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Foreword 
	
The WateReuse Research Foundation, a nonprofit corporation, sponsors research that 
advances the science of water reclamation, recycling, reuse, and desalination. The Foundation 
funds projects that meet the water reuse and desalination research needs of water and 
wastewater agencies and the public. The goal of the Foundation’s research is to ensure that 
water reuse and desalination projects provide high-quality water, protect public health, and 
improve the environment.  

An Operating Plan guides the Foundation’s research program. Under the plan, a research 
agenda of high-priority topics is maintained. The agenda is developed in cooperation with the 
water reuse and desalination communities including water professionals, academics, and 
Foundation subscribers. The Foundation’s research focuses on a broad range of water reuse 
research topics including: 

 Definition of and addressing emerging contaminants 
 Public perceptions of the benefits and risks of water reuse 
 Management practices related to indirect potable reuse 
 Groundwater recharge and aquifer storage and recovery 
 Evaluation and methods for managing salinity and desalination 
 Economics and marketing of water reuse 

The Operating Plan outlines the role of the Foundation’s Research Advisory Committee 
(RAC), Project Advisory Committees (PACs), and Foundation staff. The RAC sets priorities, 
recommends projects for funding, and provides advice and recommendations on the 
Foundation’s research agenda and other related efforts. PACs are convened for each project 
and provide technical review and oversight. The Foundation’s RAC and PACs consist of 
experts in their fields and provide the Foundation with an independent review, which ensures 
the credibility of the Foundation’s research results. The Foundation’s Project Managers 
facilitate the efforts of the RAC and PACs and provide overall management of projects. 

High-pressure membrane processes, such as reverse osmosis (RO) and nanofiltration (NF),  
are becoming increasingly widespread in water treatment, industrial processes and 
wastewater reclamation/reuse applications where a high product water recovery is desired. 
The overall goal of this project is to develop models that can be used, a priori, to predict the 
rejection of a wide variety of organic compounds by NF and RO membranes. The objectives 
of this research project were to (a) evaluate molecular modeling approaches and determine 
method-independent and reliable molecular descriptors for the development of quantitative 
structure activity relationship models, (b) identify, develop, and optimize membrane 
modeling strategies and develop models that can be employed to predict the rejection of 
organic solutes, and (c) evaluate the efficiency that membranes employed on full-scale 
removal of trace organic chemicals and to successfully predict the removal rates with the 
developed model(s). 
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Executive Summary 

Project Background 

One possible solution for securing additional drinking water sources is the reclamation of 
wastewater effluents using high-pressure membranes such as reverse osmosis (RO) and 
nanofiltration (NF) membranes, which is being implemented in the United States and 
explored in Australia. Past laboratory research projects have demonstrated that a limitation of 
RO and NF is the incomplete removal of various organic solutes, such as certain disinfection 
by-products, pharmaceutical residues, personal care products, household chemicals, and 
emerging disinfection by-products (Nghiem et al., 2004; Drewes et al., 2005; Xu et al., 2006; 
Snyder et al., 2006). Uncertainty regarding the rejection of certain solutes, coupled with the 
increasing number of detections of trace organic chemicals at the parts-per-trillion level in 
impaired water sources, justifies the development of modeling approaches that can 
adequately predict—a priori—the removal of contaminants by RO and NF membranes. A 
successful predictive model would eliminate the need to conduct pilot-scale evaluation of 
trace organic contaminant removal, eliminate uncertainty regarding permeate water quality, 
and promote the implementation of water reuse projects employing membrane treatment.  

Project Objectives 

The objectives of this project were (a) to evaluate molecular modeling approaches and 
determine method-independent and reliable molecular descriptors for the development of 
quantitative structure activity relationship (QSAR) models, (b) to identify, develop, and 
optimize membrane modeling strategies and develop models that can be employed to predict 
the rejection of organic solutes, and (c) to evaluate the efficiency that membranes employed 
on full-scale removal of trace organic chemicals and to successfully predict the removal rates 
with the developed model(s). The research study consisted of three major phases. The project 
was initiated with the development of a roadmap for membrane rejection modeling, including 
a comprehensive literature review and the determination and calculation of reliable, accurate, 
and relevant molecular descriptors for a wide range of trace organic chemicals. The second 
phase of the project addressed the construction and optimization of viable membrane 
rejection models and their validation. Evaluation and validation of the membrane rejection 
models were conducted by using pilot- and full-scale units or facilities.  

This research was performed by a team of faculty, scientists, and graduate students from the 
Colorado School of Mines and the University of Houston. The study was supported by 
researchers at the Southern Nevada Water Authority and UNESCO-IHE. It was funded by the 
WateReuse Research Foundation, Bureau of Reclamation, California State Water Resources 
Control Board, the Orange County Water District, and the Southern Nevada Water Authority. 

Study Findings 

Numerous possible approaches for describing solute mass transfer through high-pressure 
membranes have been proposed in the past. Therefore, there is a strong need to summarize 
the current knowledge base regarding trace organic solute removal and the mathematical 
description of their rejection. Current limitations in predicting the rejection of organic 
chemicals during water reuse applications exist because an understanding of viable modeling 
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approaches is lacking; many past modeling approaches utilized unrealistic experimental 
setups and produced data that are inappropriate for predicting rejection on larger scales. In 
addition, modeling membrane treatment is an inherently difficult problem because of system 
complexities and numerous factors affecting rejection. Information gained through a 
comprehensive literature review was used to develop a representative list of organic solutes 
for experimentation, an experimental protocol for measuring rejection, and a list of pertinent 
modeling strategies for NF and RO membranes. 

For this study, 270 organic solutes were initially selected for model development and model 
validation. The list of compounds was compiled from a variety of sources and yielded a 
relatively diverse set of organic solutes based on properties (e.g., size, charge, 
hydrophobicity/hydrophilicity, etc.), relevance to membrane treatment (e.g., functional 
groups affecting rejection and likelihood of permeation), and environmental relevance (e.g., 
EPA Candidate Contaminant List and recent advancements in emerging contaminant 
research, human health, and environmental relevance). After removal of compounds that 
caused analytical and experimental issues (e.g., high volatilization, instability, and poor 
solubility), a shorter list of 137 compounds was generated for model development and 
validation. Compounds were categorized by expected rejection mechanism based on charge 
and hydrophobicity. Six different categories were developed: hydrophilic neutral (HN; less 
than 0.01% charged at pH 6.5; Log Kow < 2), hydrophilic/hydrophobic neutral (HHoN; less 
than 0.01% charged at pH 6.5; Log Kow > 2 and Log Kow < 3), hydrophobic neutral (HoN; 
less than 0.01% charged at pH 6.5; Log Kow > 3), hydrophilic negatively charged (HCN; 
greater than 50% negatively charged at pH 6.5), hydrophilic positively charged (HCP; greater 
than 50% positively charged at pH 6.5), and hydrophilic negatively and positively charged 
(HCNP; having both positive and negative charge at pH 6.5). 

For each rejection mechanism subgroup, principal component analysis and k-means 
clustering/discriminate analysis were performed to further group similar compounds on the 
basis of molecular properties calculated and compiled from various sources (e.g., Syracuse 
Research Corporation, ACD Labs, Schrödinger, and Hyperchem). This selection process 
yielded a group of 134 compounds for model development and validation. On the basis of 
further analysis, this final list of compounds retained much of the diversity of the full list on 
the basis of criteria outlined previously (e.g., properties, rejection mechanisms, classes of 
compounds, environmental relevance, etc.). The list was then randomized with the 33 top 
compounds selected for the validation set and the remaining 101 selected for the model 
development set.  

Several criteria were used to develop an experimental protocol to measure organic solute 
rejection at bench scale under conditions that allowed the development of a rejection database 
for the select solutes. This database provided the basis for subsequent rejection model 
developments. For each compound, replicate experiments were conducted by using flat-sheet 
membrane material cut from a spiral-wound element. During experimentation, concentration 
polarization was minimized by maintaining recovery below 1.5%. Short-term rejection was 
evaluated at five permeate flux set-points spanning a range from 3 to 60 gal per sq ft and day 
(gfd). Longer-term rejection to study potential interactions between solutes and membranes 
was evaluated by operating the SEPA system at flux of 12 gfd for approximately 24 h. Feed 
and permeate samples were collected in replicate, and solute concentration was quantified by 
a variety of analytical methods including total organic carbon analysis, refractive index 
detection, liquid chromatography diode-array detection, gas chromatography electron capture 
detection, and liquid chromatography with tandem mass spectroscopy detection. By 
characterization of the hydrodynamic conditions of the testing system, intrinsic rejection (i.e., 
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rejection in the absence of concentration polarization) was calculated for each compound by 
using feed and permeate concentrations. The rejection-versus-flux data were used to populate 
a database consisting of rejection data and solute properties, which was subsequently used for 
model development.  

Because of the large number of experiments planned, two different membranes were 
employed during the study. The NF-270 membrane from Dow/Filmtec was selected as the 
representative NF membrane because this membrane had been applied in previous pilot-scale 
studies using reclaimed water and exhibited excellent rejection performance for organic 
solutes, low fouling propensities, and a significantly higher specific flux than conventional 
RO membranes (Bellona and Drewes, 2007; Bellona et al., 2008). The ESPA2 membrane 
from Hydranautics was selected as the representative low-pressure RO membrane because 
this membrane is employed at several full-scale water reclamation facilities. 

Numerous possible modeling approaches for describing solute mass transfer through high-
pressure membranes were identified. Several approaches were characterized as impractical 
for describing rejection at larger-scale membrane applications, including the Donnan steric 
pore and surface force pore models. Modeling approaches evaluated during this study 
included quantitative structure property relationships (QSPRs), empirical models, the 
hydrodynamic model, the phenomenological model, and the solution−diffusion model.  

A significant portion of this study evaluated rejection at pilot scale under carefully controlled 
laboratory experiments and in the field at a water reclamation facility. This approach 
provided valuable information on comparing and upscaling bench-scale experimental 
rejection results to larger membrane systems. Findings from these studies suggest that bench-
scale rejection results can be used to describe the rejection at a large scale; however, the 
hydrodynamic conditions and flux and concentration gradients for a large-scale system need 
to be characterized. The differential element approach combined with the phenomenological 
model was an effective modeling approach to describe rejection at pilot scale. Bench-scale-
derived phenomenological model coefficients could be used to estimate pilot-scale permeate 
concentrations and rejection. QSPRs and the rejection diagram approach developed with 
bench-scale rejection data could estimate rejection at pilot scale.  

Recommendations 

Different modeling approaches were evaluated during the course of the study to develop a 
broadly applicable model to predict the rejection of trace organic chemicals by NF and RO 
membranes. Although modeling approaches were developed that can estimate rejection at 
bench, pilot-, and full-scale installations, developing accurate models for the thousands of 
potential organic contaminants is difficult for a number of previously discussed reasons. The 
research team found that bench-scale results can be used to describe the rejection of organic 
solutes at larger scales; however, changes in membrane performance over time from 
compaction and fouling to aging are difficult to incorporate into modeling approaches. These 
issues aside, there are different modeling approaches that can be adopted on the basis of the 
level of effort required for development. They are listed in order of increasing complexity: 

1. The rejection diagram is a simple and effective approach for describing the range of 
rejection for a wide variety of organic solutes as it requires few, easily determined 
solute descriptors. The rejection diagrams (Figure 5.4.1) were developed and tested 
during the course of this study for one RO-type membrane and one NF-type 
membrane. 
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2. A utility looking to develop a transport model to describe the rejection of organic 
solutes would be advised to sacrifice an (fouled) element from its system and to run 
experiments (rejection as a function of permeate flux) with organic solutes spanning 
a range of size, charge, and hydrophobicity. For nonionic solutes, simple correlations 
can be developed between the reflection coefficient and permeability coefficient and 
a solute size descriptor. For ionic compounds, the measured range of reflection and 
permeability coefficients should be sufficient to estimate the range of rejection for 
these compounds. A simple mass balance model can be developed for a full-scale 
membrane system by using bench-scale-derived phenomenological coefficients. 

3. The major issue with QSPR models is that they are dependent on the conditions used 
to develop the rejection data and require a large number of rejection data to generate 
statistically significant correlations. The solute selection method employed during 
this study proved to be a good approach for selecting solutes for QSPR development. 

Future Research Needs 

A number of research questions were raised during the completion of this study that should 
be studied further to understand the transport of organic compounds through NF and RO 
membranes. These include 

 Understanding the solute properties that result in adsorption and partitioning through 
membrane materials and developing modeling approaches for these compounds 

 Quantifying the time it takes to reach rejection equilibrium conditions for a broad 
range of solutes with strong membrane interactions  

 Quantifying the effect of membrane compaction and fouling on the rejection of 
organic solutes 

 Identifying membrane-specific descriptors that affect solute mass transport  

 Integrating membrane-specific descriptors into rejection models 
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Chapter 1 

Introduction 

1.1 Background 

High-pressure membrane processes, such as reverse osmosis (RO) and nanofiltration (NF), 
are becoming increasingly widespread in water treatment, industrial processes, and 
wastewater reclamation/reuse applications where a high product water recovery is desired. 
For example, Bartels et al. (2008) reported that the capacity of global high-pressure 
membrane applications for water reclamation over the past 30 years increased from 
approximately 150,000-m3/day in 1977 to approximately 900,000-m3/day in 2008. 

For drinking water augmentation projects in the United States, Singapore, and Australia that 
use reclaimed water, treatment using an integrated membrane system (IMS), such as 
microfiltration (MF) pretreatment followed by RO, is the industry standard. Facilities 
employing RO for water reclamation include the West Basin Water Recycling Facility (El 
Segundo, CA), Scottsdale Water Campus (Scottsdale, AZ), Leo J. Vander Lans Plant (Orange 
County, CA), Terminal Island Treatment Plant (Long Beach, CA), Groundwater 
Replenishment System (Orange County, CA), and several installations in Singapore and 
Australia. Past research projects have demonstrated that a limitation of RO and NF is the 
incomplete removal of various organic solutes, such as certain disinfection by-products, 
pharmaceutically active compounds, household chemicals, chlorinated flame retardants, 
steroid hormones, and pesticides (Nghiem et al., 2004; Drewes et al., 2005; Xu et al., 2006; 
Snyder et al., 2007. Uncertainty regarding the rejection of certain solutes, coupled with the 
increasing number of detections of emerging trace organic chemicals at the part-per-trillion 
level in impaired water sources, justifies the development of modeling approaches that can 
adequately predict—a priori—the removal of contaminants by RO and NF membranes. A 
successful predictive model would eliminate the need to conduct pilot-scale evaluations of 
trace organic contaminant removal, eliminate uncertainty regarding permeate water quality, 
and promote the implementation of water reuse projects employing membrane treatment. 

1.2 Objectives 

The overall goal of this project is to develop models that can be used, a priori, to predict the 
rejection of a wide variety of organic compounds by NF and RO membranes. The objectives 
of this research project were (a) to evaluate molecular modeling approaches and determine 
method independent and reliable molecular descriptors for the development of quantitative 
structure activity relationship (QSAR) models, (b) to identify, develop, and optimize 
membrane modeling strategies and develop models that can be employed to predict the 
rejection of organic solutes, and (c) to evaluate the efficiency at which membranes employed 
at full scale remove trace organic chemicals and to successfully predict the removal rates with 
the developed model(s). The research study consisted of three major phases. The project was 
initiated with the development of a roadmap for membrane rejection modeling, including a 
comprehensive literature review and the determination and calculation of reliable, accurate, 
and relevant molecular descriptors for a wide range of trace organic chemicals. The second 
phase of the project addressed the development, optimization, and validation of viable 
membrane rejection models. Evaluation and validation of the membrane rejection models 
were conducted at pilot- and full-scale membrane installations. 
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This research was performed by a team of faculty, scientists, and graduate students from the 
Colorado School of Mines and the University of Houston. The study was supported by 
researchers at the Southern Nevada Water Authority and UNESCO-IHE. The research was 
funded by the WateReuse Research Foundation, U.S. Bureau of Reclamation, California State 
Water Resources Control Board, the Orange County Water District, and the Southern Nevada 
Water Authority.  
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Chapter 2 

Review of Modeling Solute Rejection in High-
Pressure Membranes 

2.1 Introduction 

The goal of this literature review is to identify the factors that affect rejection and identify the 
most promising modeling approaches for the development of predictive models for organic 
solutes. This topic is very broad and is complex and is constantly expanding. Therefore, any 
review on this subject matter should be considered a work in progress, but the review 
provided in this chapter represents the current state-of-the-art of solute rejection and 
modeling approaches in high-pressure membranes.  

2.1.1 Differences Among Membranes 

Differences among thin-film composite RO membranes, low-pressure RO (LPRO) 
membranes, and NF membranes are subtle and often debatable. The nomenclature used to 
describe a particular membrane is often based upon the application for which the membrane 
was designed. Membranes designed for applications in which monovalent salt-free permeate 
is desired (i.e., seawater desalination and brackish water treatment) are most often termed 
seawater RO elements, brackish water RO elements, and/or low-pressure brackish water 
elements. These membranes hinder the diffusive transport of solutes through the membrane, 
are capable of rejecting >99% of monovalent salts, and will be termed RO membranes for 
this study (Zhao and Taylor, 2004; Zhao et al., 2005).  

LPRO (<200 psi) membranes designed for high monovalent salt removal (>98%) and low-
molecular-weight organic removal (<100 Da) are loosely termed LPRO membranes. 
Although it is debatable whether LPRO membranes have discrete pores or operate solely 
through diffusive transport limitations, it has been shown that solute removal involves a 
combination of steric and electric exclusion and is likely a combination of both diffusive and 
convective limitations (Ozaki and Li, 2002; Košutić and Kunst, 2002; Tsuru et al., 1991a).  

NF membranes span a wide range of properties and are indistinguishable from ultra-LPRO 
(ULPRO) membranes if they reject monovalent salts well and are indistinguishable from 
certain ultrafiltration (UF) membranes if they moderately reject low-molecular-weight 
organics (<300 Da) and divalent cations. Generally, NF membranes are considered to operate 
at lower pressures than ULPRO membranes (~100 psi), are considered to have pores in the 1-
nm range (although this is debatable), efficiently remove divalent cations and most organic 
solutes, and pass monovalent salts and organics smaller than the membrane pore size (Bowen 
and Mukhtar, 1996; Nghiem et al., 2005). It has been shown that NF membranes remove 
solutes through steric and electrostatic exclusion from pores (Bowen and Mukhtar, 1996; 
Hagmeyer and Gimbel, 1998; Bandini and Vezzani, 2003; Bellona and Drewes, 2005).  

2.1.2 Solute Transport through RO and NF 

There is still controversy regarding pore structures in NF and RO membranes. Wijmans and 
Baker (1995) published a review on the solution−diffusion model in which they discuss the 
controversy surrounding whether transport through RO membranes should be described by 
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pore-flow or solution−diffusion models. According to the researchers, “Both models were 
proposed in the 19th century, but the pore-flow model, because it was closer to normal 
physical experience, was more popular until the mid-1940s…the transport mechanism in 
reverse osmosis membranes was a hotly debated issue in the 1960s and early 1970s. By 1980, 
however, the proponents of solution−diffusion had carried the day; currently only a few die-
hard pore-flow modelers use this approach to rationalize reverse osmosis.” Wijmans and 
Baker (1995) attempted to clarify the difference between solute diffusion limiting membranes 
and membranes where solute transport is partially due to pore-flow phenomena: “The 
transition between a pore-flow and a solution−diffusion mechanism seems to occur with 
membranes having very small pores. Membranes that reject sucrose and raffinose but pass all 
micro-ions are clearly pore-flow membranes…Presumably, the transition is in the 
nanofiltration range, with membranes having good rejection of monovalent ions in the 20–
50% range.” 

How important are pore structure and solute transport when selecting models to describe 
solute rejection for a particular membrane? Solution−diffusion models are applicable to dense 
membranes where permeating solutes first dissolve into the membrane and diffuse though the 
membrane material following a concentration gradient (Wijmans and Baker, 1995; AWWA, 
2007). For these membranes, dissolved solutes have very low permeability as compared to 
water. For membranes with high water flux at low pressure that allow some solutes to a 
degree similar to that of water, pore-flow models may be more applicable. However, whether 
pore-flow models apply to low-pressure RO membranes is unclear. Early RO models 
included terms for convection, which led to much of the mass transport controversy reported 
by Wijmans and Baker (see Dresner, 1971; Spiegler and Kedem, 1966). Does the ability of 
small polar molecules, such as N-nitrosodimethylamine (NDMA) and boron, to freely 
permeate commercially available LPRO membranes (examples are ESPA2 from 
Hydranautics and the TFC-HR from Koch Industries) and to a somewhat lesser extent 
desalination RO membranes, mean that RO membranes have pores? It is quite easy to find 
literature supporting both pore flow and diffusion as transport mechanisms for RO 
membranes (Dresner, 1971; Spiegler and Kedem, 1966; Kargol, 2001; Kim et al., 2007). 
However, it appears that most researchers agree that solute transport through RO membranes 
occurs by diffusion through the membrane polymer.  

