (top right), and
concentrate concentrations (bottom left) as function of system recovery (20-gpm feed flow rate).

Note: Model fits were calculated by using bench-scale-derived phenomenological model coefficients.
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An example of model fits using bench-scale-derived phenomenological mode coefficients for
the rejection of organic contaminants quantified in permeate and feed samples during the first
24 h of pilot-scale testing is presented in Figure 6.26 (left, data from two feed and two
combined permeate samples). Although most of the ionic contaminants, with the exception of
sulfamethoxazole, were well described by this approach, several of the nonionic organic
contaminants were underpredicted by approximately 10% (e.g., meprobamate and
primidone). Besides sulfamethoxazole, meprobamate, and primidone, modeled rejection at
85% recovery and a feed flow rate of 22 gpm was within 6% of experimental values.
Unfortunately, compounds quantified in feed water that would be expected to have lower
rejection values—such as acetaminophen, propylparaben, and caffeine—were excluded from
this analysis because of analytical issues (e.g., low recovery of isotope standard). As a
comparison, the average rejection values for the pilot system operating at 85% recovery and
22 gpm feed flow rate over the 1500 h of testing are provided in Figure 6.26 (right).
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Figure 6.26. Rejection of organic contaminants quantified in feed and permeate samples after
24 h (left) and for three sampling campaigns performed over 1500 h of testing (right) of NF-270
membrane at 85% recovery and feed flow rate of 22 gpm.

Note: Model points represent rejection calculated with phenomenological coefficients derived from bench-scale
experiments.

Because of the low concentrations of organic contaminants in feed and permeate samples, the
relatively complex analytical method employed, and potential sources of error during
experimentation, measured rejection could be variable depending on the compound
evaluated. Measured rejection values for atenolol, ketoprofen, and TCEP over 1500 h of
testing at a feed flow rate of 22 gpm with model fits are presented in Figure 6.27. At 85%
recovery, atenolol and TCEP measured rejection varied by approximately 10%. Pilot-scale
model fits, therefore, provide an estimation of rejection as the observed variability cannot be
explained.
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Figure 6.27. Rejection values for atenolol (top left), ketoprofen (top right), and TCEP (bottom) at
22 gpm feed flow rate.

Note: Values collected over several sampling campaigns.

The effect of the feed flow rate was also evaluated during pilot-scale testing, and rejection of
organic contaminants at 22 and 16 gpm is presented in Figure 6.28. A significant decrease in
rejection was observed for all organic contaminants, with the exception of triclocarban, when
the pilot-scale system was operated at 16 gpm. Modeled rejection examples at 16 and 22 gpm
feed flow rates are presented in Figure 6.28. The reduction in the calculated cross-flow
velocity by decreasing the feed flow rate from 22 to 16 gpm resulted in a theoretical drop in
rejection of 3 to 7%, depending on the range of rejection. The rejection of several
compounds, however, was observed to decrease by more than 10%, which was not described
by the model. One possible explanation is that this experiment was done after approximately
1500 h of testing. Although the membrane had been cleaned prior to the experiment,
membrane fouling can result in cake-enhanced concentration polarization, which would
exacerbate the effect of cross-flow velocity on rejection. Typical membrane systems treating
wastewater effluent are operated at approximately 10 to 12 fd permeate flux to avoid
potential fouling issues. Operating at a recovery of 80 to 85%, while achieving 10 to 12 gfd
permeate flux, requires a relatively low feed flow rate and, subsequently, a low cross-flow
velocity. Because organic contaminant rejection in a two-stage system is negligibly affected
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by recovery, operating a higher permeate flux and cross-flow velocity will likely result in
increased rejection of organic contaminants.
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Figure 6.28. Rejection of contaminants at 16 and 22 gpm feed flow rate and 85% recovery during
pilot-scale testing (left) and modeled rejection at 22 and 16 gpm (right).

6.3.6 Predicting Rejection Using Previously Developed QSPR Approach

The nonionic QSPR approach to predict Log P and sigma was redeveloped by using several
of the compounds quantified in the wastewater effluent as validation compounds.
Carbamazepine, DEET, dilantin, meprobamate primidone, and TCEP were removed from the
validation set, and the QSPR approaches developed previously were recalculated. The QSPR
approach using Log solubility, second moment of the y axis charge density, and depth yielded
a statistically significant correlation with experimental Log P; values (R = 0.88). From the
developed equation, the Log P for carbamazepine (-6.46), DEET (-6.63), dilantin (-6.54),
meprobamate (-6.16), primidone (-6.16), and TCEP (-6.56) was calculated. Sigma was
calculated by using the monomodal pore size distribution presented in the previous chapter.
An example using pilot-scale DEET data generated at a feed flow rate of 20 gpm is presented
in Figure 6.29. Predicted rejection was in very good agreement with observed rejection, and
permeate and concentrate concentrations were in general agreement with observed values.

The bench-scale phenomenological coefficients underpredicted the rejection of meprobamate
and primidone, and these compounds’ predicted Log P, values were very close to the bench-
scale-derived values. Therefore, this approach underpredicted the rejection of primidone and
meprobamate. Predicted rejection of carbamazepine and dilantin was within 5% of observed
values at 70, 80, and 85%. TCEP rejection was overpredicted by approximately 5% at all
recoveries evaluated.
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Figure 6.29. Observed and predicted DEET rejection values (top left) and observed and
predicted permeate (right) and concentrate (bottom left) concentrations.
Note: Sigma was calculated as 0.99 and Log P; as -6.63 m/s.
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6.4 Pilot-Scale Rejection Experiments Using the ESPA2 Reverse
Osmosis Membrane

6.4.1 Experimental Conditions

Pilot-scale experiments were conducted with the pilot-scale RO system at CSM to develop a
rejection data set for ESPA2 RO model validation. A multiday experiment was conducted by
using synthetic feed water spiked with a suite of trace organic chemicals to assess the effect
of operating conditions and experimental run time on rejection. Because of the MWCO of the
ESPA2 membrane, it was anticipated that rejection would be greater than 90%; therefore, two
sensitive LC/MS-MS methods (Chapter 3.2.5) were used for sample analysis. In addition to
the low detection limit (< 50 ng/L), a large suite of compounds could be analyzed by using
these methods.