For NF membranes, it appears that most researchers acknowledge that solute transport 
through NF membranes occurs by convection and diffusion. NF modeling approaches 
developed in the 1990s used a ratio of solute size to effective pore size to develop convective 
hindrance factors based on the work reported by Deen (1987). Using atomic force 
microscopy, researchers have worked to defend the idea that NF and to a lesser extent RO 
had discernible pores in the 1-nm range (Bowen et al., 1997).  

2.2 Observations of Rejection at Pilot- and Full-Scale Membrane 
Installations 

Past laboratory research projects have demonstrated that a limitation of RO and NF is the 
incomplete removal of various organic solutes, such as certain disinfection by-products, 
pharmaceutically active compounds, chlorinated flame retardants, steroid hormones, and 
pesticides (Nghiem et al., 2004; Drewes et al., 2005; Xu et al., 2006, Snyder et al., 2007). 
However, there is some question whether these laboratory-scale studies indicate that RO 
membranes operating at full scale have incomplete rejection of organic compounds of 



 

WateReuse Research Foundation 5 

concern. Recently, studies have been conducted investigating the rejection of a variety of 
organic contaminants by RO and NF membranes at full-scale membrane installations 
(Drewes et al., 2007; Snyder et al., 2007). A summary of the organic compounds that have 
been found to permeate RO membranes operating at water reuse facilities (full-scale and 
pilot-scale data) is presented in Table 2.1. Most of the compounds that are quantified in feed 
water are not detected in membrane permeates or, when they are, are at low concentrations. 
However, it was discovered at a full-scale reclamation plant employing RO treatment that 
trace organics such as 1,4-dioxane and NDMA were present in product water at 
concentrations greater than the California Department of Public Health (CDPH) action limit.  

Drewes et al. (2008) investigated 12 commercially available RO and NF membranes in 
rejecting a wide variety of organic contaminants on a laboratory-scale testing unit employing 
two spiral-wound 4040 membrane elements. One of the major findings was that nonionic 
organic contaminants are often incompletely removed, even by RO membranes with greater 
than 99% monovalent salt rejection. In addition, although RO and NF membranes operating 
at full scale at the West Basin Water Recycling Plant (WBWRP, El Segundo, CA) were 
observed to adequately reject negatively charged organic solutes such as trichloroacetic acid 
(TCAA), the removal of low-nonionic-molecular-weight organic chemicals, such as NDMA, 
and of solutes with strong membrane affinity, such as chloroform, was marginal during pilot- 
and full-scale investigations (Figure 2.1). These results highlight that the properties of an 
organic solute often determine rejection and that there may not be one membrane modeling 
approach that can incorporate all of the factors driving rejection, including solute and 
membrane properties and operational conditions. 
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Table 2.1. Compounds Detected in Full- and Pilot-Scale RO Permeate Samples  

Compound Concn (ng/L) Citation Scale Membrane Membrane Type 

1,4-Dioxane NA Drewes et al., 2008 Full TFC-HR, ESPA2 RO 
Bisphenol A 25 Drewes et al., 2008 Pilot TMG10, NF-90 RO and NF 
Caffeine 1.2−52 Snyder et al., 2007 Pilot and full TFC-HR, ESPA2 RO 

Chloroform 2−5 (*103) Drewes et al., 2008 Pilot and full TFC-HR, ESPA2, TMG10 RO 
Diethyl-m-toulamideDEET 2 Snyder et al., 2007 Full Saehan FL RO 
Galaxolide 11 Snyder et al., 2007 Full ESPA2 RO 
Gemfibrozil 2 Snyder et al., 2007 Full ESPA2 RO 
Ibuprofen 4−27 Drewes et al., 2008 Pilot TMG10 RO 
Iopromide 1.1−72 Snyder et al., 2007 Pilot TFC-HR RO 
Meprobamate 1 Snyder et al., 2007 Pilot Saehan RE-FRM RO 
Naproxen 1 Drewes et al., 2008 Pilot TMG10 RO 
NDMA 20−40 Drewes et al., 2008 Full ESPA2 RO 
Oxybenzone 6 Snyder et al., 2007 Full ESPA2 RO 
Pentoxifylline 45 Snyder et al., 2007 Pilot TFC-HR RO 
Sulfamethoxazole 1−2 Snyder et al., 2007 Pilot Saehan FL RO 
Tris(2-
chloroethyl)phosphate 2−30 Snyder et al., 2007 Pilot and full 

ESPA2, Saehan RE-FRM, 
Osmonics AK  RO 
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Figure 2.1. Feed, permeate and rejection concentrations for NDMA (left), chloroform (middle), and TCAA (right) by the TFC-HR and ESPA2 
membranes at full scale and the TMG10 and NF-90 membranes at pilot scale.  
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2.3 Calculating Rejection 

2.3.1 Concentration Polarization 

The accumulation of retained solutes at the membrane surface as water crosses the membrane 
is termed concentration polarization. The film model has been used to describe concentration 
polarization and describes the film caused by concentration polarization as a one-dimensional 
film in which longitudinal transport is negligible (Hofman et al., 2007). During membrane 
operation, it is assumed that equilibrium is reached where convective transport of solutes 
towards the membrane is balanced by back diffusion into the bulk solution (Hofman et al., 
2007). The degree of concentration polarization (often expressed as β) is based on the film 
model and can be calculated by: 

 
cm

c f

 exp
Jw

km










   (2.1) 

where cm and cf are the concentration of the solute at the membrane and in the bulk solution, 
respectively, Jw is the convective flux, and km is the local mass transfer coefficient (MTC) on 
the brine or feed side. The local MTC can be calculated by a Sherwood equation developed 
by Schock and Miquel (1987) for spacer-filled channels (Hofman et al., 2007): 

     
25.0875.0Re065.0 ScSh     (2.2) 

where Re is the Reynolds number, Sc is the Schmidt number, and Sh is the Sherwood number, 
which is given by the following equation: 

 
s

hm

D

dk
Sh   (2.3) 

where dh is the hydraulic diameter and Ds is the bulk diffusivity (meters2/seconds-1). 
Sutzkover et al. (2000) later redefined the constants in Equation 2.2 for their specific 
membrane system, and the constants should be determined for each membrane system being 
investigated. The Schmidt number is defined as 

 

   (2.4) 

with η the viscosity of the bulk solution and Di,∞ the diffusion coefficient at infinite dilution. 
The Reynolds number is defined as 

 
 hd

Re
    (2.5)
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For a cross-flow spiral-wound membrane module, the cross-flow velocity can be calculated 
by 

     v 
Qf

nLhsp      (2.6)
 

where Qf is the feed flow rate, n is the number of membrane leaves, L is the length of the 
element, hsp is the thickness of the spacer, and ε is the feed spacer porosity. The hydraulic 
diameter for a spiral-wound element is determined by 

dh 
4

2

hsp

 1   Svsp

     (2.7)

 

where Svsp is the specific surface of the spacer. Schock and Miquel (1987) found that Svsp 
could be calculated as 4/df, where df is the thickness of the filaments in the spacer. The 
porosity can be calculated by using the average filament thickness and mesh size of the 
spacer:  

 
1Vsp

VTot

     (2.8) 

where Vsp is the total volume of the spacer and Vtot is the total channel volume. 

2.3.2 Rejection 

For membrane applications where the percent removal of a solute in the feed water is desired, 
removal is commonly expressed as rejection, which is calculated by the following equation:  

  
R(%)  (1

Cp

C f

)100
     (2.9) 

where R is rejection expressed as a percentage, Cp is the permeate concentration, and Cf is the 
feed concentration. The experimental determination of rejection can be complicated by a 
number of factors, including concentration polarization, changes in concentration along full-
scale membrane elements employed in a multiple-element pressure vessel, and adsorption of 
a solute to a membrane. Therefore, more information about solute removal is often desired, 
especially for modeling exercises where concentration gradients and solute flux across a 
membrane are needed.  

There are different methods by which to calculate rejection, including the general equation 
given earlier. The feed water concentration, however, differs from the actual concentration at 
the membrane surface, especially when concentration polarization effects are noticeable; 
therefore, rejection should be calculated accordingly (Bouranene et al., 2007; Bowen et al., 
1998). The intrinsic or real rejection, Rint, is rejection when taking into account the 
concentration at the membrane surface. Observed rejection (Robs) can be related to intrinsic 
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rejection (Rint) by the following equations (Bouranene et al., 2007; Sutzkover et al., 2000;, 
Nghiem et al., 2004): 

 
   

)1))/(exp(1

))/(exp(

int

int
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   (2.10) 

or     

    ))/exp(1(1
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   (2.11)
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     (2.12) 

where Jv is the permeate flux rate and K is the MTC for back diffusion (previously expressed 
as km). K can be calculated by using either of the two following equations: 

 

      (2.13) 

or  

   Sh 
K  dh

Di,

 0.20 Re0.91 Sc 0.25   (2.14) 

where πb and πp are the osmotic pressures of the bulk and permeate solutions, respectively, ΔP 
is the applied pressure, Sh is the Sherwood number, Re is the Reynolds number, Sc is the 
Schmidt number, dh is the hydraulic diameter, and Di,∞ is the diffusion coefficient of a solute 
at infinite dilution. Sutzkover et al. (2000) developed Equation 2.13 as a simple technique for 
determining the MTC and the concentration polarization of an RO membrane system. 
Through experimentation with a spiral-wound RO module, the researchers were able to 
develop Equation 2.14, which was found to be similar to the Deissler correlation (i.e., Sh = 
0.023Re0.875 Sc0.25). However, because this correlation was developed for a specific spiral-
wound module, for different membrane configurations, it may be necessary to calculate K 
from experiments and Equation 2.13.  

When one is evaluating larger membrane systems such as full-scale treatment trains, the feed 
water concentration can change considerably (six times the initial feed concentration, 
depending on the recovery of the system) along a pressure vessel, making it difficult to 
calculate rejection. In this case, the rejection of a feed water component is the feed/brine 
average rejection value, which is used to compare systems that are operated under different 
conditions and is given by Equation 2.15.  
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Rejection (Feed/Brine Concentrations) = 
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This value takes into account the increased concentrations of a component at the surface of a 
downstream membrane in a system of a certain recovery and offers a more useful comparison 
for two systems operated at different recoveries. Solution−diffusion models, where the 
permeate concentration model output is dependent upon the feed water concentration, have 
been modified to account for the effect of hydrodynamic conditions, such as concentration 
polarization on rejection (Zhao et al., 2005). 

2.4 Mechanisms and Understanding Rejection (Size Exclusion) 

There have been numerous studies of the effect of size on the rejection of solutes by RO and 
NF membranes. The underlying principle is that membranes exclude large solutes from the 
permeate side (size exclusion) but that, depending on the membrane, small molecules are 
incompletely removed. Size exclusion is generally referred to as a convective flux 
phenomenon where small solutes could permeate through a membrane pore or void space 
(see Kiso et al., 2001a); however, because small molecules are expected to diffuse at higher 
rates, size exclusion is also a diffusion phenomenon. As a general summary, molecular size 
does not always correlate with rejection and finding a good-sized parameter is not always 
easy. The following sections discuss molecular size parameters, the effect of size on 
rejection, and size exclusion modeling approaches.  

In the past decade, numerous papers have reported (in one way or another) on the correlation 
between the size of an organic solute and rejection. Describing the size of a solute is 
nontrivial as illustrated by the number of attempts to correlate rejection of nonionic solutes to 
their size (Braeken et al., 2005; Kiso et al., 1992; Van der Bruggen et al., 1999). There have 
been a number of studies that have attempted this correlation and therefore a number of 
different means of describing the size of a molecule. In many cases, however, the rejection of 
organic solutes is somewhat independent of molecular size and depends on other factors. 
These factors will be discussed in the next section. 

The rejection of uncharged organic compounds is largely dependent on the size of a solute 
and the molecular weight cutoff (MWCO) or effective pore size of a membrane (Bellona et 
al., 2004). To illustrate, Figure 2.2 presents the rejection of four organic solutes (phenacetine, 
TCEP [Tris(2-chloroethyl)phosphate], TCPP [Tris(1,3-dichloroisopropyl)phosphate], and 
TDCPP [Tris(1,3-dichloro-2-propyl)phosphate]) by 11 commercially available NF, LPRO, 
and RO membranes. For the low-molecular-weight compound phenacetine, rejection was 
highly variable among the membranes tested, with the NF membranes exhibiting between 40 
and 70% rejection and the RO membranes exhibiting between 70 and 95% rejection. There 
have been many attempts to correlate rejection with different solute size descriptors, which 
are discussed in the following sections. 

(2.15) 
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Figure 2.2. Rejection of phenacetine, TCEP, TCPP, and TDCPP by 11 commercially available 
RO, LPRO, and NF membranes.  

Notes: Laboratory experiments performed with 4040 spiral-wound element testing unit, 16-gfd flux, 
20% recovery, and ~500-ng/L feed concentration (Bellona et al., 2008).  
gfd = gallons per square foot and day. 

Molecular Weight. The simplest, yet one of the most insufficient, measures of a solute’s 
size, is the molecular weight or molar mass of a solute of interest. Ozaki and Li (2002) 
reported that, for ULPRO membranes, the rejection of noncharged and nonpolar compounds 
could be predicted by using the molecular weight of the compound. Researchers (Van der 
Bruggen and Vandecasteele, 2002; Van der Bruggen et al., 1999; Schutte, 2003) have also 
proposed that the molecular weight of a noncharged compound can be a useful predictor of 
rejection and for calculation of reflection coefficients (rejection at infinite pressure). Other 
studies confirmed that the molecular weight of a solute with characteristics other than 
noncharged and hydrophilic is a rather poor predictor of rejection (Kiso et al., 1992; Kiso et 
al., 1996). Because steric hindrance may be an important driving factor in the rejection of 
molecules by NF membranes, a quantification of the molecular size (and geometry) of a 
solute, coupled with the pore size of a membrane, might be a better descriptor of the rejection 
than is MWCO, molecular weight, or desalting degree. 

Kiso et al. (2001a) reported that, for two NF membranes (MWCO > 500 Da), rejection of 
sugar and alcohols increased as molecular weight increased. In addition, the researchers 
found that, for these NF membranes, molecular size parameters (e.g., radius, length, and 
diameter) were only slightly better than molecular weight in predicting the rejection of 
compounds for which steric hindrance is the main driving factor in rejection. However, when 
examining NF membranes with MWCOs of <250 Da, Kiso et al. (2001b) reported that 
molecular size parameters were significantly better descriptors for rejection when size 
exclusion was the dominant mechanism (Figure 2.3).  

NF Membranes, 
MWCO >200

RO Membranes, 
MWCO <1000 
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Figure 2.3. Rejection of sugars and alcohols as a function of molecular weight and molecular 
width. 

Source:  Kiso et al., 2001b  

Past research has illustrated that the rejection of a limited class of compounds, mainly 
aliphatic alcohols and sugars, can be described well by molecular weight (Kiso et al., 2001b; 
Bellona, 2007). Figures 2.4 and 2.5 summarize the reflection coefficient for nine aliphatic 
compounds determined for the NF-4040 and NF-90 membranes and the model fit utilizing the 
cumulative density function. The reflection coefficient (σ) is defined as rejection at infinite 
pressure where convective transport dominates (Van der Bruggen and Vandecasteele, 2002). 
In general, the cumulative density function developed by using the molecular weight of a 
solute and MWCO of a membrane was found to adequately describe the reflection coefficient 
for these compounds. 
 

 
Figure 2.4. Reflection coefficient (real or observed rejection at infinite pressure, ~17-bar driving 

pressure during this study) of aliphatic sugars and alcohols for the NF-4040 
membrane on bench scale (SEPA cell) at 19 °C and pH 6.3.  

Note: The model line fit was developed by using the cumulative density function as proposed by Van 
der Bruggen and Vandecasteele (2002). The MWCO was found to be 190 Da. 
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Figure 2.5. Reflection coefficient (real or observed rejection at infinite pressure, ~17-bar driving 

pressure during this study) of aliphatic sugars and alcohols for the NF-90 membrane 
on bench scale (SEPA cell) at 19 °C and pH 6.3.  

Note: The model line fit was developed by using the cumulative density function as proposed by Van 
der Bruggen and Vandecasteele (2002). The MWCO was found to be 90 g/mol. 

However, as pointed out by numerous researchers, molecular weight often fails to be an 
accurate descriptor for the rejection for a large number of compounds (Bellona, 2007;  
Kiso et al., 2001b; Nghiem et al., 2004). Nghiem et al. (2004) found that steroid hormones 
are rejected less often than would be expected on the basis of their molecular weights (Figure 
2.6). Kiso et al. (2001b) found that molecular weight poorly describes the level of rejection 
for pesticides (Figure 2.7). A study funded by the Water Research Foundation determined 
that molecular weight was a poor descriptor for the rejection of phenyl urea pesticides 
(Hofman et al., 2007). Other size parameters have therefore been examined.  
 

 

Figure 2.6. Experimental data for estradiol, estrone, testosterone, and progesterone for 2 NF 
membranes as compared to predicted retention as calculated by the hydrodynamic 
model. 

Source: Nghiem et al., 2004. 
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Figure 2.7. Rejection of pesticides versus molecular weight. 

Source: Kiso et al., 2001b. 

Molecular Size. The molecular weight of a compound is easy to determine but does not 
provide any information on the geometry of a molecule. To evaluate the effect of size on the 
rejection of certain solutes by NF, researchers have attempted to develop an easy yet effective 
way to describe the molecular characteristics of a molecule. Berg et al. (1997) determined 
that molecular structure, such as the number of methyl groups, may be an important 
parameter for predicting the rejection of noncharged molecules. Noncharged compounds with 
a higher number of methyl groups were reportedly rejected at higher levels than ones with 
lower numbers of methyl groups. Several studies confirmed that molecular size parameters, 
such as molecular width, Stokes radii, and molecular mean size (MMS), have been shown to 
be better predictors of steric hindrance effects upon the rejection of solutes by NF membranes 
than MW (Ozaki and Li, 2002; Berg et al., 1997; Kiso et al., 1992 and 2002; Bowen and 
Welfoot, 2002; Van der Bruggen et al., 1998; Kiso et al., 2001b). The Stokes radius has been 
used in molecular biology to characterize the size of proteins based on elution times through a 
chromatographic column. The Stokes radius according to Kiso et al. (1992) is determined by 
using the Stokes−Einstein equation: 
 

  
rs 

kT

6Ds        (2.16) 

where rs is the molecular radius or Stokes radii (meters), DS is the diffusion coefficient of the 
organic compound in water (meters2-seconds-1), k is the Boltzmann constant (Joule-Kelvin-1), 
T is the absolute temperature (Kelvin) and μ is viscosity of water (N-seconds-meters-2). 
Calculating Diffusion Coefficients for Stokes Radius Calculation 

Cussler (1997) reported that the most common basis for calculation of diffusion coefficients 
of solutes in liquids is given by the Stokes−Einstein equation (Equation 2.16) but that it is 
only accurate to 20%. The main limitation to the Stokes−Einstein equation is that it was 
developed for a system given by a rigid sphere in a solvent and that, when solutes become 
small or on the order of the size of water, the equation becomes increasingly less accurate 
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(Cussler, 1997). Because of this limitation, investigators have developed empirical 
correlations to obtain diffusion coefficients for small solutes. These include the Wilke−Chang 
correlation and Hayduk−Laudie correlation among the number of developed correlations. The 
diffusion coefficient can be calculated by the Wilke−Chang correlation given by 

 
Ds 

7.4x108(M )0.5T

0Vs
0.6

Ds 
7.4 x108(M)0.5T

Vs
0.6

   (2.17)
 

where Ds is the diffusion coefficient, φ is an association factor for hydrogen bonding (set at 
2.26 for water as the solvent), and M is the molecular weight of the solvent (grams/mole), T is 
the temperature, μ is viscosity of water (Newton-seconds-meters-2), and Vs is the molar 
volume of the solute. Delgado (2007) experimentally determined the diffusion coefficients of 
2-naphthol, benzoic acid, salicylic acid, camphor, and cinnamic acid in water as a function of 
temperature and found that the Wilke−Chang correlation was an accurate means to predict 
diffusion coefficients.  

Another method that has been favored for membrane applications is the Hayduk−Laudie 
correlation, which is given by  

  Ds 13.26 *105  1.14 Vs
0.589

    (2.18) 

Although these empirical correlations may lead to more-accurate diffusion coefficients, the 
molar volume of a solute must be determined, which can lead to another source of error 
depending on the method used. The most commonly used method is the La Bas molar volume 
method, which assigns molar volumes to atoms, ring structures, and functional groups. The 
LaBas molar volume is an estimated property according to the equation: 

      (2.19)
 

where V’B,i is the molar volume assigned to each substituent group and n represents the 
equivalent concentration. A list of the molar volumes assigned to various substituent groups 
is presented in Table 2.2. 
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Table 2.2. LaBas Molar Volume Increments 

Atom DV’B,i  (106 m3/mol) Atom DV’B,i  (106 m3/mol) 

C 14.8 Br 27.0 

H 3.7 Cl in R-CHCl-R’ 24.6 

O (except as below) 7.4 Cl in RCl 21.6 

      Carbonyl 7.4  F 8.7 

      Aldehyde, ketone 7.4  I 37.0 

      Methyl ether 9.9  S 25.6 

      Ethyl ester 9.9  P 27.0 

      Higher esters 9.9 Ring  

      Higher ethers 9.9  3-membered -6.0 

      Acids (-OH) 11.0  4-membered -8.6 

      Joined to S, P, N 8.3  5-membered -11.5 

N  Double bonded 15.6  6-membered -15.0 

     Primary amine 10.5  Napthalene -30.0 

     Secondary amine 12.0  Anthracene -47.5 

Source:  Table adapted from Hofman et al., 2007. 

Other Size Descriptors. Kiso et al. (2001a) reported that “the Stokes radius is a commonly 
used factor for the evaluation of the steric hindrance; however, the diffusivities to estimate 
Stokes radius cannot be obtained for many organic solutes.” In addition, the Stokes radius is 
based on the assumption that molecules are spherical and rigid, which is not always correct. 
Because Stokes radius calculations can be difficult for some molecules, other measures of 
molecular size have been developed.  

STERIMOL parameters are used for determining the size of a molecule by utilizing 
molecular shape descriptors such as length and width (Kiso et al., 1992 and 2001a). Two 
studies by Kiso et al. (2000 and 2001a) compared the molecular widths of molecules 
calculated by using STERIMOL with the Stokes radius of the same molecules and reported a 
high correlation between the two. STERIMOL parameters consist of five measurements for a 
molecule; one length (L) measurement and four width measurements (B1 to B4) (Kiso et al., 
2001a). Figure 2.8 demonstrates how these values are determined. The molecular length (L) 
is determined as the greatest distance between two atoms of the molecule and forms the L 
axis. The area of the rectangle (S) is the minimum area enclosed perpendicular to the L axis. 
Molecular width is defined as half the square root of the area of the rectangle. MMS is 
defined as half the length of the rectangle that has the same volume as a cylinder that 
encompasses the molecule lengthwise (Kiso et al., 2001a). Originally intended for 
pharmaceutical development, STERIMOL parameters have been applied in QSAR studies to 
assess the toxicological relevance of organic compounds (Verma and Hansch, 2007. Kiso et 
al. (1992) first applied STERIMOL parameters to organic solute removal with cellulose 
acetate RO membranes.  
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Figure 2.8. Molecular size parameters as determined for a nonspherical molecule.  
Source: Kiso et al., 2001a 

Another molecular size quantification developed in a manner similar to that of molecular 
width is the MMS (sometimes designated as W) of a molecule. The MMS is calculated by 
taking half of the length of the edge of the cube encompassing the molecule (Kiso et al., 
2001b). Kiso et al. (2001b) demonstrated that MMS correlated better than molecular width 
with Stokes radii and could also be an effective measurement of molecular size. In their 
study, the molecular width and MMS were calculated for a variety of alcohols and 
saccharides and were evaluated as predictors for the rejection of these compounds by four NF 
membranes. For two other membranes examined in this study (MWCO < 250 Da), molecular 
width was found to be a better descriptor than MMS and especially better than molecular 
weight for the effects of steric hindrance on the rejection of alcohols and saccharides. 
Molecular width appeared to be a better predictor for rejection, especially for the tighter NF 
membranes.  

Recently, a study performed by Zheng et al. (2009) compared different molecular size 
descriptors to the rejection of nonionic organic compounds. The researchers developed a new 
size descriptor, calculated mean size, which is a length parameter calculated with the smallest 
volume taken up by a molecule. The calculated mean size is determined by calculating the 
area and length of a molecule in three perpendicular planes and taking the cube root of the 
smallest volume obtained: 

 dc  min SxyLz,SxzLy ,SyzLx 3      (2.20)   

where S is the area of a molecule, L is length and dc is the calculated mean size. The authors 
found that the calculated mean size was a significant improvement over the Stokes radius, 
molecular width, and molecular length as a descriptor for rejection.  
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Taylor et al. (2000) determined the molecular structure of pesticides with the Hyperchem 
software package. The free energy between the intramolecular interaction of the polymer and 
functional groups was used to calculate the structure, theoretical length, and volume of the 
pesticides. The pesticide length depended upon the orientation of view or view angle and 
represented the cross-sectional diameter due to structural rotation. The pesticide volume was 
defined as the volume of the rotated pesticide molecule. Taylor et al. (2000) concluded that, 
in conjunction with pore size distribution of a membrane, pesticide size and orientation 
determined the range of pesticide rejection by RO and NF membranes. 

Recent research conducted by Bellona (2007) compared the MMS, Stokes radius, molecular 
width, and size parameters (length and width) calculated from molecular modeling software 
as size parameters for use in modeling exercises. The Stokes radius was found to be the best 
size descriptor for modeling steric exclusion for compounds spanning a wide range of sizes. 
Because the range of MMS and of molecular width was relatively narrow for the compounds 
evaluated, the model output (rejection) for all of the compounds was narrower than 
experimental rejection was found to be. In contrast, the Stokes radius was found to better 
represent the different sizes exhibited by the molecules and therefore the model output was 
more accurate (Bellona, 2007). 

2.5 Rejection of Solutes with Membrane Interactions 

As pointed out in the previous section, for neutral compounds, size often fails as a parameter 
to describe rejection. In many cases, the rejection of an organic solute is less than would be 
expected based on the size, and researchers have reported that certain compounds can adsorb 
to and partition through membrane materials (Kim et al., 2007; Nghiem et al., 2004; Williams 
et al., 1999). Besides the work of Williams et al. (1999), Matsuura and Sourirajan (1971), and 
a few others, very little work has been performed to determine the nature of these interactions 
and to find molecular descriptors to describe the strength of adsorption and propensity for 
lower-than-expected rejection (based on size). For example, researchers continue to compare 
rejection to a compound’s partitioning coefficient Log Kow value (Braeken et al., 2005; 
Agenson et al., 2003), although there is an abundance of work demonstrating that only in 
certain cases does Log Kow correlate with rejection. Researchers such as Williams et al. 
(1999) have pointed out that there are likely two types of adsorption (i.e., specific and 
nonspecific) that have different impacts on rejection. Nonspecific adsorption arises as a result 
of hydrophobic or nonpolar compounds’ preference for a membrane (often called 
lipophilicity), although specific adsorption refers to the ability of a molecule to form 
hydrogen bonds with the membrane sites that facilitate the transfer of water.  

Although partitioning coefficients such as the Log Kow describes the tendency (or 
thermodynamic favorability) of a molecule to remain in water (as opposed to a lipophilic 
solvent such as octane,) they do not necessarily describe whether a solute can interact with 
membrane polymers. For example, Braeken et al. (2005) reported that, for compounds with 
molecular weight below the MWCO of a membrane, the greater the Log Kow, the lower the 
rejection. However, other researchers have clearly demonstrated that compounds such as 
benzene with a relatively high Log Kow value (~2.2) are often significantly better rejected 
than solutes with smaller values such as phenol (~1.4). Additionally, because size is still a 
major factor in the rejection of these compounds, finding one descriptor to describe 
solute−membrane interactions and subsequently rejection is extremely difficult.  

On the basis of past work, it appears that nonionic compounds with strong membrane 
interactions are the most likely to permeate a membrane. Therefore, elucidating the 
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mechanism by which these compounds can adsorb to membrane materials is integral to 
developing modeling approaches. On the basis of past research, it appears that it may be more 
important to identify the functional groups that result in membrane interactions than to 
correlate rejection to partitioning coefficients. Understanding how these interactions occur 
and where they occur on or in the membrane may assist in identifying more meaningful 
descriptors for solute−membrane interactions (McCallum et al., 2008).  

2.5.1 Adsorption and Partitioning Through Membrane Materials 

Williams et al. (1999) performed a study to investigate the adsorption of organic compounds 
to an RO membrane and quantify the subsequent effect on permeate flux rates. The 
researchers found that phenols and substituted phenols adsorbed strongly to membrane 
materials and significantly decreased the permeate flux of the membrane. Benzene was found 
to adsorb to membrane materials but had a very marginal effect on flux. The researchers 
hypothesized that the phenolic compounds specifically adsorb to the active sites of the 
membrane designed to transport water, which decreases the permeate flux (Figure 2.9). 
Benzene, which is nonpolar, adsorbed to the membrane, but the interaction was hydrophobic 
in nature as characterized by minimal permeate flux loss.  

Ahmad and Tan (2004) reported results similar to those of the Williams et al. (1999) study for 
chlorophenol, nitrophenol, and phenol. The researchers found that, during experiments with 
these compounds, permeate flux declined significantly and that rejection was extremely low. 
They reported that the characteristics of a strong solute−membrane affinity system include a 
decrease in rejection when permeate flux increases, lower flux than that shown by pure water 
and that is not caused by osmotic effects, lower-than-expected rejection, possible negative 
rejection, and an increase in rejection with increasing feed water concentrations. The 
researchers state that “solute separation in reverse osmosis is generally governed by the 
hydrogen bonding ability of an organic molecule.” 
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Figure 2.9. Hydrogen bond formation of trichlorophenol with the carbonyl group of a  
polyamide chain. 

Source: Williams et al., 1999. 

Hammett and Taft numbers have been proposed as steric parameters that can be used to 
describe molecular interactions with membrane polymer structures. Although the Hammett 
equation accounts for how field, inductive, and resonance effects influence reaction rates, the 
Taft equation also describes the steric effects of a substituent. On the basis of hydrogen 
bonding theory illustrated in Figure 2.9, Matsuura and Sourirajan (1971) attempted to 
develop correlations between rejection and molecular descriptors for a number of organic 
compounds. They hypothesized that, because Hammett and Taft numbers quantify the degree 
by which a compound “wants” to donate a proton, they could be used as potential indicators 
for hydrogen bond formation with the membrane. Matsuura and Sourirajan (1971) found that 
the more negative Hammett and Taft numbers fit well with greater rejection as these values 
indicated a decrease in hydrogen bond formation between the solute and membrane  
(Figure 2.10). Because Taft and Hammett numbers are difficult to calculate for a large 
number of organic compounds, the researchers eventually used a measure of the stretching of 
the OH bond in a solute as a measure of the proton donating ability (and hydrogen bond 
formation ability) of a solute. Generally, this parameter was found to correlate well with the 
compounds that were studied.  
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Figure 2.10. Relationship between Taft numbers and solute rejection. 

Source: Matsuura and Sourirajan, 1971. 

Although it is generally accepted that certain organic solutes interact with specific membrane 
active layer sites, there has been very little work investigating which types of compounds 
display this behavior and which ones do not. Nghiem et al. (2004) found that steroid 
hormones are rejected at lower concentrations than would be expected on the basis of their 
size. These compounds have aromatic rings with hydroxyl groups attached, which 
hypothetically make them capable of forming hydrogen bonds with membranes. Other 
compounds that have exhibited lower rejection than expected include bisphenol A  
(Nghiem et al., 2009), chloroform (Xu et al., 2006), triclosan (Bellona, 2007), and 2-naphthol 
(Kimura et al., 2003a). Compounds that have been listed as not adsorbing to membranes 
include dextrose, dioxane, erythritol, and xylose (Nghiem et al., 2004). In recent studies by 
Marts (2008) and Bellona (2007), certain aromatic organic compounds including 
carbamazepine and primidone were found to have behavior very similar to that of sugars and 
alcohols whose rejection depends mostly on size, although other aromatic organic compounds 
such as acetaminophen and phenacetine had much lower rejection than expected on the basis 
of size. Therefore, determining molecular descriptors that indicate whether a solute will 
interact strongly with the membrane is needed.  

The dipole moment of a compound is another descriptor that has been used in studies as a 
potential indicator of solute−membrane interactions. Dipole moment values are representative 
of the polarity of a compound. In a study by Van der Bruggen et al. (1999), the dipole 
moment was found to correlate strongly with rejection of organic solutes. Van der Bruggen et 
al. (1999) argued that compounds with high dipole moment consistently have lower rejection 
values due to the interaction of the dipole with the membrane. Although this interaction may 
occur as Van der Bruggen et al. (1999) described, the rejection data show that compounds 
with lower dipole values may also have low rejection, suggesting that dipole moment may not 
be a very successful descriptor.  

As previously discussed, a number of researchers have attempted to correlate Log Kow with 
rejection with the explanation that hydrophobic compounds adsorb to membranes (Braeken et 
al., 2005; Braeken et al., 2006; Agenson et al., 2003; Kiso et al., 2000). Braeken et al. (2005) 
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suggested a linear relationship between Log Kow and rejection by NF membranes for 
compounds with molecular weights below the MWCO of two NF membranes, the UTC-20 
and the Desal-HL-51. The greater the Log Kow of the solute, the lower the rejection  
(Braeken et al., 2005; Figure 2.11). Braeken et al. (2005) indicated that this relationship also 
exists for compounds with molecular weights greater than the MWCO of the membrane. In a 
small sample of three compounds with similar molecular weights, estrone (Log Kow: 3.43) 
and estradiol  (Log Kow: 3.94) demonstrated lower rejection values than salicine (Log Kow: -
1.41) in 15 h run times. Although Log Kow may reflect rejection behavior, as compound size 
increases, the Log Kow value is less influential in this behavior.  

 

Figure 2.11. Rejection as a function of Log P (Log Kow) for organic solutes where MW < MWCO. 

 Source: Braeken et al., 2005. 

Two studies by Kiso et al. (2000 and 2001b) reported on the rejection of hydrophobic 
pesticides by four flat-sheet Nitto Denko NF membranes (NTR-729HF, NTR-7250, NTR-
7450, and NTR-7410). The researchers found that Log Kow was a good descriptor for the 
rejection of certain compounds but failed for other compounds (Figure 2.12). Kimura et al. 
(2003b) found no correlation between partitioning coefficients and the rejection of a number 
of endocrine disrupting compounds (EDCs) and pharmaceutically active compounds. Bellona 
(2007) found that the Log Kow could not be reliably used to determine what compounds are 
likely to exhibit strong solute−membrane interactions and have low removal. For example, 
chloroform (Log Kow = 2.97), NDMA (-0.57), triclosan (5), 2-naphthol (2.7), and 
methylparaben (1.86) all displayed similar rejection by an NF membrane. On the basis of the 
specific-versus-nonspecific adsorption idea, the Log Kow does not directly quantify the degree 
by which a solute can interact with specific sites on a membrane. Although partitioning 
coefficients are related to polarity of a compound, they are often ambiguous; that is, two or 
more molecules could have the same Log Kow value but completely different structures, 
interactions with membrane materials, and rejection. 
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Figure 2.12. Log P (Log Kow) versus rejection for 4 membranes.  
Notes: Larger Log Kow values also show higher rejection values that are not characteristic of behavior when using 

Log Kow as a descriptor. 

Source: Top figure: Kiso et al., 2003; bottom: Kiso et al., 2001b. 
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Similar to the idea behind the work of Matsuura and Sourirajan (1971), it may be more 
important to determine the relative contribution of functional groups on the adsorption and 
partitioning phenomenon. Employing compounds with different functional groups, Kiso et al. 
(2001a) demonstrated that polar groups within the compound had various effects upon the 
adsorption and that the effect of polar groups on adsorption decreases as follows: -C(O)O- > -
CO- > HCON > CH3CON > -OH- > -O-. In addition, when Log Kow values of similar 
compounds (e.g., monosubstituted benzenes) were compared to rejection, strong correlations 
were found indicating that specific chemical characteristics of compounds are more 
important. 

According to the preferential sorption capillary flow model, rejection of organic solutes by a 
membrane is a two-step process (Matsuura and Sourirajan, 1971). First, the solute is adsorbed 
by the membrane. Subsequently, the solute passes through the membrane by diffusion and/or 
convection. Breakthrough concentrations are theorized to depend on the size of the compound 
relative to the pore size of the membrane, and compounds smaller than the pore size have 
been observed to permeate more freely (Duranceau et al., 1992; Nghiem and Schäfer, 2002; 
Nghiem et al., 2002a and 2002b; Schäfer et al., 2003). When membrane−solute interactions 
are strong; however, size exclusion becomes a much less valuable descriptor. Using the 
Hyperchem molecular modeling software to simulate the optimized molecular shape of each 
compound, Braeken et al. (2005) calculated the effective molecular diameter to compare 
compounds of similar molecular size. By comparing the effective diameter to rejection, 
Braeken et al. (2005) found that molecular size is a poor descriptor of expected rejection for 
compounds that can interact with membrane materials. For both of the membranes used in the 
study, UTC-20 (Toray Industries, Inc.) and Desal-HL-51 (Osmonics), xylose with the shortest 
calculated effective diameter (0.69 nm) had some of the highest rejection values, although 
compounds with much longer effective diameters, such as benzilidene acetone (0.99 nm) and 
3,4-methylnitrophenol (0.82 nm), were among the compounds with the worst rejection. 

McCallum et al. (2008) recently identified the site of adsorption to membrane materials to be 
within the polysulfone support layer. Ruuning rejection experiments with the NE-70 
membrane and a sample of unfinished NE-70 membrane, just the polysulfone support and 
nonwoven fabric backing, showed that the normalized concentration profiles of estradiol 
were nearly identical, suggesting that the polysulfone support layer as opposed to the active 
layer largely governs the non-steady-state breakthrough phenomenon. This finding stresses 
the need for a better understanding of both where solute−membrane interactions take place 
and how different functional groups of a solute may participate in these interactions. For 
compounds to adsorb to the support layer, however, they must be transported through the 
active layer, which appears to be governed by specific characteristics of compounds.   

Observations from Pilot and Full Scale. Many of the compounds that have been detected in 
permeate samples during pilot- and full-scale membrane studies at water reuse facilities are 
nonionic solutes that are expected to have interactions with the membrane polymer because 
of their relative hydrophobicity and moieties that may cause specific adsorption (Table 2.1). 
These compounds include bisphenol A, chloroform, galaxolide, iopromide, oxybenzone, and 
TCEP. Compounds that are nonionic but have not been studied in terms of adsorption but 
have moieties that may interact with the membrane include diethyl-m-toulamide (DEET), 
caffeine, meprobamate, and pentoxifylline. As will be discussed in the modeling section, the 
rejection of these compounds is partially a function of their molecular size but also of the 
degree to which they interact with a membrane. The development of a predictive model, 
therefore, is hindered by the lack of understanding of the nature of solute−membrane 
interactions and of ways to quantify them.  
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2.5.2 Electric/Donnan and Dielectric Exclusion of Charged Solutes 

For charged solutes, three removal mechanisms are generally accepted: size exclusion, 
electrostatic (or Donnan) exclusion, and dielectric exclusion (Bowen et al., 2004; Timmer 
2001). Because of the charged nature of membranes, solutes with an opposite charge of the 
membrane are attracted to neutralize the membrane charge, although solutes with an opposite 
charge are repelled. This phenomenon is referred to as Donnan exclusion. Dielectric 
exclusion refers to the idea that water molecules within the membrane structure are polarized, 
which results in a decreased dielectric constant inside the pore, making it less favorable for 
charged solutes to enter. As pointed out by Timmer (2001), the mechanisms by which 
charged membranes remove charged solutes are a point of debate in the scientific community. 
What is generally accepted, however, is that charged organic solutes are removed at a 
relatively high level regardless of size (Bellona et al., 2008). 

2.5.2.1 Electrostatic Effects—Literature Review 

Electrostatic interactions between charged solutes and membranes have been frequently 
reported to be an important rejection mechanism (Tsuru et al., 1991a and 1991b; Wang et al., 
2002; Duranceau et al., 1992; Wang et al., 1997; Bowen et al., 2002; Childress and 
Elimelech, 2000; Xu and Lebrun, 1999). RO and NF membranes are composed of a thin 
membrane skin that acts as the strainer and a thicker support layer underneath (Braghetta et 
al., 1997; Wang et al., 1997; Xu and Lebrun, 1999; Ariza et al., 2002). The membrane skin, 
for most thin-film composite membranes, carries a negative charge to minimize the 
adsorption of negatively charged foulants present in membrane feed waters and to increase 
the rejection of dissolved salts (Braghetta et al., 1997; Tsuru et al., 1991a and 1991b; 
Deshmukh and Childress, 2001; Xu and Lebrun, 1999; Shim et al., 2002). The negative 
charge on the membrane surface is usually caused by sulfonic and/or carboxylic acid groups 
that are deprotonated at neutral pH. Membrane surface charge is usually quantified by zeta 
potential measurements. Studies (Deshmukh and Childress, 2001; Childress and Elimelech, 
2000; Xu and Lebrun, 1999; Tanninen and Nystrom, 2002) have determined that pH had an 
effect on the charge of a membrane because of the disassociation of functional groups. Zeta 
potentials for most membranes have been observed in many studies to become increasingly 
more negative as pH is increased and as functional groups deprotonate (Braghetta et al., 
1997; Deshmukh and Childress, 2001; Hagmeyer and Gimbel, 1998; Lee et al., 2002; Ariza 
et al., 2002; Tanninen and Nystrom, 2002; Shim et al., 2002; Yoon et al., 2002).  