For the pilot-scale experiment, approximately 450 gal of tap water was added to one of the
two 500-gal tanks feeding the pilot-scale system. The water was first dechlorinated (with
sodium metabisulfite) and then was filtered with the ESPA2 membrane. During the filtration
step, the concentrate stream was wasted and the permeate stream collected in a second 500-
gal tank and subsequently spiked with 34 compounds. The compounds that were tested by
using the ESPA2 membrane pilot-scale experiment are listed in Table 3.4.

During all experiments, the feed flow rate was set at 20 gpm and temperature was maintained
at approximately 18 °C. Three recovery set-points were evaluated over the 1st day of
experimentation: the first sample was collected at a recovery of 85% (average permeate flux
of 13.7 gfd), the second at 75% recovery (12.1 gfd), and the third at 60% recovery (9.7 gfd).

Once a recovery set-point was achieved, the system was allowed to run for 2 h before
sampling took place. After collection of samples for the three recovery set-points, the
recovery was again adjusted to 85% and was allowed to operate for 3 days. During this time,
three more sampling events took place at approximately 24-h intervals. Before sampling
occurred, feed water temperature, pH, and pressures and flow rates were recorded. Flow rates
monitored included feed, combined permeate, first-stage permeate, second-stage permeate,
first-stage concentrate, and combined concentrate. Samples were collected from each of these
streams, and three 2-mL aliquots were collected in HPLC vials, while one 1-L bottle was
filled with each of the permeate samples.

Following the completion of the multiday experiment, two additional, single-compound
experiments were performed with glycerol and urea at concentrations high enough to be
detected by using the HPLC method described in Section 3.2.3. The rejection of urea was
tested for five different recovery set-points ranging between 65 and 85%, with feed flow rates
of 22 and 16 gpm. Rejection of glycerol was examined for the same range of recoveries but
was tested only at a feed flow rate of 22 gpm. Each experimental set-point was allowed to
equilibrate for 1 h before sampling took place. The same set of samples was taken during
these experiments as during the multiday experiment described earlier. Results from these
experiments are presented in the following sections.
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6.4.2 Analytical Results

As anticipated, a number of the compounds evaluated exhibited very high rejection by the
ESPA2 membrane and were not detected in permeate samples by using the LC/MS-MS
method. Compounds that were detected at levels above detection limits in more than one
permeate sample are listed in Table 6.4. Methylparaben was detected in all samples but is
omitted from many figures and analyses because of questionable analytical data. In the first
four sample events methylparaben permeate and concentrate concentrations were each higher
than the feed concentrations. This observation may be the result of the compound partitioning
into the membrane.

There are several reasons that some compounds were not detected in any of the experimental
samples. One reason is that, for compounds that are known to partition into membranes, such
as various hormones, there may have been a large amount of mass that partitioned onto the
membrane surface or into its polymer matrix. The pilot-scale system contains approximately
1785 sq ft of membrane surface area, and it is feasible that enough mass partitioned into the
membrane material to decrease the feed concentration to levels below detection limits.
Another possible explanation for not detecting certain compounds in the samples is the
criterion for determining the detection limit. A signal-to-noise ratio of 30 was used to define
the detection limit. Compounds with signal-to-noise ratios less than 30 were not quantified.
For some compounds, the signal-to-noise ratio was much higher than for others and certain
compounds with low signals were difficult to quantify. \

Table 6.4. Compounds Detected in All Samples from Pilot-Scale Experiment with
ESPA2 Membranes by Using LC/MS-MS Method

Compounds Detected in All Samples

Acetaminophen Cafteine Methylparaben
Atrazine Cimetidine Propylparaben
Atenolol DEET Sulfamethoxazole

Feed concentrations over the course of the experiment were evaluated to determine the loss of
compound mass. Figure 6.30 presents the feed water concentrations for the nine compounds
that were detected in all samples over the 4 days that the experiment took place. A noticeable
decline was observed during the 1st day, after which the concentration stabilized for atenolol,
trimethoprim, propylparaben, and cimetidine. An explanation for this trend is that a loss of
mass onto and into the membrane polymer occurred relatively quickly until a level of
saturation was reached. This theory would explain the early, rapid concentration decline and
the subsequent period of relative stability. Atrazine, acetaminophen, caffeine, DEET, and
sulfamethoxazole all remained relatively stable during the entire course of the experiment,
although DEET exhibited a decrease on the last day of the experiment.
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Figure 6.30. Feed water concentrations of nine compounds detected over the course of the
multiday, pilot-scale experiment.

The main goal of the experiment was to develop a data set depicting compound rejection over
a range of recoveries for as many compounds as possible. This data set could then be used to
develop methods to scale up bench-scale models to larger systems such as pilot- and full-
scale membrane treatment trains. Figures 6.31 and 6.32 present the rejection-versus-recovery
curve for the five well-removed and four poorly removed compounds, respectively. For this
section, well-removed compounds are those that had 85% rejection or higher in all samples.
Poorly removed compounds are those that had at least one sample with a rejection level
below that threshold.

Compounds that were well removed include atenolol, atrazine, DEET, sulfamethoxazole, and
trimethoprim. The lowest molecular weight among these compounds was 191 g/mol for
DEET. The rest of the compounds ranged from approximately 216 to 290 g/mol. Given that
the MWCO for the ESPA2 membrane is between 70 and 100 g/mol, the most important
rejection mechanism for each of these compounds is steric exclusion. The removal of these
compounds varied between approximately 86% and 99%. Consistent among all the
compounds is the lack of rejection variation across the range of recovery examined in this
experiment. The data points for each individual compound remain within a 2 to 3% range.
This observation is not surprising, given the limited range of flux in this experiment. In
bench-scale experiments, flux typically spanned a range of 6 to 30 gfd, although the range
was only 9.7 to 13.7 gfd in the pilot-scale experiment. Compounds that were poorly removed
include caffeine, cimetidine, propylparaben, and acetaminophen. The rejection of these
compounds as a function of recovery is presented in Figure 6.32.
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Figure 6.31. Rejection versus recovery for well-removed compounds in ESPA2 membrane pilot-
scale experiment.