Dissolved ion rejection by NF and RO membranes is heavily dependent on the membrane 
surface charge and therefore on feed water chemistry (Wang et al., 1997 and 2002; Hagmeyer 
and Gimbel, 1998; Childress and Elimelech, 2000; Xu and Lebrun, 1999; Yoon et al., 2002; 
Seidel et al., 2001; Bellona and Drewes, 2005; Kim et al., 2002). Ozaki et al. (2002) reported 
that the rejection of heavy metals by ULPRO membranes was positively correlated with the 
pH of the feed water. Yoon et al. (2002) performed a study investigating the transport of 
perchlorate through NF and UF membranes and reported that “perchlorate rejection by 
negatively charged NF and UF membranes was greater than expected based on only 
steric/size exclusions.” Researchers in this study also reported that the rejection of perchlorate 
increased with increasing pH and that the diffusive transport coefficient for perchlorate 
decreased as pH was increased. Increasing the pH increased the negative surface charge of 
the membrane as confirmed by others (Braghetta et al., 1997; Deshmukh and Childress, 2001; 
Lee et al., 2002; Tanninen and Nystrom, 2002; Ariza et al., 2002), which resulted in increased 
electrostatic exclusion of a negatively charged solute by a membrane. Conversely, it was 
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determined that the presence of counterions (Ca2+ and K+) decreased the rejection of 
perchlorate.  

This last finding is thought to be a result of two mechanisms. One explanation is that 
increasing ionic strength shields the surface charge of a membrane and is supported by 
previous studies where ions such as Na+, K+, Ca2+, and Mg2+ in feed water reduced the 
negative zeta potential of a membrane (Braghetta et al., 1997; Deshmukh and Childress, 
2001; Ariza et al., 2002; Shim et al., 2002). A decrease in surface charge would theoretically 
decrease electrostatic exclusion and the rejection of charged solutes. This is the explanation 
given by Nghiem et al. (2006) as to why ibuprofen and sulfamethoxazole rejection decreases 
with increasing ionic strength. Recent research by Bouranene et al. (2007) showed that 
increasing ionic strength decreases the hydrodynamic radius of organic solutes, which 
decreases exclusion from size and decreases rejection.  

The second explanation is that ions in solution that can permeate a membrane affect the 
transport of other ions in solution. In 1924, Donnan published his classic paper on the theory 
of membrane equilibria, which presented an explanation to the “peculiar electrical and other 
effects which must occur in a system in which two solutions containing electrolytes are 
separated by a membrane which is freely permeable to most of the ions, but impermeable to 
at least one of them.” The main factor is that electroneutrality has to be maintained on both 
sides of a membrane and that, when one charged solute crosses the membrane, an oppositely 
charged species must cross the membrane. When a divalent ion crosses the membrane, two 
monovalent ions must cross to conserve electroneutrality. Chellam and Taylor (2001) 
observed that calcium rejection by two NF membranes increased by a factor of 2 (at all 
recoveries tested) for a 14-fold increase in sulfate concentrations. Charged functional groups 
attract ions of the opposite charge, inhibiting them from crossing the membrane (Chellam and 
Taylor, 2001). Counterions are also retained to preserve electroneutrality, and rejection for 
the counterion increases substantially. Ozaki et al. (2002) reported that, when divalent cations 
(Mg2+ and Ca2+) were present in the feed water, the rejection of heavy metals decreased. It 
was hypothesized that the need to preserve electroneutrality across the membrane resulted in 
a lower rejection of metals. For organic solutes, the hypothesis is that adding salts 
overwhelms the charge of the membrane and the ability of the membrane to retain 
counterions, which leads to a breakthrough of both coions and counterions, including the 
charged organic compounds. 

On basis of the previous discussion, it should be noted that operating conditions can have a 
significant effect on the rejection of charged species because of concentration polarization 
and “overwhelming” of the membrane charge.  

Literature reporting on the effect of membrane surface charge on the rejection of charged 
organic compounds is not as abundant as studies on inorganic ion rejection. In fractionation 
experiments, Hu et al. (2003) and Schäfer et al. (2002a) found that low-molecular-weight 
acids had higher rejections by RO and UF membranes than did larger neutral organics 
because of electrostatic repulsion. In a study conducted by Berg et al. (1997), it was 
determined that charged organic solutes were rejected at higher levels than were noncharged 
organic compounds of the same size. Rejection experiments with the pesticide mecoprop in 
disassociated and undisassociated forms were performed with five different NF membranes. 
Mecoprop, in the disassociated form, was rejected at a higher rate than in the 
nondisassociated form by all five membranes at levels between 10 and 90%. Ozaki and Li 
(2002) performed a rejection experiment utilizing urea and acetic acid, both having the same 
molecular weight, at different pH ranges using an LPRO membrane (ES20; Nitto Denko). 
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Acetic acid is negatively charged at a pH of 4.8, although urea remains noncharged 
throughout the pH ranges (3−9) tested. Although the rejection of urea decreased slightly from 
35 to 28%, the rejection of acetic acid increased from an initial value of 32% in the 
noncharged form at pH 3 to 100% in the negatively charged form at pH 9. The increase in the 
rejection of acetic acid as observed by Ozaki and Li (2002) and in mecoprop as reported by 
Berg et al. (1997) is most likely due to electrostatic repulsion at the membrane surface. The 
increase in the rejection of acetic acid at pH values above the pK for association (pKa), is 
most likely caused by the increasing negative charge of the membrane repulsing the 
negatively charged acetic acid (Ozaki and Li, 2002).  

Observations from Pilot and Full Scale. Drewes et al. (2007) investigated the organic 
compound removal efficiencies of 11 commercially available membranes on a spiral-wound 
membrane testing unit (Figure 2.13). Although the rejection of uncharged organic solutes was 
variable and depended on the molecule of interest and the membrane, the rejection of ionic 
trace organic compounds was greater than 90% for all compounds and membranes tested. As 
an example, Figure 2.13 presents the rejection of four negatively charged compounds of 
different size by a variety of RO, LPRO, and NF membranes.  
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Figure 2.13. Summarized laboratory-scale candidate membrane rejection of nonionic (neutral) 
trace organic compounds (for 80% recovery and permeate flux rate of  
20−24 L/m2 h). 

During pilot-scale and full-scale testing at two water reuse facilities, spiking experiments 
were conducted with samples collected for the analysis of a select number of pharmaceuticals 
and personal care products (PPCPs) and EDCs to determine removal efficiencies. In results 
similar to those of laboratory-scale testing, even a “loose” NF membrane (NF-4040) rejected 
>95% of the ionic trace organics that were spiked into the feed water (Figure 2.14). 
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Figure 2.14. Spiked feed and permeate concentrations and subsequent rejection values of ionic 
trace organic contaminants (negatively charged, molecular weights in parentheses) 
during pilot-scale testing of the NF-4040 (spiking and sampling occurred at end of 
testing period). 

Source:  Bellona and Drewes, 2007. 

There have been permeate detections of ionic organic contaminants (Table 2.1); however, the 
concentrations are generally quite low. From past research, it appears that most negatively 
charged organic contaminants are well removed regardless of their size. Therefore, 
developing complex models for these compounds may not be necessary. 

2.6 Modeling 

There has been considerable work over the last 40 to 50 years on modeling the rejection of 
charged (mainly salts) solutes by NF and RO membranes. Some of the earliest work was 
performed by Dresner (1971), Kedem and Katchalsky (1956), and Spiegler and Kedem 
(1966). More recently, research groups from Japan (Tsuru et al., 1991a; Wang et al., 1997) 
and the United Kingdom (Bowen) have put considerable effort into developing modeling 
approaches to describe the permeation of salts. These researchers have approached the 
problem utilizing fundamentally derived mass transfer models, including the 
Teorell−Meyers−Sievers (TMS) model, the Space Charge model, and the Extended 
Nernst−Planck (ENP) model among a few others. Other researchers have modified the 
surface force pore model (SFPM) (Jain and Gupta, 2004) and the solution−diffusion model 
(Williams et al., 1999) to account for solute−membrane interactions. The advantage to these 
models is that they are, for the most part, fundamentally derived. The major disadvantage is 
that they generally require numerical methods to solve and likely cannot be used as a 
predictive tool. In addition, many of these approaches would be extremely difficult to use on 
a larger-scale system than bench scale. The following sections discuss various modeling 
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approaches, but it is also worth noting that there are numerous other approaches that have 
been investigated as well.  

2.6.1 Solution−Diffusion Model 

The solution−diffusion model has been modified numerous times to account for a membrane 
system’s operational conditions and the mass transfer contribution from convective flux. 
Wijmans and Baker (1995) provide a good point of departure for the solution−diffusion 
model and its derivation. The solution−diffusion model defined by Wijmans and Baker 
(1995) is 

                                    
Js 

DjK j


c jo  c j 

 (2.21)
 

where Js is solute flux, Dj is the diffusion coefficient of solute j, Kj is the sorption coefficient 
of solute j, and l is the membrane thickness. Researchers have modified the 
solution−diffusion model to account for the dependence of the concentration gradient on 
recovery (Zhao, 2004; Chellam and Taylor, 2001). The homogenous solution−diffusion 
model (HSDM) output of permeate concentration as a function of system recovery is given 
by 

                                      

where Ks is solute MTC, Kw is the solvent (water) MTC, Cp is the permeate concentration, R 
is the system recovery, and ΔP and ΔΠ are the driving and osmotic pressure differentials, 
respectively. Given a membrane system’s ΔP and ΔΠ, recovery, solvent MTC, and a solute’s 
MTC, the permeate concentration can be predicted.  

Another derivation of the solution−diffusion model is the film theory diffusion model (FTM), 
which incorporated concentration polarization. The FTM is given by 

 

where Fw is the water flux through the membrane (often given as Jv) and kb is the back-
diffusion MTC as defined in Equation 2.13 (as K in Equation 2.13). Other modifications to 
the FTM have included correction terms for the solute MTC that are based on recovery and 
flux (Zhao, 2004).  

The solution−diffusion model assumes that the transport of a solute across a membrane is due 
to diffusion through the membrane polymer. As discussed previously, it is commonly 
accepted for NF and a lesser extent for LPRO that mass transport occurs both by diffusion 
through the membrane material (solid-phase diffusion) as well as diffusion and convection 
through a membrane pore. The advantage of the solution−diffusion model is that it requires 
one parameter for a solute, Ks, to predict rejection.  

(2.22) 

(2.23) 
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A modified solution−diffusion model to include convective and diffusive hindrance factors 
was reported by Hofman et al. (2007) to be developed on the basis of work developed by 
Taylor et al. (1996) and is given by 

                     (2.24)

 

where Ri is the rejection of solute species i, Kc,i is a convective hindrance factor, Kd,i is the 
coefficient for hindered diffusive transport through pores, R is recovery, and Ks is the solid-
phase diffusion parameter. Although this model may be fundamentally sound, in order to 
apply it, three independent solute MTCs must be known. Hofman et al. (2007) attempted to 
correlate the MTCs to the ratio between solute and pore size as reported by Deen (1987) and 
Bowen et al. (2002); however, no model verification was reported.   

Over the past 2 decades, a few researchers have used the solution−diffusion modeling 
approach to model charged solutes, namely, salts (Chellam and Taylor, 2001; Zhao, 2004). 
To develop a predictive model, the solute MTC needs to be correlated to a solute parameter. 
Zhao (2004) developed an exponential relationship between the charge number of a salt and 
the MTC as shown in Figure 2.15. Once the MTC is known, the HSDM can be used.  

One advantage to solution−diffusion models, such as the HSDM, is that one solute parameter 
is needed that could encompass solute properties if correlations can be made between solute 
properties and MTCs. As pointed out previously, however, the transport of solutes through 
NF and possibly LPRO membranes is thought to be a combination of diffusion and 
convection. Solution−diffusion models may be limited to certain RO membranes. For these 
membranes, the solution−diffusion model will likely be one of the best options because 
operational conditions such as recovery are considered.  

 
Figure 2.15. Modeling the MTC for salts based on the charge number of the salt.  
Source: Zhao, 2004.  
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2.6.2 Hydrodynamic Model 

The hydrodynamic model is commonly used to describe the rejection of uncharged solutes, 
primarily to characterize the pore size of a given membrane, and detailed descriptions of the 
derivation and application can be found in numerous publications (Bowen et al., 2004; Santos 
et al., 2006; Yoon and Lueptow, 2005). The major equations used to employ the 
hydrodynamic model are presented in Figure 2.16. The model is comprised of two 
components, hindered convection and hindered diffusion of a solute, to describe the transport 
of molecules through pore structures considered to be cylinders (Equation 2.25). Partitioning 
within a membrane pore on the feed and permeate sides of the membrane is given by 
Equations 2.26a and 2.26b, respectively, where the solute partitioning coefficient (Φ) is a 
function (Equation 2.27) of the ratio between the hypothetical pore radius and the solute 
radius (, Equation  2.28). By assuming a parabolic profile of the Hagen−Poiseuille type, the 
solute hindrance factors for convection and diffusion are given by Equations 2.29 and 2.30 
(Bowen et al., 1997), although other researchers have proposed other functions to describe 
solute hindrance (Bouranene et al., 2007; Deen, 1987). Bowen et al. (2002) showed that the 
introduction of the Peclet number and the inclusion of the Hagen−Poiseuille definition of 
pore solvent velocity (Equation 2.31) erased the need for the extra fitting parameter, namely, 
membrane thickness, and allowed for a center line approach for calculating hindrance factors 
using Equations 2.29 and 2.30. Rearranging and integrating Equation 2.25 yield Equations 
2.32 and 2.33, which describe the ratio between the bulk feed and permeate concentrations 
and rejection, respectively. 

 

Figure 2.16. Equations for the hydrodynamic model. 
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The hydrodynamic model output is mainly dependent upon λ, the ratio between a solute’s 
size and the membrane’s pore size. Choosing a size parameter that effectively captures a 
solute’s geometry, therefore, is essential for model development, and numerous studies have 
attempted to determine the best size parameters that correlate with rejection (see previous 
discussion on molecular size). The often unsatisfactory result of these rejection/molecular 
size correlations have been explained by two main schools of thought: (a) that an effective 
molecular size descriptor is elusive (Santos et al., 2006; Zheng et al., 2009 and/or (b) that 
physicochemical properties other than size strongly affect rejection (Nghiem et al., 2004). 
Because the hydrodynamic model requires a chosen molecular size parameter, as a predictive 
measure, the model output is generally poor when compared to experimental results. As an 
example, the rejection of two pharmaceutically active compounds, acetaminophen and 
phenacetine, by the NF membrane as determined experimentally and modeled by using the 
hydrodynamic model and the Stokes radius is presented in Figure 2.17. In the case of both 
molecules, rejection is overestimated by the hydrodynamic model, and the output is 
unsatisfactory as a predictive measurement. The hydrodynamic model fails as a predictive 
tool either because the Stokes radius is ineffective in describing a solute’s size or because 
physicochemical properties of the solutes and resulting solute−membrane interactions affect 
rejection or both.  
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Figure 2.17. Rejection of phenacetine and acetaminophen by NF membrane.  

Note: Model lines determined by using the hydrodynamic model and the solute’s Stokes radius.   

There are many cases where the hydrodynamic model was found to accurately predict the 
rejection of neutral compounds by NF membranes on the bench scale, but there are many 
cases where the model significantly overpredicts rejection (Bellona, 2007). It appears that the 
model can be applied to compounds where size exclusion is the dominant rejection 
mechanism. However, when solute−membrane interactions become important, size exclusion 
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models fail. The difficulty in solving this problem is determining, a priori, which compounds 
are expected to have minimal solute−membrane interactions. It is also worth noting that there 
has been little work applying these models to pilot- and full-scale systems.  

2.6.3 Phenomenological Model and Pore Size Distribution Approach 

The main equations for the Spiegler−Kedem, phenomenological, or irreversible 
thermodynamic model are presented in Figure 2.18. The basic phenomenological transport 
equation (Equation 2.34) is nearly identical to Equation 2.25 of the hydrodynamic model 
except that hindrance factors for diffusion and convection are replaced by coefficients that 
encompass general properties of the solute and membrane. In this way the phenomenological 
model has been considered a “black box” approach, because the solute permeability (P) and 
reflection coefficient (σ) are fitting parameters that only generally capture the properties and 
interactions of a given membrane and solute. In addition, the phenomenological approach has 
generally been limited to the modeling of solution−diffusion processes because other 
mechanisms and elements of rejection (i.e., pore size, pore size distribution, and 
hydrodynamic hindrance) are difficult to capture within the phenomenological coefficients. 
Van der Bruggen and Vandecasteele (2002) circumvented this problem in the application of 
the phenomenological model to describe organic solute rejection by NF membranes by 
calculating the reflection coefficient based on the pore size and pore size distribution of the 
membrane and the size of a solute. 

If one rearranges Equations 2.34 and 2.35, the rejection of a given solute by a given 
membrane can be calculated by using Equations 2.36 and 2.37. The permeability coefficient 
(P) for a given solute is related to the diffusion parameter for a particular compound and the 
thickness of a membrane and through rearranging can be calculated from Equation 2.38, 
where the diffusion parameter (ρ) is membrane specific (Van der Bruggen and Vandecasteele, 
2002). Van der Bruggen and Vandecasteele (2002) applied a Log-normal distribution for the 
determination of the reflection coefficient using the average pore size of the membrane, the 
standard deviation of pore size, and solute size. This method assumes that each pore will 
reject or pass the solute depending on the size of the solute in relation to the pore size (e.g., 
each pore has a reflection coefficient of 1 or 0). When all the pores in the membrane are 
combined, the reflection coefficient is the  percentage of pores small enough to reject the 
solute (Kargol, 2001). The reflection coefficient can be expressed in terms of the probability 
density function [P(x), Equation 2.39] or cumulative density function [D(x), Equation 2.40].       

To use the probability or cumulative density function to calculate the reflection coefficient for 
a given membrane, the parameters average pore size (r) and standard deviation of pore sizes 
(Sp) must first be known. These parameters are determined by performing rejection 
experiments for several solutes with different sizes. The reflection coefficient of a given 
compound is the maximum or limiting rejection at infinite pressure, where only convective 
transport occurs. Rejection experiments, therefore, are performed at pressures great enough to 
estimate the reflection coefficient for a number of compounds. Equations 2.39 and 2.40 can 
then be fitted to the reflection coefficient versus solute size curve by manipulating the 
average pore size and standard deviation of pore sizes to achieve the best fit.   
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Figure 2.18. Equations for the phenomenological and pore size distribution model. 

The greatest difficulty in developing the phenomenological model is determining the 
reflection coefficient and diffusion parameter for a wide variety of organic solutes. In work 
performed by Bellona (2007), the diffusion parameter (ρ) was not found to be membrane 
dependent as was claimed by Van der Bruggen and Vandecasteele (2001). Instead, it 
appeared that the permeability constant could be calculated directly from a molecule’s size by 
using an empirical regression. In addition, determining the reflection coefficient by using the 
cumulative density function with a solute’s size and the membrane effective pore size was 
found accurate only for sugars and alcohols. Computing the reflection coefficient for the 
aromatic compounds studied yielded a model output that overpredicted rejection, similar to 
the hydrodynamic model.  

The phenomenological model presented earlier uses a pore size distribution approach to 
calculate the reflection coefficient. However, the reflection coefficient could be based on any 
solute property as long as statistical correlations were developed. This approach is often 
called a “black box approach” because the diffusion parameter and reflection coefficient 
incorporate all of the fundamental interactions between the solute and membrane, which are 



36 WateReuse Research Foundation 

not considered explicitly. Therefore, the phenomenological model presents a mass transport 
approach that could be developed into a “hybrid model” that incorporates solute properties 
other than size into the reflection coefficient (σ) and diffusion or permeability coefficient (P).  

2.6.4 Extended Nernst−Planck Equation 

The successful implementation of the ENP equation to describe and/or predict the transport of 
solutes, mostly salts, across a membrane has been detailed in numerous papers (Tsuru et al., 
1991a and 1991b; Dresner, 1971; Hagmeyer and Gimbel, 1998; Bowen and Mukhtar, 1996). 
The ENP equation has been favorably applied to membrane modeling, because it introduces 
solute transport due to solvent volume flux as well as diffusive transport due to concentration 
and electrical potential gradients (Dresner, 1971;, Tsuru, 1991a; Bowen and Mukhtar, 1996). 
The ENP equation is given by 

ji  Di, p

dci

dx


ziciDi, p

RT
F

d
dx

Ki, cciV    (2.41) 

where Di,p is the diffusion coefficient of a solute in a pore, zi is the valence of the ion, R is the 
ideal gas constant, T is the temperature, F is the Faraday constant,  is electic potential , Ki,c 
is the hindrance factor for convection, and V is the solute velocity.  

The ENP equation coupled with the TMS assumption, which includes electroneutrality 
equations, null-current conditions, Donnan ion partitioning equations, and volumetric flux 
equations was used to describe the transport of salts within and through a membrane (Dresner 
et al., 1971; Tsuru et al., 1991b; Hagmeyer and Gimbel, 1998; Bowen and Mukhtar, 1996). 
Bowen and Mukhtar (1996) proposed a hybrid model, termed the Donnan steric pore model 
(DSPM), which allowed for the treatment of a membrane as porous through the use of 
diffusive and convective hindrance factors. The major advantages of the DSPM are the use of 
structural and electrical properties of a membrane for use in describing solute transport. Many 
recent studies investigating the transport of salts through membranes have employed and/or 
built upon the DSPM, thus demonstrating the applicability of this approach to describe 
fundamental mass transfer processes during membrane separations (Hagmeyer and Gimbel, 
1998; Bowen and Welfoot, 2002a; Bowen et al., 1997; Bowen and Mohammad, 1998; 
Bandini and Vezzani, 2003; Lee and Lueptow, 2001). The DSPM has also been applied to 
describe the transport of uncharged solutes through membranes, although the use of the 
DSPM for this purpose has been generally limited to the characterization of a membrane in 
terms of pore size (Santos et al., 2006; Bowen et al., 2002; Bowen et al., 1997).  