Rejection (%)

Cimetidine exhibited a gradual increase in rejection as recovery increased; however, this
pattern is probably due to analytical error. Figure 6.32 presents the first-stage, second-stage,
and combined permeate concentrations of cimetidine for the three recovery set-points. As
expected, for a given recovery, the first-stage permeate concentration is lower than that of the
second stage. The combined permeate concentration theoretically must fall between these two
values, and because the flow rate is higher in the first stage than in the second stage, the
combined permeate concentration should fall closer in value to that of the first stage. In
Figure 6.33, it is clear that only the recovery of 60% behaves in this expected way. Therefore,
an analytical error is likely associated with both the 75 and 85% recovery data.
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Figure 6.32. Rejection versus recovery for poorly removed compounds in ESPA2 membrane
pilot-scale experiment.
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Figure 6.33. 1st-stage, 2nd-stage, and combined permeate concentrations of cimetidine for the
three recovery set-points tested in the pilot-scale experiment with ESPA2 membranes.

Propylparaben permeate concentrations are presented in Figure 6.34. These data are
consistent with the anticipated trend described in the previous paragraph. Also, a mass
balance calculation performed during data analysis demonstrated that a weighted average of
the combined concentrate and permeate concentrations correlated well with the measured
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feed concentrations, indicating that the data are reliable. These two observations suggest that
the trend observed for propylparaben of increasing rejection with increasing flux is accurate.
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Figure 6.34. 1st-stage, 2nd-stage, and combined permeate propylparaben concentrations for the
three recovery set-points tested in the pilot-scale experiment with ESPA2 membranes.

Acetaminophen and caffeine both have their lowest rejection at a flux of 75% and similar
rejection levels at 60 and 85%. It is unclear what caused the rejection to “dip” at the middle
recovery point for each of these two compounds. Most compounds exhibit increased removal
with increasing recovery. For some compounds, however, a decline in removal followed by
an incline after a certain level of recovery has been observed but is unprecedented and
therefore is probably linked to analytical error.

Data from the experiments with urea and glycerol are presented in Figures 6.35 and 6.36,
respectively. Both of these compounds exhibited stable rejection across the range of
recoveries tested in the experiments. Approximately 20 to 25% of urea was rejected by the
ESPA2 membranes in the pilot-scale experiment, whereas glycerol was removed at
percentages between 90 and 95%. Analytical results from these two experiments are more
reliable than those from the multiday experiment as they were spiked at elevated levels and
then measured by using the HPLC method, which is a much simpler method. Because this
method involves fewer steps, it may introduce less error. These data are useful for scaling up
models developed at the bench scale in order to obtain pilot-scale data for two compounds
that are consistently present in the permeate of installations that employ the ESPA2 RO
membrane.
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Figure 6.35. Rejection versus recovery for urea in ESPA2 membrane pilot-scale experiment.
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Figure 6.36. Rejection versus recovery for glycerol in ESPA2 membrane pilot-scale experiment.

6.4.3 QSPR Model ESPA2 Membrane

The QSPR model developed for the ESPA2 membrane, restated in Equation 6.14, yielded an
R* of 0.75 and RMSE of 0.346 and was applied to the ESPA2 pilot-scale data, presented in
Figure 6.37.

Ref{logRemeval) m =1.11e 2 FOSA + 6,207 Bygyp + 4726~ 3FATA+ 1,338 (6.14)

The model was internally validated, yielding a ¢* of 0.66, and externally validated, yielding
an R* of 0.74. Almost half of the compounds were predicted out of range (Table 6.5). Some
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outliers could be due to experimental error such as acetaminophen and caffeine having
relatively low rejection.

Experimental

Predicted
Figure 6.37. Experimental rejection for the ESPA2 membrane pilot scale compared to predicted

rejection using the QSPR.

Table 6.5. ESPA2 Pilot-Scale Rejection, Predicted QSPR Rejection, and Percentage
Difference from Experimental Pilot-Scale Data

Pilot-Scale Avg QSPR %

Compound Name Class 1.2-gf'd Pre;dic'ted Difference
Rejection Rejection

Atrazine HHoN 0.98 0.98 1%
Carbamazepine HHoN 0.98 0.99 1%
DEET HHoN 0.98 0.98 0%
Propylparaben HHoN 0.60 0.98 38%
Acetaminophen HN 0.35 0.98 63%
Caffeine HN 0.73 0.96 23%
Primidone HN 0.97 0.98 1%
TCPP HN 0.96 0.99 3%
TCEP HN 0.93 0.97 4%
Glycerol HN 0.95 0.82 -13%
Urea HN 0.20 0.74 54%
Triclosan HoN 0.91 0.99 9%

On the basis of the size of acetaminophen (molecular weight of 151 g/mol) and caffeine
(molecular weight of 194) and the MWCO of the ESPA2 membrane (about 100 g/mol),
acetaminophen and caffeine should exhibit rejection greater than 90%. Propylparaben
(molecular weight of 180 g/mol) also exhibited lower-than-expected rejection based on steric
interactions. Urea was also overpredicted because of its high FOSA value; however, the
molecular weight of urea is below the MWCO so the low rejection was expected. This
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observation was also seen at bench scale, indicating that it could be a limitation of the QSPR
model.