The greatest limitation of the DSPM as pointed out in Bowen et al. (2002) and in Bandini and 
Vezzani (2003) is the complex fitting procedures that require extensive iterations and 
experimentation to characterize the membrane. In addition, the DSPM has mainly been used 
to either (a) describe the separation of salt mixtures by NF and RO membranes or (b) 
optimize the separation of individual components of salt/organic dye mixtures. In the case of 
municipal water reclamation projects, where the prediction of ionic and nonionic organic 
solutes would be greatly beneficial, the utilization of the full DSPM is hindered by its 
complexity and the limited range for which it has been used.  

Recently, Bowen et al. (2002) and Bandini and Vezzani (2003) put forth linearized versions 
of the DSPM called the linearized DSPM and DSPM&DE, respectively. In both cases the use 
of electroneutrality conditions and linearized concentration gradients transforms the 
differential transport equations into a set of algebraic equations that are subsequently shown 
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to effectively describe the separation of binary and ternary salt mixtures by NF membranes. 
The separation of a quaternary mixture of salts and organics was later shown to be 
satisfactorily described by the linearized version of the DSPM (Bowen et al., 2004). The main 
advantage of the linearized approach is the relative rapidity of the computations required to 
solve the equations and the inclusion of dielectric exclusion as a rejection mechanism. 

2.6.5 Other Mass Transfer Models 

There have been a few studies that have used the SFPM and a modified solution−diffusion 
model to incorporate solute−membrane interactions. Williams et al. (1999) uses a modified 
solution−diffusion model (steady state) and diffusion−adsorption model (non-steady state) to 
describe transport of benzene and substituted phenols through RO and NF membranes. The 
modified solution−diffusion model as described by Williams et al. (1999) is expressed as 

  (2.42) 

where JS is solute flux, CF is feed concentration, CP is permeate concentration, B* is the solute 
permeability constant, D is the diffusion coefficient of the solute in the membrane, Ctm is the 
total concentration in the membrane, δ is a distance parameter, and bo is a coefficient of for 
concentration polarization. Given that the concentration is changing because of adsorption, 
the actual concentration gradient (including what is adsorbed to the membrane) needs to be 
calculated: 

     (2.43) 

where Qtm/dt is the total solute adsorbed by the membrane as a function of time (adsorption 
rate), dCc/dt is the feed concentration change as a function of time, Jw is water flux, Am is 
membrane permeability, and VF is the molar volume of water. This model was developed to 
describe the effect of adsorption on flux and can be used to model the initial decline in 
rejection as solutes adsorb to the membrane. Researchers have shown, however, that 
equilibrium is reached within 1 to 3 days and that, therefore, other models can be applied to 
model the steady-state rejection without capturing the nonequilibrium portion of the rejection 
curve. 

Mehdizadeh and Dickson (1991) applied a modified version of the SFPM to describe the 
rejection of solutes with strong membrane interactions. This approach is basically a system of 
differential equations describing the forces exerted on a solute by a membrane and the 
solvent. Jain and Gupta (2004) applied this model to a system composed of sodium and 
chloride and sodium sulfate and found that the model output was very similar to the 
phenomenological model described earlier. The SFPM, however, consisted of six 
independent fitting parameters and required a very sophisticated numerical technique to 
solve. It should be noted that, because the goal of the project is to develop predictive models 
for full-scale membrane systems, models requiring numerical techniques to solve may not be 
appropriate. The advantage to these models is that the fitting parameters represent the 
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interactions between the solute and membrane, which allows for an investigation into the 
fundamental aspects of mass transfer.  

2.6.6 Quantitative Structure Activity Relationship Models 

Although advancements have been made in the science of membrane modeling, additional 
research is needed to develop quantitative models capable of predicting the removal of 
solutes with a wide range of molecular structures and physicochemical properties. Previous 
research has demonstrated that the rejection of nonionic organic solutes can be described by 
using the ratio between solute size and effective pore size (Van der Bruggen and 
Vandecasteele, 2002; Nghiem et al., 2004). However, because rejection is also strongly 
dependent upon solute and membrane properties (e.g., hydrophobicity and polarity) and 
interactions (e.g., adsorption and hydrogen bonding), this approach is often limited in 
predictive power (Kiso et al., 1992; Bellona et al., 2004; Ng and Elimelech, 2004). In 
addition, membrane models based on the ratio between solute and pore size often fail to yield 
accurate predictions because of the difficulty in selecting an appropriate solute size parameter 
and/or because a universal determination of solute size does not exist (Oedekoven, 2005; 
Kiso et al., 1992; Santos et al., 2006).  

Although the rejection of a limited number of nonionic organic solutes has been successfully 
predicted using the hydrodynamic model and phenomenological model, limited work has 
focused on incorporating solute properties other than molecular size into the model, which 
would allow for predictions of a broader class of compounds (Van der Bruggen and 
Vandecasteele, 2002; Nghiem et al., 2004; Bellona et al., 2004).  

One method of incorporating molecular properties into the prediction of solute rejection by 
RO and NF membranes has been the development of QSARs and quantitative structure 
property relationships (QSPRs). The concept behind QSAR and QSPR analysis is to 
mathematically quantify the correlations between an activity or property (e.g., reactivity, 
phase partitioning, and membrane transport) and molecular descriptors. Once a correlation is 
found, the activity or property can be predicted from molecular descriptors. The first step in a 
generalized QSAR approach is determining activity data (e.g., rejection) for a number of 
compounds that are used as a “training set” for QSAR model development. The second step 
involves the calculation of suitable molecular descriptors for the “training set” that influence 
the removal mechanisms. The third step is the application of statistical methods (multiple 
linear regression models, partial least squares [PLS], etc.) to derive correlations between the 
activity data and the molecular descriptors generated for the training set.  

A few studies have investigated the use of QSAR as a tool for predicting the rejection of trace 
organic contaminants by RO and NF membranes. Agenson et al. (2003) developed a QSAR 
approach to model the rejection of volatile organic compounds by employing empirical 
equations incorporating molecular size parameters and octanol−water partitioning 
coefficients to predict rejection. Rodriguez et al. (2004) examined endocrine disruptors, 
antibiotics, pesticides, and neuroactive drugs and developed QSAR models for predicting 
their passage through, adsorption to, and rejection by RO membranes. Recently, this work 
was published by Libotean et al. (2008).  

Although these empirical models are membrane and water matrix dependent and did not 
incorporate relevant parameters commonly used in membrane models, such as solvent 
volume flux (including hydraulic pressure gradients and solvent viscosity), membrane pore 
size, and resulting transport due to convective and diffusive flux, they are relatively simple. 
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One major limitation to the previously discussed mass transport models is their complexity, 
especially when considering large-scale systems such as pilot- and full-scale membrane 
installations. For example, the DSPM used for charged solutes, although fundamentally 
derived, is generally limited to a ternary system because of the numerical techniques required 
to solve the equations. This model could never be practically applied to natural waters.  

Our research team, therefore, believes that the development of robust QSPR models is needed 
for simple predictions of the likelihood that a compound could permeate an RO or NF 
system. Besides the Rodriguez et al. (2004) study, there has been little work developing 
QSPR models that included solute descriptors other than size, Log Kow, dipole moment, and 
pKa. As was previously mentioned, these descriptors often fail to describe rejection. One 
major goal of this study was to investigate a wide range of descriptors and develop new 
unambiguous descriptors for membrane QSAR models.   

2.6.7 Empirical Models 

A simple, yet mostly effective modeling approach developed by Bellona et al. (2004) uses a 
decision diagram to determine an estimation of rejection based on solute and membrane 
properties. A revised version of the “rejection diagram” is presented in Figure 2.19. By 
moving through the diagram, one encounters several possible outcomes or categories in 
which compounds fit in depending on their properties and the membrane in question. The 
seven possible categories are presented in Table 2.3. This model has adequately estimated the 
rejection of a wide range of organic solutes during laboratory, pilot, and full-scale 
investigations (Drewes et al., 2008) and was independently verified by a group of researchers 
in The Netherlands (Verliefde et al., 2007). One difficulty in developing the model, however, 
is incorporating molecular descriptors to rank the strength or overall effect of 
solute−membrane interactions on rejection. Initially, the Log Kow of a compound was utilized 
to estimate the rejection of compounds that have been demonstrated to adsorb to membrane 
materials. Although it validated the model, Log Kow was found not to be a good parameter for 
this estimation as it does not correlate well with rejection for all compounds that have 
membrane interactions.  

The new version of the model incorporates the Taft (could also be the Hammett constant) 
parameter or constant, which has been used to describe the strength of hydrogen bonding for 
organic compounds to membranes (Matsuura and Sourirajan, 1971). The Taft and Hammett 
constant can be difficult to calculate for a wide variety of organic compounds, however, and 
finding a molecular descriptor for adsorption is challenging. Therefore, additional research is 
needed to refine the model in order to make it applicable for a wide variety of organic 
compounds. Although this modeling approach requires additional work to fully develop, our 
research team believes that it could be a simple yet effective tool that nonscientists and 
nonengineers could employ if needed.  
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Figure 2.19. Modified rejection diagram including three mechanisms of rejection, steric exclusion, adsorption, and electrostatic exclusion.  
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Table 2.3. Possible Outcomes or Categories of the Modified Rejection Diagram 

Category Charge
Proton Donating 

Group
Hydrophobic 
Interaction 

MW rs/rp Rejection Mechanism
Expected 
Rejection

1 pH > pKa (negative) NA Log Kow < 3 NA NA Primarily Electrostatic > 90%

2 Yes NA NA NA H Bonding Dominates < 40%

3 Log Kow > 3 > MWCO NA 70 - 90%

4 Log Kow > 3 NA  < 20%

5 <0.6 < 40%

6 ~ MWCO 0.8 >x > 0.6 40 - 80%

7 > MWCO >0.8 > 90%

NA - Not applicable or not important for tis compound to estimate rejection

pH < pKa (uncharged)

Hydrophobic Interactions 
Dominate

Steric Interactions 
Dominate

Not substantial

Log Kow > 3

< MWCO
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2.7 Operational Impacts on Rejection 

2.7.1 Recovery 

System recovery is defined as the percentage of the feed stream flow that becomes permeate 
stream flow: 

Recovery (%) = 
Qp

Qf

*100    (2.44) 

where Qp is the permeate stream flow, and Qf is the feed stream flow. The maximum recovery 
specified by manufacturers for one spiral-wound element is 15%. For water reuse 
applications treating wastewater effluents, overall system recoveries are generally between 70 
and 85%. When one operates bench-scale flat-sheet experiments, recoveries are generally 
about 1%. These differences in scale are important because recovery can have a significant 
impact on observed rejection. Figure 2.20 shows the effect of recovery on the model output 
(rejection) of the HSDM. Because of concentration polarization, the driving force for 
diffusion is increased and rejection decreases with increasing recovery. Chellam and Taylor 
(2001) performed a comprehensive study on the effect of recovery on the rejection of 
constituents by a number of membranes and found that recovery has a big influence on 
solutes that are only marginally rejected at low recoveries (Figure 2.21). For most of the 
constituents of interest, the HSDM was found to accurately describe the effect of recovery on 
observed rejection. However, in the cases of constituents with low rejection at low recovery, 
the model was found to be less accurate.  

 

 
Figure 2.20. Rejection of a model solute as a function of recovery.  
Note: A diffusion model and a convection−diffusion model were used to generate the curves.  

Source: Hofman et al., 2007.  
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Figure 2.21. Rejection of total organic halide precursors by several membranes versus feed water 
recovery. 
Source: Chellam and Taylor, 2001.  

2.7.2 Permeate Flux 

From the mass transfer models, it should be apparent that, at a constant recovery, increasing 
permeate flux decreases the concentration of a solute in the permeate and increases rejection. 
Figure 2.22 presents the rejection of four nitrosamine compounds as a function of permeate 
flux during experiments conducted on a pilot-scale membrane unit. During the experiment, 
recovery was kept constant (approximately 72%) by changing the feed flow.  



44  WateReuse Foundation 

 

Figure 2.22. Rejection of four nitrosamine compounds by NF-4040 membrane installed on a 
pilot-scale membrane unit.  
Note:  Recovery was kept constant (approximately 72%) by increasing the feed flow as the permeate flow rate was 
increased.  

When the feed flow is kept constant and the permeate flux is increased, the increase in 
recovery eventually adversely affects rejection. Figure 2.23 presents the bench-scale rejection 
of sodium chloride and permeate flux for an NF membrane as a function of recovery. At low 
recoveries (less than 1%), increasing permeate flux increased rejection. However, at 
recoveries greater than 1%, concentration polarization began to affect the observed rejection 
and eventually negatively impacted the observed rejection.  

One of the major issues with many modeling approaches is that they are generally developed 
by using bench-scale flat-sheet units at very low recovery. In addition, many of the transport 
models do not account for recovery implicitly and cannot be used to model full-scale systems.  
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Figure 2.23. Rejection of NaCl and permeate flux versus recovery. 

Notes: Increasing the feed pressure decreased the feed flow of the pump, resulting in an increase in recovery. 
Below a recovery of 1%, increasing permeate flux increased rejection and there was minimal impact from 
increasing recovery. At higher recovery, concentration polarization effects began to decrease rejection with 
increased permeate flux.  

2.7.3 Differential Element Approach 

One of the major limitations of commonly studied modeling approaches is that little attention 
is given to the fact that, at pilot and full scale, recoveries are relatively high (70–85%) and 
large concentration gradients exist across membrane treatment trains. The concentration 
gradient will significantly affect the combined permeate concentration of solutes and needs to 
be considered for modeling exercises. Sharma and Chellam (2008) recently published a 
method by which modeling approaches used at bench scale could be used to model systems 
operated at higher recovery. The approach is termed the differential element approach and is 
similar to a method used by Zhao (2004). A membrane system is conceptually divided into 
numerous identical sub-elements that are then modeled as completely mixed reactor. Each 
sub-element is connected to its immediate neighbor by using appropriate flow and solute 
mass balances at steady state. The following equations are used for the differential element 
approach. The flow mass balance is given by 

   Qf ( j) Qf (1)  Qp (k)
k1

j1

    (2.45) 
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and the solute mass balance given by 

  
C f ( j 1) 

Qf ( j)C f ( j) Qp ( j)Cp ( j)

Qf ( j 1)    (2.46)
 

The permeate flow rate Qp(j) for each sub-element j can be calculated as 

 

where Jv(j) is the local permeate flux for sub-element j, A is the membrane area, n is the 
number of sub-elements, Lp is the membrane solvent permeability constant, ΔP is the 
hydraulic pressure across the membrane, and Δπ(j) is the osmotic pressure difference 
calculated on the basis of the Van’t Hoff equation: 

 

or other empirical relationships between total dissolved solids and osmotic pressure. For 
experiments with extremely low feed concentrations, the effect of osmotic pressure on flux is 
expected to be small. The pressure drop is assumed to be linear across the membrane system, 
and the following equation can be used to calculate the driving force for permeate flow from 
each sub-element: 

 

The permeate (Cp(j)) and feed concentrations for each sub-element can be related by using a 
one-dimensional film theory model like 

Cp ( j)

C f ( j)


exp(Jv ( j) /k( j))
Cm ( j) Cp ( j)

Cp ( j)
 exp(Jv ( j) /k( j))

 

The expression 

Cm ( j) CP ( j)

Cp ( j)
 

can be calculated from membrane transport models including the solution−diffusion model, 
the hydrodynamic model, the ENP equation approach, and the phenomenological approach. 
For these models, parameters related to the membrane and the solute are inputs and the 
differential element approach is used to model concentration gradient through the system.  

(2.47) 

(2.48) 

(2.49) 

(2.50) 

(2.51) 
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Once Cp(j) for each sub-element is determined, the weighted average permeate concentration 
over the entire element can be calculated by using 

  

Cp 
Qp ( j)Cp ( j)

j1

n
Qp ( j)

j1

n
   (2.52)

 

2.8 Summary of Factors that Affect Rejection 

2.8.1 Membrane Reproducibility 

The properties of a membrane can differ considerably across one membrane specimen 
because of imperfections in membrane-casting techniques. For example, in a study by 
Hofman et al. (2007), the researchers investigated membrane coupons cut from different 
areas of the same flat-sheet specimen. The researchers found that salt passage changed 
considerably depending on the location the sample was taken from on a flat-sheet sample. 
Near the edges of the membrane sheet, salt passage was found to be the greatest but 
decreased as the sampling location moved away from the edge of the membrane sheet. The 
researchers concluded that this effect was due to the equipment used to cast membranes and 
that the variation could affect model development.  

2.8.2 Rejection Equilibrium 

A study performed by Hofman et al. (2007) demonstrated that atrazine rejection required 3 or 
4 days before equilibrium was reached. The researchers believe that after this time adsorption 
equilibrium was reached, which stabilized the concentration in the permeate. However, this 
result was not seen for all solutes that were studied and the rejection of atrazine changed by 
only 1% over the 3 days. Other studies have demonstrated that, for some solutes, a period on 
the order of days is needed to establish equilibrium and to reach a steady-state permeate 
concentration.  

Kimura et al. (2003b) reported that the adsorption of hydrophobic compounds to membrane 
materials may result in overestimated rejection values if experiments are not performed over 
a long-enough time to reach equilibrium. Synthetic feed waters used during experimentation, 
with a low solute concentration, may not completely occupy the adsorptive sites of the 
membrane if experiments are too short. As a result of the higher number of unoccupied 
membrane adsorptive sites, rejection values are inflated during initial operation of membrane 
systems. Kimura et al. (2003b) concluded that, until a membrane is saturated with solute, 
rejection values will be an overestimation when compared to steady-state conditions. The 
experiments conducted by Kimura et al. (2003b) were terminated after approximately 20 h, 
and on the basis of the data presented, rejection was not at equilibrium. However, one 
observation is that these experiments were conducted at a relatively high recovery (5%) and 
an extremely low feed flow rate (~180 ml/min). It is difficult to extract useful information 
from these experiments because of the unrealistic operating conditions.  
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2.8.3 Temperature 

The temperature of the feed water has a significant effect on the solvent and solute 
permeability of membranes. Sharma and Chellam (2005) reported that an increase in feed 
water temperature changed the pore structure of NF membranes, increasing the pore size and 
decreasing the pore density. The net outcome of these changes would be greater transport of 
solutes across a membrane, which has been documented for RO and NF membranes  
(Sharma and Chellam, 2005). Experiments designed to determine MTCs, effective pore size, 
and other model parameters should be conducted at various temperatures. 

2.8.4 Feed Water Chemistry 

There are feed water constituents that have been reported to affect rejection. These factors 
mainly include organic matter, pH, ionic strength, and membrane fouling.  

Organic Matter. Researchers have reported various effects to rejection when organic carbon 
is added to the feed solution. Nghiem et al. (2002b) reported that the rejection of the steroid 
estrone by seven of eight membranes was decreased when secondary effluent was added to 
the deionized feed water. A study by Majewska-Nowak et al. (2002) found that pesticides 
such as atrazine could adsorb to organic matter present in feed water, increasing rejection as a 
result of increased size and electrostatic interaction between the organic and the membrane. A 
more recent study by Jin et al. (2007) found that the rejection of estrone significantly 
increased when an aromatic hydrophobic acid with phenolic groups was added to the feed 
water solution. The explanation given was that estrone could form hydrogen bonds with the 
solute, which either increased the size and thus steric exclusion, or that, because the 
hydrophobic acid was negatively charged, electrostatic exclusion prevented adsorption of 
estrone. However, when dextran was added to the deionized water solution, there was no 
change in the rejection. In a study by Yoon et al. (2005, out of four water matrices studied, 
the rejection of a wide variety of organic compounds was lowest in the feed water matrix 
with the highest dissolved organic carbon (DOC) concentration. Obviously, for membrane 
experiments, deionized water is preferable to natural water for analytic purposes. However, 
on the basis of past research, it appears that the organic matter matrix can significantly affect 
rejection. 

pH. The pH of a feed water solution changes the surface charge of a membrane and can also 
affect the charges of species present in the feed water. As was presented in the electrostatic 
effect section, the rejection of charged species generally increases with increasing pH.  

The influence of pH and membrane surface charge on membrane pore structure and on the 
rejection of uncharged organics as well as on permeate flux is not completely understood. At 
high pH values (8−10), it has been reported that the rejection of uncharged solutes decreased, 
although permeate flux increased (Braghetta et al., 1997; Berg et al., 1997). This 
phenomenon may be the result of an increase in pore size of a membrane caused by the 
electrostatic repulsion between the acidic functional groups within the membrane (Braghetta 
et al., 1997; Berg et al., 1997). Other researchers have found little dependence of the rejection 
of uncharged organics and permeate flux on pH unless ions were present in the feed solution 
(Ozaki and Li, 2002; Yoon et al., 1998; Boussahel et al., 2002).  

Ionic Strength. As previously mentioned in the electrostatic effect section of this review, the 
ionic strength of a solution, particularly when multivalent ions are present, can significantly 
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affect the rejection of charged species. For example, Bellona and Drewes (2005) determined 
calcium additions could significantly reduce the rejection of negatively charged organics for 
membranes with larger pores because Donnan exclusion effects were minimized. However, 
diclofenac rejection was minimally affected by additions of sodium chloride, and negatively 
charged organic solutes are generally well rejected regardless of the matrix.  