6.4.4. Application of the Rejection Diagram to the ESPA2 Membrane

The rejection diagram provided a moderate fit for the ESPA2 pilot-scale data. The application
of the rejection diagram at pilot scale is presented in Figure 6.38 and Table 6.7. The
experimental and predicted rejections are listed in Table 6.6 with the respective rejection
ranges and error percentages. Figure 6.38 presents the predicted rejection as it relates to the
experimental rejection with error bars representing the rejection range predicted.
Propylparaben, acetaminophen, caffeine, and urea were predicted out of range. Experimental
rejection values for propylparaben, acetaminophen, and caffeine were lower than expected on
the basis of their size possibly because of experimental error. Urea was overpredicted by

10%. All other compounds tested at pilot scale were predicted within range. The model is
simple to use and can predict rejection for most compounds for the ESPA2 membrane.
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Figure 6.38. ESPA2 membrane pilot-scale rejection compared to the rejection predicted from the
updated rejection diagram.
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Table 6.6. Bench- and Pilot-Scale Rejection, Predicted Rejection from Rejection
Diagram, and Percentage Difference from Experimental Pilot-Scale Data for ESPA2
Membrane

Pilot-Scale R‘?J ection Rejection .
Diagram % Differen
Compound Name Class Avg 12-gfd . Range
Reiection Predicted +-) ce
L Rejection

Sulfamethoxazole HCN 0.99 0.95 5% -4%
Gemfibrozil HCN 0.96 0.95 5% -1%
Atenolol HCP 0.88 0.88 12% 0%
Cimetidine HCP 0.79 0.88 12% 9%
Trimethoprim HCP 0.98 0.88 12% -10%
Carbamazepine HHoN 0.98 0.85 15% -13%
DEET HHoN 0.98 0.85 15% -13%
Propylparaben HHoN 0.60 0.85 15% 25%
Atrazine HHoN 0.98 0.90 10% -8%
Urea HN 0.20 0.50 20% 30%
Primidone HN 0.97 0.85 15% -12%
Acetaminophen HN 0.35 0.85 15% 50%
Caffeine HN 0.73 0.90 10% 17%
TCPP HN 0.96 0.90 10% -6%
TCEP HN 0.93 0.90 10% -3%
Glycerol HN 0.95 0.90 10% -5%
Triclosan HoN 0.91 0.85 15% -6%

6.4.5 Phenomenological Model for the ESPA2 Membrane

Bench-scale-derived phenomenological model coefficients were input into the differential
element model calibrated for the ESPA2 membrane to describe the rejection of organic
solutes as a function of recovery at pilot scale. Several examples of this modeling approach
are presented in Figure 6.39. Of the solutes presented, the worst model fit was found for the
rejection of acetaminophen, which was significantly overpredicted. Model fits for the other
solutes examined were in the range of experimental rejection values; however, atrazine and
sulfamethoxazole were underpredicted by approximately 2 to 5% by using this approach.
Similar results were observed for NF-270 membrane pilot-scale results; that is, the pilot
model underestimated the experimental rejection for several compounds.

One limitation of the phenomenological model is that, in the range of permeate flux
evaluated, rejection is strongly dependent on the solute permeability coefficient (P). This
parameter can be difficult to fully evaluate because it requires the determination of rejection
at very low permeate flux. Although bench-scale ESPA2 membrane experiments included
two flux set-points below 10 gfd (i.e., 3 and 7 gfd), the shape of the rejection curve could not
always be fully characterized at low permeate flux. Compounds with high rejection (e.g.,
atrazine and sulfamethoxazole) have relatively flat rejection-versus-flux curves, which make
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model fitting, especially at low permeate flux, a challenge. The major issue associated with
characterizing rejection at low permeate flux is the time it takes to process an acceptable
amount of permeate before a sample is taken for analysis. For the SEPA cells used, achieving
a permeate flux of 3 gfd requires a permeate flow rate of approximately 1 mL/min.
Approximately 250 mL of permeate was processed through the membrane before samples
were collected for analysis and required approximately 4 h at a permeate flux of 3 gfd.
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Figure 6.39. Pilot-scale rejection of organic solutes with phenomenological model fits using
coefficients derived from bench-scale experiments
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Chapter 7
Validation of Rejection Models at Full Scale

7.1 Full-Scale Sampling Campaign

A full-scale sampling campaign was performed at the Orange County Water District
(OCWD)’s Ground Water Replenishment (GWR) System to quantify the removal of organic
contaminants by the ESPA2 membrane and to develop a data set for model validation at full
scale. Samples were collected from the feed water, interstage permeate, and concentrate
(waste stream) streams (Stages 1 and 2), combined permeate stream, and combined
concentrate stream. For data set development purposes, samples were collected over a range
of recovery set-points. The team had initially planned to sample at recoveries of 65, 75, and
85%. Unfortunately, the full-scale system could not be manipulated below 76% recovery. The
team evaluated 76, 78, and 84% recoveries during the sampling event.

The concentrations of the organic contaminants that were quantified in the GWR RO feed
water are presented in Figure 7.1. Out of the target analytes, only two solutes, bisphenol A
and octylphenol, could not be quantified in the RO feed water. Concentrations of the
quantified organic contaminants varied from the low nanograms per liter level to low
micrograms per liter. It is important that the error bars in Figure 7.1 are calculated from the
concentration variation in triplicate samples.
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Figure 7.1. Feed concentration of organic compounds quantified in OCWD’s RO feed water
(error bars calculated from triplicate samples).

Note: BHA = bisphenol A
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Overall rejection values for the compounds quantified in the RO feed water for each recovery
set-point are presented in Table 7.1. For many of the compounds, rejection was close to 100%
as the compound could not be quantified in the combined permeate samples. Very low
concentrations of DEET, atenolol, trimethoprim, meprobamate, gemfibrozil, ibuprofen,
naproxen, sulfamethoxazole, and fluoxetine were quantified in one or more combined
permeate samples, resulting in rejection greater than 99%. The high rejection for these
compounds was expected because of electrostatic interactions for the ionic compounds and
steric interactions for the nonionic compounds, given that the nonionic compounds had a
molecular weight greater than the MWCO for the ESPA2 membrane (100 Da) (Agenson et
al., 2003; Bellona et al., 2004; Kimura et al., 2004; Van der Bruggen et al., 1999; Verliefde et

al., 2007; Ozaki and Li, 2002).

Table 7.1. Rejection Values for Sampling Campaign Performed at OCWD’s Full-Scale

RO Facility
Rejection: | Rejection: | Rejection:
Compound 76% 78% 84% Type Mol Wt | Log D (6)
Recovery Recovery Recovery

Benzophenone 0.673 0.729 0.732 Neutral 182.2 3.18
DEET 0.997 0.997 0.997 Neutral 191.3 1.96
Caffeine 1.000 1.000 1.000 Neutral 194.2 -0.13
Ibuprofen 0.997 0.996 1.000 Negative 206.3 2.12
Atrazine 1.000 1.000 1.000 Neutral 215.7 2.63
Meprobamate 0.999 0.999 0.999 Neutral 218.3 0.70
Primidone 1.000 1.000 1.000 Neutral 2183 0.40
Naproxen 0.999 0.999 1.000 Negative 230.3 1.81
Carbamazepine 1.000 1.000 1.000 Neutral 236.3 2.67
Gemfibrozil 0.999 1.000 0.999 Negative 250.3 3.12
Dilantin 1.000 1.000 1.000 Neutral 252.3 2.52
Sulfamethoxazole 1.000 0.999 0.999 Positive 2533 0.49
Atenolol 0.998 0.998 0.998 Positive 266.3 -2.73
Diazepam 1.000 1.000 1.000 Negative 284.8 2.96
TCEP 1.000 1.000 1.000 Neutral 285.5 0.48
Triclosan 0.976 0.431 0.919 Neutral 289.5 5.17
Trimethoprim 0.998 0.998 0.998 Positive 290.3 -0.42
Musk ketone 1.000 1.000 1.000 Neutral 2943 3.86
Diclofenac 1.000 1.000 1.000 Negative 295.1 223
Fluoxetine 1.000 0.959 1.000 Neutral 309.3 1.03
TCPP 1.000 1.000 1.000 Neutral 327.6 1.53
Bisphenol A 1.000 1.000 1.000 Neutral 360.5 3.50
Atorvastatin 1.000 1.000 1.000 Negative 558.6 2.41
Iopromide 1.000 1.000 1.000 Neutral 791.1 -2.95

Benzophenone was only moderately (60-80%) rejected by the ESPA2 membrane.
Benzophenone has a molecular weight (182 g/mol) greater than the MWCO of the ESPA2
membrane and therefore should exhibit greater rejection than 60 to 80% on the basis of steric
exclusion. However, benzophenone is relatively hydrophobic (Log D of 3.18) and does
exhibit adsorptive properties that were observed at bench scale for the NF-270 membrane,
which could cause a decrease in observed rejection. Compound rejection remained constant
over the recovery range that was investigated for most compounds except for triclosan.
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Triclosan exhibited 97% and 91% rejection for recovery set-points of 76 and 84%,
respectively; however, for 78% recovery, triclosan was rejected by only 43%. This large
decrease in rejection could be due to experimental error or to the adsorptive effects of
triclosan that were observed at bench scale.

On the basis of these and past results, the ESPA2 membrane reduces concentration of the
compounds in the feed water to levels in the combined permeate that are at or below the
detection level of the LC/MS-MS method. Although many of the compounds were below the
detection limit in the combined permeate samples, sampling across the full-scale RO train
allowed for the evaluation of permeate concentrations and rejection values for each stage of
the system. An example of the first-stage, second-stage, third-stage, and combined permeate
concentrations at 84% recovery is presented in Figure 7.2. In general, concentrations in the
first-stage permeate are very low, usually below the detection level of the LC/MS-MS
method. As the water leaves the first stage, however, the feed water becomes more
concentrated and the permeate flux decreases, which yields higher second- and third-stage
permeate concentrations. Because the permeate flow from the first stage is greater than that of
the second and third stages and because the concentration is so low, the combined permeate is
often also very low. Sampling the full system, therefore, offers a few advantages over
sampling only the feed and combined permeate streams: namely, that the data can be used for
modeling purposes and that the contribution of mass from each stage into the final permeate
can be quantified.
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Figure 7.2. ESPA2 membrane permeate concentrations for five compounds
Note: SMZ = sulfamethoxazole
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7.2 Quantitative Structure Property Relationship Model

The QSPR developed at bench scale for the ESPA2 membrane was applied to the compounds
investigated at full scale. The QSPR model, restated in Equation 7.1, yielded an R* of 0.75
and RMSE of 0.346 at bench scale.

RefllogRemoval) = —1.11e™3FOSA + 6.207 Eno peo + 4 T2e7 25454+ 1,333 (7.1)

The predicted rejection is compared to rejection results from full scale at 84% recovery and
12 gfd, presented in Figure 7.3 and Table 7.2. The error bars in Figure 7.3 are the
experimental deviation in the y direction and the model confidence intervals in the x
direction. All compounds except benzophenone were predicted within the confidence interval
range. During bench-scale testing with the NF-270 membrane, benzophenone exhibited
adsorptive interactions with the membrane causing a decrease in rejection over time. This
behavior was not observed at bench scale with the ESPA2 membrane, possibly because of the
brevity of the experiments. The initial saturation of the compound onto the ESPA2 membrane
before adsorption would occur could require a longer period than needed for saturation onto
the NF-270 membrane. Because full-scale operations are continuous, the membranes were
fully saturated at the time of sampling; therefore, benzophenone was partitioning into the
permeate stream, resulting in lower rejection than expected based on the size of the
compound.