Braghetta et al. (1997) used the Debye length parameter to quantify the effects of ionic 
strength on the zeta potential and on the structure of a membrane. Findings of this study and 
three others revealed that the Debye length was short at higher ionic strengths, the zeta 
potential was more positive, electrostatic interaction was minimized within the membrane, 
and the pore radii could shrink (Braghetta et al., 1997; Lee et al., 2002; Bellona and Drewes, 
2005; Boussahel et al., 2002; Freger et al., 2000). At low ionic strength when the Debye 
length is longer and the zeta potential is more negative, pore radii can increase in size to 
minimize electrostatic repulsion between the negative functional groups (Braghetta et al., 
1997; Bellona and Drewes, 2005; Boussahel et al., 2002; Freger et al., 2000). Boussahel et al. 
(2002) found that calcium additions could increase the rejection of uncharged pesticides by 
reducing the pore size of certain NF membranes. Schäfer et al. (2002a) found that, although 
the rejection of dissolved organic carbon by UF membranes was affected little by feed water 
pH, increasing ionic strength had a significant inverse effect on rejection. It was hypothesized 
that ionic strength additions could affect the structure of the organic carbon and also could 
reduce the charge of the membrane, leading to reduced electrostatic interaction and lower 
rejection. Finally, Bouranene et al. (2007) recently employed a ceramic NF membrane to 
investigate the effect of increased ionic strength on rejection because ceramic pores are not 
expected to change in size as a function of ionic strength. The researchers found that 
increased electrolyte concentrations reduced the rejection of polyethylene glycols and that the 
trend in decreasing rejection followed the Hofmeister series and is caused by the dehydration 
of molecules, which reduces their hydrated radius. Like temperature, the effect of ionic 
strength on rejection may be an important factor to assess when determining model 
parameters. 

Membrane Fouling. The effect of fouling on the rejection of organic solutes has garnered 
increased attention over the past few years. Membrane fouling is defined as the reduction of 
membrane performance that is due to reversible and irreversible deposition of solids on the 
membrane surface and pores. Fouling results in a decline in permeate flux when a system is 
operating at constant pressure or when an increase in pressure is imposed to achieve constant 
flux, which increases operational costs. On the basis of what research has been published to 
date, the overall effect of fouling on rejection is not completely understood.  

Three types of experiment have been conducted to investigate the effect of fouling on 
rejection. The first were methods used to measure small concentrations of trace organic 
compounds naturally present in wastewater effluent and their rejection in a natural water 
matrix over time (Bellona and Drewes, 2007; Drewes et al., 2005). In the second method, 
trace organic contaminants were spiked into the feed solution at the beginning of filtration, 
and rejection and fouling were measured over time (Ng and Elimelech, 2004). The third 
method was to prefoul the membrane with either effluent or a synthetic solution and then to 
spike trace organic contaminates to determine rejection (Bellona and Drewes, 2007; Nghiem 
et al., 2008; Xu et al., 2006). The third type of experiment is generally performed at bench 
scale.  

Ng and Elimelech (2004) employed the second method and observed a decrease in trace 
organic contaminant rejection with fouling using silica colloids. They observed that cake-
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enhanced concentration polarization associated with fouling facilitated the transport of small 
inert organic compounds (ethylene glycol and glycerol) and trace organic contaminants 
(estradiol and progesterone). Inert organic compounds with a molecular weight higher than 
the MWCO were minimally affected by fouling, because size exclusion was the dominant 
removal mechanism. Comerton et al. (2008) found that trace organic contaminates were 
consistently rejected by an RO membrane but that variable rejection was observed for two NF 
membranes. Comerton et al. (2008) tested 22 compounds by using wastewater effluent-
impacted Lake Ontario water and membrane bioreactor effluent. In general, compounds were 
more effectively rejected by membranes with a fouling layer, contrary to the study by Ng and 
Elimelech (2004). Comerton et al. (2008) also suggested a correlation between rejection and 
hydrophobicity (Log Kow), with more hydrophobic compounds having a higher rejection. The 
increased organic compound rejection may be attributed to increased adsorption with fouling. 

Xu et al. (2006) prefouled membrane specimens and performed rejection experiments and 
found that membrane fouling from wastewater effluent affected trace organic rejection by NF 
and ULPRO membranes but had a less significant effect on RO membranes. Rejection of 
primidone, a hydrophilic nonionic compound, was found to remain the same or to decrease 
with fouling for the membranes tested. Bromoform, chloroform, and trichloroethylene 
adsorbed more onto fouled membranes than to unfouled membranes, resulting in higher 
rejection after 50 h of filtration. Nghiem and Hawkes (2007) and Nghiem et al. (2008) 
investigated the removal of the nonionic organic compounds carbamazepine and bisphenol A 
with membranes fouled with Sigma-Aldrich humic acid. Rejection was seen to increase with 
fouling for a loose nanofilter with large pores and was attributed to pore blocking by the 
foulants. A decrease in rejection was observed with the NF-270 membrane, attributed to 
cake-enhanced concentration polarization. A slight increase in rejection was observed with a 
“tight” NF membrane (NF-90) for bisphenol A, and a slight reduction was observed with 
carbamazepine. The authors indicated that cake enhanced concentration polarization. A slight 
increase in rejection was observed with a “tight” NF membrane (NF-90) for bisphenol A, and 
a slight reduction observed with carbamazepine. The authors indicated that cake-enhanced 
concentration polarization also occurred with the NF-90 membrane; however, because of the 
small pores, steric exclusion was the dominating effect. Nghiem et al. (2008) also indicated 
that increased trace organic adsorption could facilitate diffusional transport and lower 
rejection. Further investigation into the effect of fouling on membrane properties and on 
solute rejection is needed in order to understand and describe membrane performance during 
treatment of wastewater effluent. 

2.8.5 Conclusions and Major Findings 

The intent of this literature review was to summarize the major factors affecting solute 
removal by NF and RO membranes and to identify strategies for solute rejection modeling. 
The following conclusions summarize the most important information gained through the 
literature review: 

 The rejection of organic solutes depends on three major mechanisms: size exclusion, 
electrostatic exclusion, and solute−membrane interactions. 

 Charged organic solutes are generally well removed by NF and RO membranes 
regardless of size; in general, negatively charged solutes exhibited better removal 
than positively charged solutes. 

 Nonionic solutes with solute−membrane interactions are likely to have incomplete 
removal. 
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 Although size is a dominant factor in the rejection of nonionic solutes, 
solute−membrane interactions are an important factor. 

 Currently, there is no definitive way to predict which compounds will have strong 
solute−membrane interactions based on molecular descriptors. 

 Other than solute and membrane properties, there are a number of factors that affect 
rejection, with the most important being operational conditions, feed water 
temperature and chemistry, and membrane fouling. 

 The overall effect of membrane fouling on rejection of organic solutes is not well 
established. 

 Pertinent modeling approaches include mass transfer equations, QSPR models, and 
empirical models. 

 Mass transfer models are advantageous because they integrate operational conditions 
and to a limited degree solute and membrane properties. 

 QSPR models are advantageous because solute properties are easily incorporated. 
 Empirical models are advantageous because they are simple to use. 
 Models that rely on solute size as input parameters often overpredict rejection 

because solute−membrane interactions are not included. 
 The solution−diffusion model is advantageous because only one solute input 

parameter is required. 
 The phenomenological model is advantageous because of the “black box” nature of 

the model and possibility of correlating solute properties to the input parameters. 
 The differential element approach combined with the phenomenological model can 

be applied to a full-scale system and could potentially include both operational 
conditions and solute and membrane properties. 

 Adjustments to any model need to be made to account for fouling and for changes in 
temperature and feed water chemistry. In addition, experimental replication is needed 
to account for differences between different types of membranes. 
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Chapter 3 

Materials and Methods 

3.1 Choosing Trace Organic Compounds for Study 

3.1.1 Selection Method to Develop Model Development and Validation 
Compounds 

For this study, 270 organic solutes were initially selected for model development and model 
validation. The list of compounds was compiled from a variety of sources and yielded a 
relatively diverse set of organic solutes based on properties (e.g., size, charge, 
hydrophobicity/hydrophilicity, etc.), relevance to membrane treatment (e.g., functional 
groups affecting rejection, likelihood of permeation), and environmental relevance (e.g., EPA 
Candidate Contaminant List, recent advancements in emerging contaminant research, human 
health, and environmental relevance). After removal of compounds that caused analytical and 
experimental issues (e.g., high volatilization, instability, and poor solubility), a shorter list of 
compounds was generated that retained the diversity of the original list for model 
development and validation.  

All compounds were categorized by expected rejection mechanism based on charge and 
hydrophobicity (Table 3.1). Six different categories were developed: hydrophilic neutral 
(HN; less than 0.01% charged at pH 6.5; Log Kow < 2), hydrophilic/hydrophobic neutral 
(HHoN; less than 0.01% charged at pH 6.5; Log Kow > 2 and Log Kow < 3), hydrophobic 
neutral (HoN; less than 0.01% charged at pH 6.5; Log Kow > 3), hydrophilic negatively 
charged (HCN; greater than 50% negatively charged at pH 6.5), hydrophilic positively 
charged (HCP; greater than 50% positively charged at pH 6.5), and hydrophilic negatively 
and positively charged (HCNP; having both positive and negative charge at pH 6.5). 
Compounds were grouped by these categories, which yielded 51 HoN compounds, 27 HHoN 
compounds, 76 HN compounds, 50 HCN compounds, 38 HCP compounds, and 18 HCNP 
compounds.  

For each rejection mechanism subgroup, principal component analysis and k-means 
clustering/discriminate analysis was performed (using XLSTAT) to further group compounds 
based on molecular properties determined with the Schrödinger software package. These 
descriptors included Log Kow, solubility, volume, solvent accessible surface area (SASA), 
hydrophobic surface area (FOSA), hydrophilic surface area (FISA), polar surface area 
(PISA), weakly PISA (WPSA), polarizability, dipole moment, quantum mechanic (QM) 
dipole moment, QM energy, solvation energy, and EHOMO and ELUMO energy. For HN, HHoN, 
HoN, HCN and HCP compounds, five groups were developed, whereas, for HCNP, three 
groups were developed. Random selection was then used to select, at the least, 33% of the 
compounds from each grouping (all compounds were selected from groups with only two 
compounds, 66% were selected from groups with three compounds, and 50% of compounds 
were selected from groups with four compounds).  
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Table 3.1. List of Compound Designations and Comparison of Original Compound List 
with Final Compound List 

Designation Charge Designationa Log Kow
b Total No. 

Initially 
Considered 

No. in 
Development 

Set 

No. in 
Validation 

Set 
HCN >98% negative (acidic 

group deprotonated) 
No 
restriction 

50 19 6 

HCP >98% positive (basic 
group protonated) 

No 
restriction 

38 14 5 

HCNP >50% positive (basic 
group protonated),  
>50% negative (acidic 
group deprotonated), 
>98% overall net 
charge 

No 
restriction 

18 9 5 

HN  
>98% uncharged 

<2 76 31 5 
HHoN 3>Log 

Kow≥2 
27 12 4 

HoN ≥3 51 14 6 
Other <98% negative or 

positive charge 
No 
restriction 

10 1 1 

aAt pH 6.5. 
bFor certain compounds, Log Kow differs depending on source making this classification difficult. 

This selection process yielded a group consisting of 132 compounds for model development 
and validation (Table 3.2). According to an in-depth analysis, this final list of compounds 
retained much of the diversity of the full list based on criteria outlined previously (e.g., 
properties, rejection mechanisms, classes of compounds, environmental relevance, etc.). The 
list was then randomized with the 33 top compounds selected for the validation set and the 
remaining 101 selected for the model development set (Table 3.2). Figures 3.1 through 3.3 
present box and whisker plots of key descriptors such as molecular weight, Log D, and dipole 
moment, respectively, for the original list of compounds compared to the final list used as 
model development and validation sets. 
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Table 3.2. Compound List Used for Model Development and Model Validation  

Class Compounds 

HCN              
(Log Kow < 2) 

Acetic acid Enalapril Salicylic acid 

Benzoic acid Furosemide Sulfacetamide 

Captopril Gemfibrozil Sulfadimethoxineb 

Chlortetracycline Ibuprofen Sulfadioxine 

Clofibric acid Ketoprofen Sulfamerazine 

Dibromoacetic acid Maleic Acid Sulfamethoxazole 

Dichloroacetic acid Methotrexate Sulfasalizine 

Diclofenac Naproxen Trichloroacetic acid 

1,4-Dihydroxybenzoic acid   

HCP              
(Log Kow < 2) 

Amitriptyline Imiquimod Pseudoephedrine 

Atenolol Ketoconazole Ranitidine 

Cimetidine Metformin Salbutamol  

Diethylamine Methylamine Tamoxifen 

Diltizaem Metoprolol Trazodone 

Diphenhydramine Norfluoxetine Trimethoprim 

Guanidine   

HCNP (Log Kow < 
2) 

Alanine Doxycycline Oxytetracycline 

Arginine L-Glutamic acid Phenylalanine 

Baclofen Histidine Serine 

Ciprofloxacin Lysine Tyrosine 

Cysteine Norfloxacin  

HN               
(Log Kow < 2) 

Acetaminophen Meprobamate Phenacetine 

Benzyl acetate Methanol Primidone 

Benzyl alcohol Methylparaben Propylphenazone 

1,4-Butanediol Methyl-tert-butyl-ether  Resorcinol 

Caffeine NDMA Sucralose 

Chloroform NDMA Sucrose 

Ethanol NDMA Triethylene glycol 

Fluconazole 
 N-Nitrosomethylethylamine  

Tris(1-chloro-2-
propyl)phosphate   2-Fluorophenol 

Glucose N-Nitrosomorpholine  
TCEP  

Glycerol N-Nitrosopiperidine  

Hydrocortisone N-Nitrosopyrrolidine  Uracil 

Isopropanol Pentoxifylline Urea 

HHoN             
(3 > Log Kow > 2) 

Atrazine Diethylphthalate 
n-Nitrosodibutylamine  Bromoform Dilantin 

Carbamazepine Estriol Propylparaben 

Dibromochloromethane Methyl salicylate Thiabendazole 

Dichlorobromomethane 1-Naphthalenemethanol Warfarin 

DEET 2-Naphthol  
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Table 3.2. Compound List Used for Model Development and Model Validation (cont.)

Class Compounds 

HoN              
(Log Kow >3) 

Benzophenone Estrone 2-Phenylphenol 

Bisphenol A Ethynylestradiol Progesterone 

Butylparaben Fenofibrate Testosterone 

Desloratadine Fluoxetine Triclocarban 

2,4-Dichlorophenola n-Nitrosodiphenylamine  Triclosan 

Diethylstilbestrol 4-Nonylphenol 
TDCPP 

17-Estradiol Oxybenzone 

Note: Model validation is shaded in gray. 
aOriginally classified other: Reported pKa values for 2,4-dichlorophenol were 7.89 (SRC Database) and 8.05 
(ACD Lab Software), indicating between 97 and 98 nonionic at pH 6.3. As such, this compound was 
included in the HoN designation for model development. 
bOriginally classified other: Reported pKa values for sulfadimethoxine are between 5.5 and 5.9, indicating 
between 72 and 86% negatively charged at pH of 6.3. 

 

 

Figure 3.1. Range of molecular weight for compounds included in model development  
and validation compared with the total number of compounds considered. 
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Figure 3.2. Range of Log D (pH = 6) for compounds included in model development  
and validation compared with the total number of compounds considered. 

 

 

Figure 3.3. Range of dipole moments for compounds included in model development  
and validation compared with the total number of compounds considered. 
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3.1.2 Sources of Descriptor Data 

Molecular descriptors were obtained and calculated from a variety of sources and programs 
listed in Table 3.3. Properties that could potentially predict steric interactions include 
molecular weight, length, width, depth, area, volume, globularity EqDepth, Wilke−Chang 
diffusion coefficient, Stokes radius, and molecular volume. Globularity (glob) is defined as 
S/Sequivalents, in which Sequivalent is the surface area of a sphere of equivalent volume V. 
Calculations utilized to obtain the Wilke−Chang diffusion coefficient, Stokes radius, and 
molecular volume are summarized in Appendix B. Agenson et al. (2003) observed molecular 
weight and molecular width sterically affected rejection. Yangali-Quintanilla et al. (2010) 
developed QSPRs incorporating dimension descriptors such as length, width, and EqDepth to 
predict rejection.  

Log Kow, obtained from the SRC Physical Property Database and Schrödinger QikProp 
(QPlogPo/w), is a measure of the compound’s affinity to adsorb to the membrane. Log D 
values or Log Kow values at a given pH were also calculated by ACD Lab Software. Previous 
research by Braeken et al. (2005) observed Log Kow can negatively affect rejection; however, 
research by Kiso et al. (2001b) observed Log Kow has no significant correlation with 
rejection. The molecular structure, obtained from NIST WebBook, can help gain an 
understanding of possible solute−membrane interactions. Previous research by Williams et al. 
(1999) and Matsuura and Sourirajan (1971) revealed interactions between hydroxyl groups 
and the membrane surface due to possible hydrogen bonding. 

The formal charge for each compound can be determined by pKa and pKb values at a given 
pH. The total formal charge at neutral pH was also calculated by Schrödinger LigPrep. Ozaki 
and Li (2002) observed an increase in rejection as the compound under investigation became 
negatively charged over a pH range. Verliefde et al. (2007) observed rejection efficiencies 
greater than 95% for negatively charged compounds and greater than 85% rejection for 
positively charged compounds due to electrostatic interactions. Libotean et al. (2008), 
Kimura et al. (2004), and Van der Bruggen et al. (1998) observed that dipole moment, a 
measure of a compound’s uneven distribution of positive and negative charges, had a 
significant effect on neutral solute rejection because of electrostatic interactions.  

Other molecular descriptors that could have an effect on compound rejection and were 
investigated include polarizability, ionization potential (IP), electron affinity (EA), EHOMO, 
ELUMO, hydration energy, aqueous solubility, free energy of solvation, and various surface 
area components. Polarizability is a measure of a compound’s electron cloud to be distorted 
due to an external force, such as a dipole or ion nearby. IP is the amount of energy required to 
remove an electron from a molecule and become ionic. EA is the energy change that occurs 
when a molecule gains an electron. EHOMO is the highest-energy molecular orbital that 
contains an electron, and ELUMO is the lowest-energy molecular orbital that does not contain 
an electron. Hydration energy is the amount of energy released when 1 mol of a solute is 
dissolved in a large amount of water, and aqueous solubility is the maximum amount of a 
compound that can dissolve in water at equilibrium. Free energy of solvation in a solution is 
the amount of energy released as a solute becomes stable in a solution. The different 
descriptors for surface area can be used to quantify membrane interactions because it is a 
measure of the different components of the molecule: FOSA is a measure of saturated 
hydrocarbons; FISA represents nitrogen, oxygen, and hydrogen attached to heteroatoms; 
PISA represents  bonds; and WPSA represents halogens, phosphorus, or sulfur. 
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Table 3.3. List of Molecular Descriptors Used for Modeling Approaches with Selected 
Programs Utilized to Obtain Descriptors and Descriptions 

Program Molecular 
Descriptor 

Description 

NIST 
Chemistry 
WebBook 

Mol weight  

Mol formula  

Mol structure Listed as no. of -OH, -NHn, -halogens, aromatic rings, etc. 

SRC 
Physical 
Property 
Database 

Mol wt  

Water solubility mg/L 

Log Kow Experimental at 25 oC 

pKa Experimental at 25 oC 

Hyperchem 

Length 
Largest dimension of molecule in optimal configuration, 
nm 

Width 
Medium dimension of molecule in optimal configuration, 
nm 

Depth 
Smallest dimension of molecule in optimal configuration, 
nm 

Area Approximate area, Å2 

Vol Å3 

Hydration energy Based on the approximate surface area calculation, kcal/mol 

Polarization Atom-based method, Å3 

ACD Lab 
Software 
v.8.14 

pKa Acid dissociation constant 

pKb Base dissociation constant 

Log D  pH 4, 6, 7, 8, 9 

Vol cm3/mol 

PISA Å2 

Schrödinger 
- LigPrep 

Total Q Total charge of the molecule 

Schrödinger 
- QikProp 

Dipole Computed dipole moment of the molecule 

SASA Total SASA 

FOSA 
Hydrophobic component of SASA (saturated C and 
attached H)  

FISA 
Hydrophilic component of SASA (N, O, and H on 
heteroatoms)  

PISA π (C and attached H) component of the SASA  

WPSA Weakly polar component of the SASA (halogens, P, and S) 

Vol Total solvent-accessible volume, Å3  

Glob Globularity descriptor (1.0 for a spherical molecule) 

QPpolrz Predicted polarizability, Å3 

QPlogPoct Free energy of solvation in octanol 

QPlogPw Free energy of solvation in water 

QPlogPo/w Predicted octanol−water partition coefficient 
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QPlogS Predicted aqueous solubility, Log S. 
CIQPlogS Conformation independent predicted aqueous solubility 

IP PM3 calculated IP, eV 

EA PM3 calculated electron affinity, eV 

Calculated 

EqDepth Arithmetic mean of the depth and width, nm 

Diffusion coefficient Wilke−Chang, m2/s 

Stokes radius LaBas Additive Method, nm 

Mol vol LaBas Additive Method, cm3/mol 

EHOMO Highest Occupied Molecular Orbital, eV; B3LYP Based 
Method 

ELUMO Lowest Unocupied Molecular Orbital, B3LYP Based 
Method 

 

3.1.3 Statistical Methods 

During the course of this study, QSPRs were developed to describe and predict solute 
rejection and consisted of four parts: experimental database development, molecular 
descriptor evaluation, multiple linear regressions, and model validation.  