All compounds investigated at full scale, with the exception of benzophenone, were predicted
within range. This finding indicates that a QSPR model developed at bench scale can be used
to predict the rejection at full-scale operations by using the ESPA2 membrane. Rejection can

be predicted only by obtaining the FOSA, SASA, and Egomo values for a given compound.
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Figure 7.3. Experimental full-scale ESPA2 membrane rejection compared to QSPR
predicted rejection.
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Table 7.2. ESPA2 Membrane Full-Scale Rejection, Predicted QSPR Rejection, and
Pertcentage Difference from Experimental Full-Scale Data

Compound Name Class Full-Scalfe AYg Pg(siilllt{ed Pe.rcentage
12-gfd Rejection Rejection Difference
Atrazine HHoN 1.00 0.98 -2%
Carbamazepine HHoN 1.00 0.99 -1%
DEET HHoN 1.00 0.98 -2%
Dilantin HHoN 1.00 0.99 -1%
Caffeine HN 1.00 0.96 -4%
Primidone HN 1.00 0.98 -2%
TCPP HN 1.00 0.99 -1%
TCEP HN 1.00 0.97 -3%
Benzophenone HoN 0.73 0.98 25%
Bisphenol A HoN 0.98 0.99 1%
Fluoxetine HoN 1.00 1.00 0%
Triclosan HoN 0.92 0.99 7%

7.3 Phenomenological Model

An approach was developed to model rejection data obtained through a sampling campaign at
a water reuse facility employing the ESPA2 membrane. Samples for organic contaminant
analysis were collected across the full-scale system operating at 76, 78, and 84% recovery. In
order to span a relatively broad range of recoveries (76—85%), the feed flow rate had to be
reduced below the normal set-point. As a result, samples were collected across the system at
system recoveries of 84, 78, and 76% by decreasing the feed flow rate.

The full-scale facility does not monitor permeate or concentrate flow rates for individual
stages in the three-stage system. Thus, to model overall rejection, it was necessary to estimate
flow rates from individual stages by using Hydranautics’ membrane system design tool (IMS
Design). The system configuration, measured permeate flow rate, and recovery were input
into IMS Design, and the permeate flow rate for each stage was determined at the three
recoveries evaluated. To more accurately characterize the permeate flux of each stage,
experimentally determined feed water quality data (e.g., inorganic ions and pH) was input
into IMS Design. Once the permeate flow rate was determined, the permeate flux was
calculated for each stage. A simple mass balance model was developed that used the
phenomenological model to calculate rejection for each stage. Unlike the pilot model
previously discussed, an average permeate flux rate was used for each stage rather than
breaking each stage into smaller elements. Additionally, concentration polarization was not
considered in the modeling approach as the hydrodynamic conditions could not be assessed.

With the exception of benzophenone and triclosan, rejection of all of the compounds
quantified in the feed water was greater than 99%. Fitting the phenomenological/mass
balance model to rejection data for these compounds required sigma values greater than 0.99
and permeability coefficients (P) significant less than 10™ m/s. Bench-scale experimentally
derived permeability coefficients for the ESPA2 membrane were generally in the range of
107 to 10™* m/s, which would have resulted in an underestimation of rejection. This finding
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implies that, although bench-scale rejection experiments could be used to estimate the
rejection of organic contaminants at a larger-scale membrane system (i.e., pilot-scale system)
employing virgin or rather unfouled membrane elements, this approach would underestimate
the rejection of a system employing membranes that had been in operation for a long time.
Although this situation cannot be explained with certainty, membrane compaction and
fouling could be potential explanations.

For the modeling exercise, the phenomenological model parameters were manipulated to fit
experimental rejection although also approximating experimentally determined permeate and
concentrate concentrations. Examples of model fits using this approach are presented in
Figures 7.4 through 7.7 for atenolol, DEET, benzophenone, and meprobamate, respectively.
This simple approach was effective for describing concentration gradients across the
membrane system and could be used to model rejection if phenomenological coefficients are
known. It is worth noting that, although it can be a significant challenge to quantify organic
contaminants in a wastewater matrix at the parts-per-trillion level and permeate samples at
very low concentrations, analytical data generally agreed with mass balance calculations.
Through this approach, the actual presence of organic contaminants in permeate samples
(versus false positives from contamination) could be evaluated with greater levels of
confidence than by just measuring feed and combined permeate samples. In addition, by
sampling across a membrane system, especially the latter stage’s permeate concentrations, an
estimation of a solute’s combined permeate concentration can be provided. For example,
combined permeate concentrations of the chlorinated flame retardant TCEP were below
quantification level; however, third-stage permeate concentrations were used in conjunction
with feed and concentrate concentrations, and model results indicate that this compound
would be present in the combined permeate stream at 3 to 4 ng/L (Figure 7.8.).
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Figure 7.4. Rejection of atenolol (top left), atenolol permeate concentrations (top right), and

concentrate concentrations (bottom left).

Note: For phenomenological model fits, sigma was 0.998 and P was 2E-9 m/s.

WateReuse Research Foundation

211



Caoncentration [nail]

Rejection [-]

1.00
0.99
0.986
0.97
0.96
0.95
0.94
0.93
0.92
0.91
0.90

75

80
Recovery [%]

==C1 s G3 ===C2
© C3-Exp 0O C2-Exp @ C1-Exp

85

3500
3000
2500
2000
1500
1000

500

e g

e

....... S

0""9-‘-

—————— = ——————— g

75

80
Recovery [%]

85

Concentration [na/L]

14
12
10

=T .

—CP == -P1 === P2

o P3 © GP-Exp O P3-Exp
¢ P2-Exp & P1-Exp
&,
B P, Fnl
A Akl dedolks |
75 80 8

Recovery [%]

Figure 7.5. Rejection of DEET (top left), DEET permeate concentrations (top right), and
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Note: For phenomenological model fits, sigma was 0.998 and P was 7E-9 m/s.
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Figure 7.6. Rejection of benzophenone (top left), benzophenone permeate concentrations (top

right), and concentrate concentrations (bottom left).

Note: For phenomenological model fits, sigma was 0.9 and P was 7E-7 m/s.
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Figure 7.7. Rejection of meprobamate (top left), meprobamate permeate concentrations (top

right), and concentrate concentrations (bottom left).

Note: For phenomenological model fits, sigma was 0.9999 and P was 3E-9 m/s.
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Figure 7.8. Rejection of TCEP (top left), TCEP permeate concentrations (top right), and
concentrate concentrations (bottom left).

Note: For phenomenological model fits, sigma was 0.994 and P was 3E-9 m/s.

One of the main reasons why the development of modeling approaches to describe the
rejection of organic contaminants has been of such interest over the past decade is the
occurrence and subsequent poor removal of NDMA during water reuse applications.
Although NDMA was not one of the analytes measured during the sampling campaigns, the
research team has evaluated the rejection of NDMA at other full-scale water recycling
facilities employing the ESPA2 membrane (Bellona et al., 2008). Bench-scale NDMA
rejection data fit with the phenomenological model resulted in a reflection coefficient of 0.89
and a permeability coefficient of 3.3E-6 m/s. Placing these values in the full-scale
phenomenological/mass balance model resulted in a predicted full-scale rejection of
approximately 40%. Past NDMA sampling results from a water reuse facility demonstrated
ESPA2 membrane rejection of NDMA at approximately 30% (Bellona et al., 2008).

7.4 Rejection Diagram

The rejection diagram updated with bench-scale NF-270 membrane data was applied to
compounds investigated at full scale. The rejection diagram provided an excellent fit for the
ESPA2 membrane full-scale data. The application of the rejection diagram at full scale is
presented in Figure 7.9 and Table 7.3. Figure 7.9 compares the predicted rejection with
experimental full-scale rejection, with error bars representing the predicted rejection ranges.
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All compounds investigated at full scale were predicted within the rejection ranges, even
benzophenone, which was inaccurately predicted at full scale with the QSPR model. This
finding indicates that the rejection diagram is an effective way to predict rejection. The model
is simple to use and can predict rejection within a range for bench, pilot, and full scales for
two different membranes.
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Figure 7.9. Experimental ESPA2 full-scale rejection compared to rejection predicted by
updated rejection diagram.
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Table 7.3. ESPA2 Membrane Full-Scale Rejection, Rejection Predicted from Rejection
Diagram, Predicted Rejection Ranges, and Percentage Difference from Experimental
Full-Scale Data

Full-Scale lf)iilec:::: Rejection Percentage
Compound Name Class | Avg12-gfd Pregicted Ral:ge (+-) Differenfe
Rejection Rejection

Diclofenac HCN 1.000 0.95 5% -5%
Gemfibrozil HCN 0.999 0.95 5% -5%
Ibuprofen HCN 1.000 0.95 5% -5%
Naproxen HCN 1.000 0.95 5% -5%
Sulfamethoxazole HCN 0.999 0.95 5% -5%
Atenolol HCP 0.998 0.88 12% -12%
Trimethoprim HCP 0.998 0.88 12% -12%
Carbamazepine HHoN 1.000 0.85 15% -15%
DEET HHoN 0.997 0.85 15% -15%
Dilantin HHoN 1.000 0.85 15% -15%
Atrazine HHoN 1.000 0.90 10% -10%
Primidone HN 1.000 0.85 15% -15%
Caffeine HN 1.000 0.90 10% -10%
TCPP HN 1.000 0.90 10% -10%
TCEP HN 1.000 0.90 10% -10%
Benzophenone HoN 0.732 0.85 15% 12%
Bisphenol A HoN 0.983 0.85 15% -13%
Fluoxetine HoN 1.000 0.85 15% -15%
Triclosan HoN 0.919 0.85 15% -7%
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Chapter 8

Conclusions and Recommendations

8.1 Conclusions
8.1.1 Summary of Project Results

The objectives of this study were (a) to evaluate molecular modeling approaches for trace
organic solutes in high-pressure membrane applications and to determine method-
independent and reliable molecular descriptors for the development of QSPR models, (b) to
identify, develop, and optimize membrane modeling strategies and to develop models that
can be employed to predict the rejection of trace organic solutes, and lastly (c) to evaluate the
efficiency with which membranes employed at full scale remove trace organic chemicals and
to successfully predict the removal rates with the developed model(s).

8.1.2 Literature Review

A comprehensive literature review was conducted to identify the major factors affecting the
rejection of organic solutes by NF and RO membranes, potentially viable modeling
approaches, and to summarize past modeling efforts. Major findings from the literature
review included the following:

e The rejection of organic solutes depends on three primary mechanisms: size
exclusion, electrostatic exclusion, and solute—membrane interactions.

e Operational conditions such as fouling, permeate flux, concentration polarization,
and recovery can have a significant impact on rejection.

e Achieving equlibrium rejection conditions for solutes with membrane interactions
can take hours to days.

e The overall effect of membrane fouling on the rejection of organic solutes is not well
understood.

e Feed water matrix and temperature can impact rejection; however, pH appears to be
the most important factor as it affects the speciation of solutes with acidic and basic
functional groups, as well as affecting membrane surface charge.

e Jonic organic solutes are generally well removed by NF and RO membranes
regardless of size.

e Nonionic solutes with solute—_membrane interactions are likely to have incomplete
removal.

e Molecular size is a dominant factor in the rejection of nonionic solutes; however, size
is less important for solutes with membrane interactions.

o Limited work has been performed to predict which compounds will have strong
solute—membrane interactions on the basis of molecular descriptors.

e Pertinent modeling approaches include mass transfer equations, QSPR models, and
empirical models.
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e Mass transfer models are advantageous because they integrate operational conditions
and to a limited degree solute and membrane properties.

e (QSPR models are advantageous because solute properties are easily incorporated;
however, it can be difficult to incorporate operating conditions and membrane
properties.

e Empirical models are advantageous because they are simple to use.

e Models that rely solely on solute size often overpredict rejection because
solute—membrane interactions are not included.

e In concept, the solution—diffusion model is advantageous because only one solute
input parameter is required. The phenomenological model is advantageous because of
the “black box” nature of the model and the possibility of correlating solute
properties to the input parameters.

e Considering the complexity and numerical effort of several modeling approaches,
including the DSPM and the SFPM, these models may not be applicable to large-
scale membrane systems treating multicomponent aqueous solutions.

o The differential element approach combined with the phenomenological model can
be applied to a full-scale system and could potentially include both operational
conditions and solute and membrane properties.

e Adjustments to any model need to be made to account for fouling and for changes in
temperature and feed water chemistry. In addition, experimental replication is needed
to account for differences between different types of membranes.

Information gained through the literature review was used to develop a representative list of
organic solutes for experimentation, an experimental protocol for measuring rejection, and a
list of pertinent modeling strategies for NF and RO membranes.