Experimental Database Development. Bench-scale database development consisted of 
compiling average quasi-equilibrium 12-gal-per-sq-ft-and day (gfd) data for each compound 
tested for the NF-270 and ESPA2 membranes. Compounds selected for these experiments 
represented the six different categories:  HN, HHoN, HoN, HCN, HCP, and HCNP. The data 
were quality checked before QSPR development continued. 

Molecular Descriptor Evaluation. Molecular descriptor evaluation was conducted by using 
JMP 8.0.2 (SAS Institute, Inc., 2009), a statistical package employing multivariate methods 
and various modeling techniques. Initial cross-validation calculated a root mean squared error 
(RMSE) value for each possible multiparameter regression. Cross-validation of all molecular 
descriptors investigated calculated the optimum numbered parameter regression for QSPR 
development to be 3. To begin evaluating molecular descriptors, a correlation matrix was 
developed (presented in Appendix D) to determine which parameters are correlated. PLS with 
cross-validation was employed to remove any insignificant parameters before QSPR 
development. PLS determines which molecular descriptors contribute to the variability in 
rejection. Significant descriptors have a PLS coefficient greater than 0.05 and a variable 
importance plot (VIP) value above 0.8 (Wold, 1995). 

Multiple Linear Regression. Three parameter correlations were developed by using 
descriptors found to be significant in the PLS evaluation. The significant descriptors 
employed in each calculation were less than 0.25 correlated with each other (results shown in 
the correlation matrix). QSPRs were developed in JMP and determined statistically valid by 
using the following statistical tools. The coefficient of determination, R2, should be close to 1 
and no less than 0.75.  

R2 
i

n (y pred ,i  y)2

i
n (yobs,i  y)2

 (3.1) 
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y 
1

n
i

n yobs,i   (3.2) 

where ypred,i are the outputs from the regression,  is the mean observed value, yobs,i are the 
corresponding observed values, and n is the number of compounds in the model set. The 
overall F-ratio determines the overall significance of the model and should be greater than 
2.8, where the larger the value, the more significant the correlation. 

F  ratio 

i
n (ypred ,i  y)2

DFSSR

i
n (yobs,i  y)2

DFSSE

 (3.3) 

where DFSSR is the degrees of freedom for the regression sum of squares, the number of 
parameters used in the regression. DFSSE is the degrees of freedom for the error sum of 
squares, meaning the number of observations minus the number of parameters used in the 
regression. The p value is the probability that correlation happened by chance. A p value less 
than 0.05 means there is a 95% chance that the correlation did not happen by chance and that 
it is significant. A small RMSE indicates a better fit, generally an RMSE of <0.5. 

RMSE 
i

n (ypred ,i  yobs,i)
2

n  
(3.4) 

Model Validation. Significant QSPR models were internally validated by using the leave-
one-out (LOO) cross-validation method in which one compound is excluded from the data set 
and the model correlated with the remaining data. This method was repeated n times for n 
compounds in the data set. The results from this validation were then combined and a single 
QSPR was produced, yielding a q2 value. A q2 value greater than 0.5 indicates a good fit, and 
a q2 value greater than 0.9 indicates an excellent fit (Eriksson et al., 2003). After LOO cross-
validation was conducted, the QSPR was externally validated by applying the model to the 
validation compounds at bench scale.  

3.2 Analytical Methods for Bulk Parameters and TOrCs 

3.2.1 Physicochemical Parameters 

3.2.1.1 pH and Conductivity 

pH was determined by using a Beckman 260 portable pH meter with combination of a gel-
filled electrode (Beckman, Fullerton, CA; Standard Method 4500-H+) (Clesceri et al., 1998). 
Conductivity was determined by using an YSI model 85 multimeter (YSI, Inc., Yellow 
Springs, OH; Standard Method 2510).  

3.2.1.2 Alkalinity 

Alkalinity was measured by using the Hach Alkalinity Kit. A 100-mL sample was titrated 
with 1.6N sulfuric acid to a pH of 4.3 by using the Hach digital titrator model 16900 (Hach, 
Loveland, CO). 
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3.2.2 Bulk Parameters 

3.2.2.1 Inorganic Anions 

Inorganic anions were determined by using a Dionex IS 90 Ion Chromatography system 
according to Standard Method 4110 B. The anions that were examined are fluoride, bromide, 
chloride, nitrate, phosphate, and sulfate. Ammonia was measured according to the Hach 
Nessler Method 8038 adapted from Standard Methods 4500-NH3 B and C (Clesceri et al., 
1998). Metals were determined by using a Perkin-Elmer Elan 6100 inductively coupled 
plasma mass spectrometry system (Standard Method 3125 B) (Clesceri et al., 1998). This 
method measured a suite of metals. These metals included Ag, Al, As, B, Ba, Be, Ca, Cd, Co, 
Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Sc, Se, Si, Sn, Sr, Ti, U, V, and Zn. 

3.2.2.2 TOC/DOC 

Total organic carbon (TOC)/DOC was quantified by using a Sievers 5310 TOC analyzer with 
autosampler (Ionics Instruments, Boulder, CO) according to Standard Method 5310 B  
(Clesceri et al., 1998). The samples were placed in 17-mL sample vials and were acidified 
with phosphoric acid. Measurements of TOC are based on calibration with potassium 
hydrogen phthalate standards. DOC was measured by the same procedure used for TOC, 
except the sample was prefiltered (0.45-m pore size). 

3.2.2.3 UV Absorbance and SUVA 

UV absorbance (UVA) was analyzed by using a Beckman UV/VIS spectrophotometer with a 
1-cm quartz cell (Standard Method 5910 B) (Clesceri et al., 1998). Samples were measured at 
wavelengths of 200−400 nm. The specific UVA (SUVA) is defined as the ratio between 
UVA (254 nm) and DOC.  

3.2.3 HPLC-DAD 

Aromatic organic compounds were quantified by using a Hewlett-Packard 1100 high-
performance liquid chromatography (HPLC) system equipped with ultraviolet diode array 
detection (UV-DAD) and C-18 reversed-phase column and by applying a variety of different 
methods depending on retention times and compound hydrophobicity. A solution of 340-
mg/L monobasic potassium phosphate (KH2PO4) and 3.8 mL of H3PO4 was used as a buffer. 
The methods initially utilized eluent concentration ranging from 5% methanol and 95% 
buffer to 50% methanol and 50% buffer, utilizing a greater initial concentration of methanol 
for hydrophobic compounds in order for separation to occur. UV optimization occurred prior 
to HPLC analysis. Samples for UV-DAD analysis were collected in 2-mL autosample vials 
and were stored at 4 °C pending analysis. Specific compound standards (0.1, 0.5, 1, and 5 
mg/L) were run before and after compound analysis for instrument quality check and 
calibration curve and for signs of compound degradation. Integration of peaks was performed 
manually. The detection limit for the UV-DAD was 0.1 mg/L. 

3.2.4 HPLC-RID 

A Hewlett-Packard 1050 HPLC system equipped with a 1047A refractive index detector was 
used to quantify sugars and alcohols. HPLC-refractive index detection (RID) quantifies 
concentration by determining the change in refractive index in each sample. Deionized water 
was utilized as the eluent, and no analytical column was employed for analysis. Compound 
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samples for UV-RID analysis were collected in 2-mL autosampler vials and were stored at 4 
°C pending analysis. Integration of peaks was performed manually. The detection limit for 
UV-RID analysis was 1 mg/L. 

3.2.5 LC/MS-MS 

Trace organic compounds were measured by LC with tandem mass spectroscopy (LC/MS-
MS) (Table 3.4) as described by Vanderford and Snyder (2006). This method analyzes 
pharmaceuticals and other trace organic compounds in water by isotope dilution LC/MS-MS. 
Analytes were extracted by using solid-phase extraction (SPE) followed by LC/MS-MS as 
described by Vanderford et al. (2003). The surrogate standards [13C3]-caffeine, [13C3]-
atrazine, [13C]-sulfamethazine, carbamazepine-d10,  [13C]-ibuprofen, [13C]-triclosan, and 
[13C2]-estradiol were spiked into the filtered samples at a concentration of 50 ng/L. Analytes 
were extracted in batches of six samples by using preconditioned 500-mg hydrophilic-
lipophilic balance cartridges. All extractions were performed by using an automated SPE 
system. The sample was then loaded (15 mL/min) onto the cartridges, after which the 
cartridges were rinsed with 5 mL of reagent water and then dried with a stream of nitrogen 
for 60 min. Next, the cartridges were eluted with 5 mL of 10/90 (v/v) methanol/methyl tert-
butyl ether (MTBE) followed by 5 mL of methanol into 15-mL calibrated centrifuge tubes. 
The resulting extract was concentrated with a gentle stream of nitrogen to a volume of 50 μL. 
Then 20 μL of a 2.5-mg/L solution of internal standards (diazepam-d5 and testosterone-d3) 
was added, and the extract was brought to a final volume of 1 mL by using methanol. The 
final concentration of the internal standards was 50 g/L. Detection limits for the target 
compounds are summarized in Table 3.4. 
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Table 3.4. Theoretical Detection Limit for LC/MS-MS Method 

Compounds 
Detection 

Limit (ng/L) 
Compounds 

Detection 
Limit 
(ng/L) 

Acetaminophen 10 N-Nitrosodibutylamine 1000 

Amitriptyline 10 NDMA 1000 

Atenolol 10 NDMA 1000 

Atrazine 10 N-Nitrosodipropylamine 1000 

Benzophenone 250 NDMA 1000 

Bisphenol A 50 N-Nitrosomorpholine 1000 

Caffeine 10 N-Nitrosopiperidine 1000 

Carbamazepine 100 N-Nitrosopyrrolidine 1000 

DEET 50 N-Nitrosodiphenylamine 1000 

Diclofenac 25 4-n-Nonylphenol 250 

Dilantin 50 Norfluoxetine 25 

Diphenhydramine 100 Oxybenzene 10 

17ß-Estradiol 6.25 Primidone 10 

Estriol 16 Progesterone 1 

Estrone 6.25 Propylparaben 10 

Ethynylestradiol 2.5 Sucralose 250 

Fluoexetine 10 Sulfamethoxazole 10 

Gemfibrozil 10 TCEP 10 

Ibuprofen  100 TCPP 25 

Ketoprofen 500 TDCPP 100 

Meprobamate 10 Testosterone 1 

Metformin 100 Triclocarban 10 

Methylparaben 10 Triclosan 10 

Naproxen 25 Trimethoprim 10 

Note: Detection limit determined by the lowest standard concentration that passes the signal-to-noise ratio (7:1). 

3.2.6 GC-ECD 

Trihalomethanes (THMs) and haloacetic acids were analyzed by gas chromatography coupled 
with an electron capture detector (GC-ECD) following EPA Methods 524.2 and 552.2, 
respectively. For EPA Method 551.1, 40 mL of sample solution was collected during the 
experiments from the appropriate sampling port in a clean 40-mL EPA vial with a TFE-lined 
screw cap. Once the sample was confirmed to be free of air, the vial was labeled and stored in 
a refrigerator at 4 °C pending analysis. No sample was ever stored for more than 7 days 
before extraction. During each extraction, a set of standards was prepared to provide a quality 
assurance check of the equipment and the procedure and to establish a calibration curve for 
the run. The set of standards included a series of concentrations designed to provide a 
calibration curve that included all concentrations in the samples. For sample extraction, 30 
mL of the solution was measured into a clean graduated cylinder. The volume remaining in 
the vial was then wasted, and the 30 mL in the graduated cylinder was poured back into the 
vial. To each vial 8 g of sodium chloride and 3 mL of MTBE were added, and the vials were 



 

WateReuse Research Foundation 65 

mixed on a vortex mixer for about 30 seconds, or until inspection indicated that all of the 
sodium chloride had dissolved. This sample was then placed in a rack and allowed to stand 
and develop an MTBE layer, while the rest of the samples and standards underwent the same 
procedure. For the extraction procedure, a pasteur pipette was used to extract 2 mL of the top, 
organic layer. This 2 mL was transferred into the appropriate autosampler vial, which was 
immediately capped and placed in a rack. After all samples had been extracted, the 
autosampler vials were placed in a freezer pending analysis. This freezing always occurred 
within 4 days of extraction. Samples were analyzed by using a GC-ECD. The temperature 
program included an initial temperature of 35 °C with a 4-min hold time. Subsequently, the 
temperature was ramped to 180 °C at 30 °C per min. Integration of the chromatographs was 
performed manually with a consistent technique and operator.  

3.3 Experimental Methods 

3.3.1 Bench-Scale Systems 

3.3.1.1 Recycle Mode 

Bench-scale experimentation was conducted by using a cross-flow stainless steel SEPA II 
(GE Osmonics) membrane-testing unit employing a 140-cm2 flat-sheet membrane (Figure 
3.4). The cell holder has a channel height of 31 mil, with the active layer of a membrane 
specimen having a width of 9.5 cm and length of 14.6 cm. A flow diagram illustrating the 
bench-scale unit is shown in Figure 3.3. A rotary vane pump head was utilized to deliver the 
feed solution from a temperature-controlled feed container at 1.5 L/min to the flat-sheet cell. 
A supervisory control and data acquisition (SCADA) system collected output signals from 
flow, pressure, and temperature sensors and controlled and maintained temperature set-points. 
A digital analytical balance was utilized to measure the permeate flow rate. 

 

Figure 3.4. SEPA II membrane testing unit employing flat-sheet membrane. 

New virgin membrane specimens were used for each experiment to minimize any variability 
in results. In addition, fouling effects were not considered in generating bench-scale rejection 
data. Membranes were flushed with 20 L of deionized water at 150 psi prior to rejection 
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experiments to remove any impurities. Spike solutions were added to the 20-L feed tank to 
obtain the desired feed concentration, about 700 g/L for the NF-270 membrane and 3 mg/L 
for the ESPA2 membrane. Rejection experiments were conducted at a constant feed flow rate, 
2 L/min, water temperature of 18 °C, and pH of 6.3. The pressure was increased from 
approximately 10 to 200 psi to obtain five permeate flux rates between 5 and 70 gfd for the 
NF-270 membrane and between 5 and 40 gfd for the ESPA2 membrane. An additional 12-gfd 
sample was collected after 18 h to verify that quasi-equilibrium was reached. After 1 h, 250 
mL of permeate was collected before sampling to allow the system to equilibrate. Duplicate 
samples were collected in the appropriate vials, depending on analytical method, from feed 
and permeate stream. Samples were stored at 4 °C pending analysis. A minimum of two 
experiments for each set of compounds was performed.  
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Figure 3.5. Bench-scale membrane testing unit process flow diagram. 

3.3.1.2 Once-Through Mode 

For the purposes of developing more-accurate rejection models, it is necessary to determine 
compound-specific rejection for a given system at a state of equilibrium. This situation 
involves reaching a point in an experiment where permeate and feed concentrations are 
independent of time. Many compounds tested during our research exhibited stable 
concentrations relatively quickly. For some compounds, however, feed and permeate 
concentrations failed to stabilize within the course of a 24-h experiment. Of the compounds 
considered, THMs displayed the most extreme case of concentration instability. In several 
experiments the rejection of these compounds dropped below 0, implying a higher 
concentration in the permeate stream than in the feed stream. Figure 3.6 depicts this rejection 
decline for bromodichloromethane (BDCM) during a recirculation experiment. This negative 
rejection was an artifact of the experimental setup and had to be remedied in order to 
understand the behavior of partitioning compounds like the THMs. 
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Figure 3.6. Rejection of BDCM by NF-270 membrane in recirculation experiments. 

Declining concentration in the feed solution was the main factor that caused negative 
rejection results in recirculation experiments. An example of the declining feed concentration 
observed for BDCM in recirculation experiments is shown in Table 3.5. Compound mass 
from the feed solution was continuously being lost because of adsorption onto various 
interfaces within the system and into the membrane matrix. Therefore, as the feed solution 
was recycled, it constantly returned to the feed tank with less mass. Increasing the flux rate 
increased the mass that was exposed to the membrane. Therefore, the rate of mass lost to the 
system increased with the increasing flux rate. This phenomenon made it impossible to 
compare compound rejection behavior against flux even if the concentration decline could be 
factored out. As a consequence, the team designed a system that eliminated the recirculation 
aspect of the experiments.  

The main objective in designing a new system was to provide a stable feed concentration to 
the membrane. In order to avoid recycling the feed water, a system was devised that did not 
require that permeate and concentrate streams be recycled. Two 500-gal tanks connected in 
parallel were filled with deionized water and were spiked with compounds to be tested. This 
solution was fed to the membrane cell after which both permeate and concentrate streams 
were wasted. Figure 3.7 illustrates the system with feed tanks in the background and 
membrane cell, pump, and computer in front. Experiments run by using this setup will be 
referred to as “once-through” experiments throughout the report. 
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Table 3.5. Feed Concentration Measurements Taken Throughout Three Recirculation 
Experiments with BDCM 

Exptl Flux Set-
Point 

No. of h after 
Startup 

Feed Concn (mg/L) 

6 gfd 
0.0 176 
5.8 114 

22.2 82 

12 gfd 

0.0 90 
2.9 92 
7.0 86 

27.3 24 

24 gfd 

0.0 136 
1.5 118 
5.3 104 
7.0 94 

 

 

 

Figure 3.7. Once-through experimental apparatus at Colorado School of Mines. 

With a feed flow rate of 1000 mL per min, these experiments could proceed for more than  
50 h before the feed water was exhausted. Table 3.6 presents the feed concentration values 
for BDCM during two once-through experiments. The data in this table revealed a steady 
decline in feed concentration over time. This same trend was observed for the three other 
THMs during once-through experiments. It is unclear what mechanism caused these feed 
concentration declines, but volatilization and partitioning to tank walls are probably 
responsible for most of the mass loss. 
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Table 3.6. Feed Concentration Measurements Taken Throughout Two Once-Through 
Experiments with BDCM 

Expt 1 Expt 2 

Time Feed Concn Time Feed Concn 

(h after 
startup) 

(μg/L) 
(h after 
startup) 

(μg/L) 

0 504 0 86.8 
1 500 1 77.0 
2 490 2 84.5 
4 474 3.5 72.3 
7 456 6 85.1 

22 367 7.5 78.9 
25 316 9.5 82.5 
27 294 24.5 13.1 
32 268 26.5 37.4 
47 228 29.5 69.3 
52 213 32.5 66.9 
53 215 33.5 62.0 
58 206 50.5 67.3 

59 206 51.5 61.9 

  55.5 56.2 

 

Although the concentration did steadily decrease throughout the experiments, the decline was 
not as rapid as observed in the recirculation experiments. In addition, mass loss was 
decoupled from the flux, which was not the case during recirculation experiments. In spite of 
the decline, rejection levels did show a stabilizing trend in once-through experiments. This 
observation leads to the conclusion that the feed concentration decline was slow enough to 
allow the permeate stream to reach steady state and to reflect a concentration gradient 
appropriate for that level. Analysis of the results of the THM experiments will be discussed in 
Section 4.1.3. 

3.3.1.3 Estimating Concentration Polarization 

The degree of concentration polarization during bench-scale experimentation was determined 
by employing two different methods, velocity variation method and the flux variation 
method. These methods are discussed later. 

Velocity Variation Method. A series of experiments was conducted on the basis of the 
velocity variation method adapted from Geraldes and de Pinho (2006) to estimate the intrinsic 
rejection. Velocity and hydraulic diameter calculations utilized methods from Schock and 
Miquel (1987). By using the bench-scale flat-sheet setup, caffeine, acetaminophen,  
2-naphthol, and resorcinol were separately examined as the feed flow rate was varied from  
1 to 7 L/min in increments of 1 L/min at constant permeate flux rate of 55 gfd. Experiments 
were conducted at constant water temperature (18.5°C) and a pH of 6.3. After 1 h elapsed and 
250 mL of permeate was collected to allow the system to equilibrate, sampling was 
conducted. Duplicate samples were collected in HPLC vials from feed and permeate streams 
and stored at 4°C pending analysis. A minimum of two experiments for each set of 
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compounds was conducted in order to confirm results. New flat-sheet membrane specimens 
were inserted for each velocity set-point. Rejection was quantified by using the HPLC UV-
DAD method. The coefficients for the Sherwood equation were calculated and are displayed 
in Equation 3.5. 

      (3.5) 

The concentration at the membrane surface and intrinsic rejection can be calculated by using 
Equations 3.6 and 3.7, respectively. 