8.1.3 Organic Solute Selection

For this study, 270 organic solutes were initially selected for model development and model
validation. The list of compounds was compiled from a variety of sources and yielded a
relatively diverse set of organic solutes on the basis of properties (e.g., size, charge,
hydrophobicity/hydrophilicity, etc.), relevance to membrane treatment (e.g., functional
groups affecting rejection and likelihood of permeation), and environmental relevance (e.g.,
EPA Candidate Contaminant List, recent advancements in emerging contaminant research,
human health, and environmental relevance). After removal of compounds that caused
analytical and experimental issues (e.g., high volatilization, instability, and poor solubility), a
shorter list of 137 compounds (shown in Appendix A) was generated for model development
and validation. Care was taken that the reduced list of solutes for experimentation retained the
diversity of the full list although covering the different rejection mechanisms. Compounds
were categorized by expected rejection mechanism based on charge and hydrophobicity. Six
different categories were developed: HN (less than 0.01% charged at

pH 6.5; Log K, <2), HHoN (less than 0.01% charged at pH 6.5; Log K, > 2 and

Log K,w < 3), HoN (less than 0.01% charged at pH 6.5; Log K, > 3), HCN (greater than
50% negatively charged at pH 6.5), HCP (greater than 50% positively charged at pH 6.5),
and HCNP (having both positive and negative charge at pH 6.5).
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For each rejection mechanism subgroup, principal component analysis and k-means
clustering/discriminate analysis was performed to further group similar compounds based on
molecular properties calculated and compiled from various sources (e.g., Syracuse Research
Corporation, ACD Labs, Schrodinger [software package], and Hyperchem). For HN, HHoN,
HoN, HCN, and HCP compounds, five groups were developed, although for HCNP, three
groups were developed. Random selection was then used to select at least 33% of the
compounds from each grouping (all compounds were selected from groups with only two
compounds, 66% were selected from groups with three compounds, 50% of compounds were
selected from groups with four compounds).

This selection process yielded a group of 134 compounds for model development and
validation (Table 3.2). On the basis of further analysis, this final list of compounds retained
much of the diversity of the full list based on the criteria outlined previously (e.g., properties,
rejection mechanisms, classes of compounds, environmental relevance, etc.). The list was
then randomized with the 33 top compounds selected for the validation set and the remaining
101 selected for the model development set.

8.1.4 Bench-Scale Experimentation

Several criteria were used to develop an experimental protocol to measure organic solute
rejection at bench scale under conditions that allowed the development of a rejection database
for the select solutes. This database provided the basis for subsequent rejection model
developments. These criteria included as follows:

o The application of many identified modeling approaches requires relationships that
describe solute rejection as a function of permeate flux.

e Permeate flux should span a broad range and include fluxes relevant to full-scale
applications.

e During conduct of these experiments, concentration polarization should be
minimized.

e Rejection measurement should be conducted under steady-state or quasi-steady-state
conditions to capture solutes with membrane interactions.

e Replicate experiments should be conducted with different membrane coupons to
capture potential membrane variability.

Three bench-scale cross-flow SEPA testing systems were developed that included
computerized control and data logging of temperature, permeate flow rate, and flux. For each
compound, replicate experiments were conducted by using flat-sheet membrane material cut
from a spiral-wound element. During experimentation, concentration polarization was
minimized by maintaining recovery below 1.5%. Short-term rejection was evaluated at five
permeate flux set-points spanning a range from 3 to 60 gfd. Longer-term rejection to study
potential interactions between solutes and membranes was evaluated by operating the SEPA
system at flux of 12 gfd for approximately 24 h. Feed and permeate samples were collected in
replicate, and solute concentration quantified by a variety of analytical methods, including
TOC analysis, RID, LC DAD, GC-ECD, and LC/MS-MS. By characterization of the
hydrodynamic conditions of the testing system, intrinsic rejection (i.e., rejection in the
absence of concentration polarization) was calculated for each compound by using feed and
permeate concentrations. The rejection-versus-flux data were used to populate a database
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consisting of rejection data and solute properties, which subsequently was used for model
development.

Because of the large number of experiments planned, two different membranes were
employed during the study. The NF-270 membrane from Dow/Filmtec was selected as a
representative NF membrane because this membrane had been used in previous pilot-scale
studies using reclaimed water and exhibited excellent rejection performance for organic
solutes, low fouling propensities, and a significantly higher specific flux than conventional
RO membranes (Bellona and Drewes, 2007; Bellona et al., 2008). The ESPA2 membrane
from Hydranautics was selected as a representative LPRO membrane because this membrane
is employed at several full-scale water reclamation facilities.

During the course of this study, an enormous number of data was generated through the
execution of the experimental protocol. The major findings from the bench-scale rejection
experiments were

e The NF-270 membrane exhibited variable rejection depending on the properties of
the organic solute and the permeate flux evaluated. Rejection was highly dependent
on permeate flux and generally increased with increasing flux.

e Rejection by the ESPA2 membrane was less variable across the range of permeate
flux evaluated and for the organic solutes evaluated.

e Both the NF-270 and ESPA2 membranes provide very good (generally greater than
90%) rejection of ionic organic solutes at the pH evaluated (6.3).

e Positively charged organic solutes were, in general, rejected to a lesser degree than
were negatively charged organic solutes.

e Solutes with significant membrane interactions exhibited decreasing rejection with
increasing permeate flux and a decrease in rejection during short-term and 24-h
rejection tests.

e Approximately 15% of the solutes evaluated exhibited solute—membrane interactions
during use of the NF-270 membrane. The effect of solute—membrane interaction on
rejection was not as pronounced for the ESPA2 membrane.

e During experimentation, numerous solutes were problematic because of degradation
or hydrolysis and because of low solubility.

e Variability between replicate experiments was generally very low.

e Comparison of past results indicated that the source of membrane material can have a
significant impact on rejection experiments. For example, rejection results from using
free membrane samples from manufacturers could be significantly different from
those for the same membrane material cut from spiral-wound elements.

e Conducting recycle mode experiments with solutes exhibiting very strong
solute—membrane interactions (e.g., THMs) proved difficult. These compounds
tended to absorb into