        (3.6) 

        (3.7) 

Flux Variation Method. A series of experiments was conducted on the basis of the flux 
variation method adapted from Sutzkover et al. (2000). Applying the bench-scale flat-sheet 
membrane system, researchers varied permeate flux rates from 12 to 85 gfd at a constant feed 
flow rate by using a solution of sodium chloride spiked in deionized water. Experiments were 
conducted at a constant water temperature (18.5 °C) and pH of 6.3. After 1 h elapsed and 250 
mL of permeate was collected, sampling occurred. Duplicate samples were collected from 
feed and permeate streams and were stored at 4 °C pending analysis. A minimum of two 
experiments for each set of compounds was conducted in order to confirm results. New flat-
sheet membrane specimens were inserted for each flux set-point. Concentrations were 
quantified by using conductivity measurements. The coefficients for the Sherwood equation 
were calculated by using  
Equation 3.8.  

       (3.8) 

  

Method Analysis. The coefficients in the empirical correlations (Equations 3.5 and 3.8) 
obtained from the two methods described earlier resulted in large deviations between 
observed and intrinsic rejections, especially at high permeate flux rates. Even though these 
values were determined by two separate peer-reviewed methods, further analysis was 
conducted to evaluate whether these coefficients yielded unrealistic intrinsic rejections. It was 
observed that, at low Reynolds numbers, between 157 and 1090, rejections significantly 
changed; however, at higher Reynolds numbers, between 1090 and 1557, rejection increased 
by less than 1%. This finding suggests that the two peer-reviewed methods used to calculate 
the Sherwood correlation coefficients resulted in an overestimation of intrinsic rejection at 
high permeate flux rates. Assuming limited rejection was reached at a Reynolds number of 
1557, the coefficients were recalculated and yielded new coefficients as presented in 
Equation 3.9, which were used in this study.  

       (3.9) 
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3.3.2 Pilot-Scale Membrane System  

A pilot-scale NF/RO system at Colorado School of Mines (CSM) was used for controlled 
spiking studies in tap water to study the rejection of select nitrosamines by NF membranes. 
The pilot-scale system is a two-stage membrane unit that was designed to mimic a two-stage 
full-scale treatment system. The unit was built in a four-stage array configuration to minimize 
space and consists of six pressure vessels, four in the first stage and two in the second stage. 
The pilot-scale unit requires 21 4040 spiral-wound elements, with 14 elements in the first 
stage and 7 elements in second stage. The system is equipped with a SCADA system; has a 
variable speed feed pump; and can be operated at different recoveries, feed flow rates, and 
permeate flux rates. On the basis of the system’s configuration, it requires a feed flow rate 
between 15 and 25 gpm and therefore was operated in recycle mode, where permeate and 
concentrate streams were returned to the feed water tank. The system is fed water from two 
500-gal feed tanks that are temperature controlled by using an in-house chilled process water 
stream. The pilot-scale system has multiple sampling locations that allows for samples to be 
collected from the feed, permeate from each pressure vessel, combined permeate from the 
first stage, combined permeate from the second stage, total combined permeate, concentrate 
from pressure vessels, first-stage combined concentrate, and total combined concentrate. A 
schematic and picture of the pilot-scale unit with sampling locations are presented in Figures 
3.8 and 3.9, respectively. 

 

Figure 3.8. Schematic of pilot-scale membrane unit and sampling locations.  
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Figure 3.9. CSM’s pilot-scale membrane skid. 

3.3.3 Full-Scale Sampling Campaign at Orange County Water District 

The Orange County Water District (OCWD), CA, Groundwater Replenishment System 
(GWRS) Advanced Water Purification Facility (AWPF) utilized reclaimed water after 
primary and secondary treatment. Primary wastewater treatment consists of coagulant 
addition and sedimentation. Following primary clarification, the primary effluent flow stream 
was split and oxidized by using two secondary treatment processes: activated sludge and 
trickling filters. Secondary clarifiers at the activated sludge system and trickling filters 
produced fully oxidized and clarified secondary effluent. Subsequently, the effluent is 
pumped to the GWRS AWPF, where it is treated with MF, RO, and UV-peroxide advanced 
oxidation processes. The secondary treated wastewater was first chloraminated prior to MF. 
The water was then treated by MF by using Siemens/Memcor submerged hollow-fiber 
membranes with a maximum nominal pore size of 0.2 µm. The water is then diverted to RO 
(ESPA2 membranes; Hydranautics, Oceanside, CA) system (Figures 3.10 and 3.11). 
Upstream of the RO process, the flow was pretreated by adding sulfuric acid for pH 
adjustment and scaling inhibitor to prevent precipitation of sparingly soluble salts and by 10-
µm-pore-size cartridge filtration. The system was designed to operate at pH 6.8, an 85% 
recovery rate, and at a permeate flux of 12 gfd.  
 

Figure 3.10. OCWD’s RO membrane gallery. 
 

Figure 3.11. OCWD’s RO membrane elements 
within pressure vessels.
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 3.3.4  Challenges 

Past work developing models to describe the rejection of organic contaminants has generally 
used flat-sheet membrane configurations for experimentation (Kiso et al., 1996, 2000, 2001a; 
Kimura et al., 2003a and 2003b). Flat-sheet material can be obtained through two means: the 
membrane manufacturers provide dry, flat-sheet specimens, or flat-sheet material can be cut 
out of spiral-wound elements. As was found by a study on modeling organic contaminant 
removal by KIWA (Hofman et al., 2007), the properties of flat-sheet material can vary 
significantly throughout a spiral-wound element. These differences can affect rejection 
performance and ultimately lead to the development of models that are not applicable to 
large-scale systems with large amounts of membrane area. Because one objective of this 
project was to develop modeling approaches at bench scale and to upscale the approaches to 
modeling a pilot-scale system, it was imperative that the flat-sheet material be representative 
of the membrane properties of an entire large-scale system.  

3.4.4.1 Flat-Sheet Specimens 

Two years before the start of this project, experiments were conducted to quantify the 
removal of organic contaminants by the NF membrane (Dow/Filmtec). The NF membrane 
was obtained in rolls of dry, flat-sheet material from Dow/Filmtec, and rejection of a variety 
of compounds was determined as a function of permeate flux. During this study, 21 spiral-
wound elements (4 in. × 40 in.) were obtained for pilot-scale experiments and multiple spiral-
wound elements were later sacrificed for bench-scale experiments. Unfortunately, the results 
obtained for the rolls of flat-sheet material were not comparable to results obtained by using 
the membranes cut from spiral-wound membranes (Figure 3.12). For many of the compounds 
tested, the rejection using the flat-sheet material provided by the manufacturer yielded 
significantly lower rejection than did flat sheets cut from the spiral-wound elements. Because 
these experiments were performed under identical conditions at bench scale, possible 
explanations for this discrepancy include that the manufacturer changed the polymer 
chemistry during the 2-year period, the roll of flat-sheet material was flawed, the surface of 
the spiral-wound material was modified by the manufacturer, or the spiral-wound membrane 
was modified (e.g., compacted) during limited pilot-scale experiments.  

Additional membrane−organic solute rejection experiments were conducted with NF-270 
membranes obtained in flat-sheet rolls from the manufacturer and also cut from virgin spiral-
wound NF-270 modules (4 in. × 40 in.). Similar results were observed (Figure 3.13), with the 
membranes cut from the spiral-wound elements providing greater rejection for the solutes 
investigated. Whatever the explanation, the discrepancy highlights a few difficulties 
associated with developing membrane models. These include the following: 

 Models developed from a rejection data set may not be applicable for a data set 
generated with the same membrane type but different flat-sheet material. 

 Manufacturers may alter membrane chemistries and properties, which may 
significantly affect rejection performance and subsequently the applicability of a 
previously developed modeling approach. 

 Upscaling results obtained at bench scale to larger-scale systems may be difficult 
because of the large amount of membrane area in large systems and associated 
variability. 
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Figure 3.12. Rejection of acetaminophen by NF membrane (Dow/Filmtec) obtained in different 
configurations.  
Note: Experiments were conducted at 18.5 °C.	
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Figure 3.13. Rejection of neutral organic solutes by NF-270 membrane (Dow/Filmtec) obtained 
in different configurations.  
Note: Experiments were conducted at 18.5 °C and a permeate flux rate of 12 gfd. 
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Chapter 4 

Bench-Scale Rejection Database 

4.1 Bench-Scale Experiments to Augment Rejection Database 

Bench-scale experiments were conducted with selected target compounds (see Table 3.2) to 
determine their rejection behavior using representative NF and RO membranes. The 
compounds investigated, listed in Table 3.2, included zwitterions and HN and HoN, neutral, 
negatively charged, and positively charged substances. The rejection behavior was expressed 
as percent removal, and solute transport parameters were determined that are specific to 
certain modeling approaches. This information was compiled in a rejection database that 
provided the foundation to test and improve various modeling approaches with the aim to 
mathematically describe and ultimately predict rejection. The NF-270 membrane from 
Dow/Filmtec was selected as a representative NF membrane because this membrane had been 
employed in previous pilot-scale studies using reclaimed water and exhibited excellent 
rejection performance for organic solutes, low fouling propensities, and a significantly lower 
specific flux than conventional RO membranes (Bellona and Drewes, 2007; Bellona et al., 
2008). The ESPA2 membrane from Hydranautics was selected as a representative LPRO 
membrane because this membrane is employed at several full-scale water reclamation 
facilities. 

The following sections describe the rejection behavior of the target solutes selected for this 
study. The results of these experiments are presented by considering expected rejection 
mechanisms and also by highlighting those compounds that exhibited strong 
solute−membrane interactions. The findings from these experiments were compiled in a 
rejection database that presented the foundation for rejection modeling approaches for the 
solute groups described in Chapter 5. 

4.1.1  Rejection of Solutes with Expected Behavior 

4.1.1.1 Solute Rejection Versus Flux for NF and RO Membranes 

Observed and intrinsic rejection was calculated for all compounds at each permeate flux rate 
evaluated for both NF-270 and ESPA2 membranes (figures for all compounds in Appendices 
E and F for the NF-270 and ESPA2 membranes, respectively). Compounds that have minimal 
interactions (i.e., adsorptive effects) with the membrane exhibit increased rejection with 
increased permeate flux for the NF-270 membrane as illustrated with acetaminophen 
rejection in Figure 4.1. With a small increase in permeate flux, a large increase in rejection 
was observed. For example, as the permeate flux rate increased from 5 to 12 gfd, 
acetaminophen rejection increased from 19 to 30%. A similar rejection behavior was 
observed by Agenson et al. (2003). It is worth noting that average deviation values for flux 
and rejection (Figure 4.1) were calculated from replicate experiments by using different 
membrane specimens cut from the same spiral-wound element. Permeate flux average 
deviations are due to the difficulty in achieving exact permeate flux for replicate experiments. 
Similar behavior was observed with the ESPA2 membrane, illustrated with NDMA rejection 
in Figure 4.2. As the permeate flux increased from 4 to 8 gfd, NDMA rejection increased 
from 35 to 47%.  
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As discussed in Chapter 2, for the permeate flux range evaluated during the study, the 
transport of solutes towards the membrane is greater than diffusive transport away from the 
membrane. Compared to the bulk solution (i.e., feed water) this phenomenon causes an 
increased concentration of solutes at the membrane surface and is termed concentration 
polarization (Hofman et al., 2007; Sutzkover et al., 2000). Although observed rejection is 
linked to the concentration of solutes in the bulk solution, intrinsic rejection (Equation 2.11) 
is linked to the concentration of the solute at the membrane surface, which allows for the 
calculation of rejection in the absence of concentration polarization effects. Concentration 
polarization increases with increased permeate flux; therefore, the difference between 
observed rejection and intrinsic rejection becomes greater at higher permeate flux  
(Figures 4.1 and 4.2). 

Although the majority of compounds with minimal membrane interactions exhibited 
increasing rejection with increasing flux, compounds that are highly rejected (greater than 
90%) display rejection that does not change significantly with increasing permeate flux. As 
presented in Figure 4.3, observed and intrinsic rejection for estriol for the NF-270 membrane 
remains relatively flat with various permeate flux rates. The hydrophobic estriol  
(Log D = 2.94 at pH 6) with a molecular weight of 288.4 g/mol exhibited rejection greater 
than 90% and did not exhibit decreasing rejection over time, contradicting the observation 
from Braeken et al. (2005). Braeken et al. (2005) observed rejection of hydrophobic 
compounds decreasing over time because of adsorption to the membrane; however, this effect 
does not seem to apply to all hydrophobic compounds. This phenomenon will be discussed in 
further detail in Section 4.1.3. It should be noted that the variation between duplicate 
rejection experiments for estriol was minimal; therefore, error bars are too small to be seen in 
Figure 4.3.  

 

Figure 4.1. Average bench-scale intrinsic and observed rejection over a range of permeate fluxes 
for acetaminophen for NF-270 membrane.  
Note: Error bars represent average deviation values calculated from replicate experiments. 

Compounds that exhibit relatively high rejection (greater than 90%) for the ESPA2 
membrane also display rejection that does not change significantly with permeate flux. 
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Presented in Figure 4.4, ciprofloxacin is rejected by 98% independent of permeate flux rate. 
This was the case for 90% of the compounds tested with the ESPA2 membrane, exhibiting 
greater than 90% rejection because of the small pores of the ESPA2 membrane. 

 

Figure 4.2. Intrinsic and observed rejection as a function of permeate flux for NDMA for  
ESPA2 membrane. 

 

 
 

Figure 4.3. Intrinsic and observed rejection for estriol as a function of permeate flux for  
NF-270 membrane. 



80  WateReuse Research Foundation 

 

Figure 4.4. Intrinsic and observed rejection as a function of permeate flux for ciprofloxacin for 
ESPA2 membrane. 

Benzyl alcohol exhibited increased rejection with increasing permeate flux for the NF-270 
membrane (Figure 4.5); however, initial rejection was observed to be negative, suggesting the 
concentration in the permeate was higher than the concentration in the feed. Because 
observed rejection takes into account only the feed and permeate concentration, a large 
concentration buildup at the membrane surface could result in negative observed rejection. 
Hydrophilic benzyl alcohol (Log D = 1.01, pH 6) is composed of an aromatic ring with an 
attached hydroxyl group. Williams et al. (1999) reported that aromatic structures with an 
attached hydroxyl group have strong affinity to a membrane surface. Matsuura and Sourirajan 
(1971) also reported this adsorption phenomenon for these types of solutes. 
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Figure 4.5. Intrinsic and observed rejection of benzyl alcohol as a function of permeate flux for  
NF-270 membrane. 

4.1.1.2 Rejection Due to Steric Exclusion 

As discussed previously (see Chapter 2), the rejection of nonionic organic compounds (i.e., 
HN, HHoN, and HoN) is mainly influenced by steric effects (Agenson et al., 2003; Bellona et 
al., 2004; Kimura et al., 2004; Van der Bruggen et al., 1999). The observed rejection of 
ethanol, glycerol, and glucose for the NF-270 membrane is presented in Figure 4.6 as a 
function of permeate flux rate. These compounds exhibit increasing rejection with increasing 
permeate flux. Rejection also increases for each compound with increasing molecular weight: 
glucose (molecular weight of 180 g/mol) exhibits the highest rejection, glycerol exhibits 
moderate rejection (molecular weight of 92 g/mol), and ethanol (molecular weight of 46 
g/mol) exhibits the lowest rejection. This behavior indicates that steric exclusion is the main 
mechanism determining rejection for these nonionic compounds. Similar behavior, though 
less pronounced, was observed with the ESPA2 membrane; ethanol, glycerol, and glucose 
exhibit increasing rejection with increasing molecular weight (Figure 4.7). These compounds 
exhibit the same behavior through both membranes; however, compounds rejected by the 
ESPA2 membrane exhibit greater rejection than did those rejected by the NF-270 membrane, 
which is likely because the EPSA2 membrane has smaller pores. 

Rejection due to steric effects for the NF-270 membrane is also illustrated in Figure 4.8 for 
caffeine (molecular weight of 194.2 g/mol) exhibiting the highest rejection, 1-
naphthalenemethanol (molecular weight of 158.2 g/mol) exhibiting moderate rejection, and 
resorcinol (molecular weight of 110.1 g/mol) exhibiting the lowest rejection. Rejection due to 
steric effects for the ESPA2 membrane is presented in Figure 4.9 with NDMA, N-
nitrosomethylethylamine (NMEA), and N-nitrosopyrrolidine (NPYR). NPYR (molecular 
weight of 100.1 g/mol) exhibited the highest rejection, NMEA (molecular weight of 88.1 
g/mol) exhibited moderate rejection, and NDMA (molecular weight of 74.1 g/mol) exhibited 
the lowest rejection. Compound rejection increased with increasing molecular weight. 
Kimura et al. (2004) and Agenson et al. (2003) also reported increasing rejection with 
increasing molecular weight for neutral compounds that do not exhibit adsorptive effects. 
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From findings presented in Figures 4.6 and 4.9, it is revealed that compounds with similar 
molecular weights are rejected to different degrees by the NF-270 and ESPA2 membranes.  

The rejection of select HN compounds at a permeate flux of 12 gfd for the NF-270 membrane 
(24 h after startup) with increasing molecular weight is presented in Figure 4.10. For these 
compounds, rejection increased with molecular weight, confirming findings reported by 
Kimura et al. (2004) and Agenson et al. (2003). In addition to results presented in Figure 4.6, 
a significant increase in rejection occurred after 180 g/mol, indicating that the MWCO of the 
NF-270 membrane is approximately 180 g/mol. The rejection of the same HN compounds at 
a permeate flux of 12 gfd for the ESPA2 (24 h after startup) with increasing molecular weight 
is presented in Figure 4.11. All compounds are greater than 90% rejected, except for NDMA 
(molecular weight of 74.1 g/mol). This finding indicates that the “effective MWCO” for the 
ESPA2 membrane is between 74.1  and 108.1 g/mol, much lower than the MWCO for the 
NF-270 membrane. 

Rejection of HoN compounds at a permeate flux of 12 gfd 24 h after experiment startup is 
presented in Figure 4.12 for the NF-270 membrane (molecular weight and Log Kow in 
parentheses). For the relatively hydrophobic compounds (i.e., Log Kow > 3), a clear trend of 
increasing rejection with increasing molecular weight was not observed. Hydrophobic 
compounds with a molecular weight greater than 314 g/mol, such as progesterone, exhibited 
high rejection (greater than 90%). However, if one considers molecular weight alone, most of 
the hydrophobic compounds exhibited lower rejection than what was observed for the 
hydrophilic compounds. For example, the relatively hydrophilic compound TCEP (Log D of 
0.48 at pH 6), with a molecular weight of 285.5 g/mol, exhibited 80% rejection, although 
triclosan (Log D of 5.17 at pH 6), with a molecular weight of 289.5 g/mol, had only 50% 
rejection. Lower-than-expected rejection of hydrophobic compounds with molecular weights 
greater than the MWCO of a membrane was also reported by Agenson et al. (2003). This 
finding indicates that, for these compounds, additional solute−membrane interactions besides 
steric exclusion may be important. 
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Figure 4.6. Observed rejection as a function of flux for ethanol, glycerol, and glucose for  
NF-270 membrane. 

 
Figure 4.7. Observed rejection as a function of flux for ethanol, glycerol, and glucose for  
ESPA2 membrane. 
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Figure 4.8. Observed rejection as a function of permeate flux for resorcinol, 1-
naphthalenemethanol, and caffeine for NF-270 membrane. 

 

 
Figure 4.9. Observed rejection as a function of permeate flux for NDMA, NMEA, and NPYR for 
ESPA2 membrane. 
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Figure 4.10. Observed rejection for HN compounds (molecular weight) at 12 gfd for NF-270 
membrane 24 h after startup. 

 

 
Figure 4.11. Observed rejection for HN compounds (molecular weight) at 12 gfd for ESPA2 
membrane 24 h after startup. 
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Figure 4.12. Observed rejection for compounds that are HoN (molecular weight, Log Kow) at 12 
gfd for NF-270 membrane 24 h after startup. 

4.1.1.3 Electrostatic Exclusion 
High removal (greater than 80%) was observed for the majority of the ionic compounds (i.e., 
HCN, HCP, HCNP) for the NF-270 membrane (Figure 4.13). All ionic compounds exhibited 
greater than 80% removal for the ESPA2 membrane (Figure 4.14). Negatively charged 
compounds are mainly rejected because of the electrostatic repulsion from the negatively 
charged membrane surface, exhibiting greater than 85% rejection for the NF-270 membrane 
and greater than 95% rejection for the ESPA2 membrane. The zwitterion compounds (HCNP) 
exhibited behavior similar to that of the negatively charged compounds, with most exhibiting 
rejection greater than 80% for both membranes. Removal rates for the positively charged 
compounds (HCP) were variable and ranged from 60 to >99% for the NF-270 membrane and 
80 to 100% for the ESPA2 membrane. The lower-than-expected rejection for positively 
charged compounds was also reported by Verliefde et al. (2007). Positively charged 
compounds are hypothesized to be attracted to the negatively charged membrane surface, 
allowing for permeation through the membrane after a concentration layer builds. The 
concentration layer of positively charged compounds at the membrane surface can also result 
in lower observed rejection because observed rejection takes into account only the feed and 
permeate concentrations. However, low rejection was not observed for all positively charged 
compounds, as some were rejected close to >99%. Verliefde et al. (2007) observed higher 
rejection of compounds with an increase in compound concentration and theorized shielding 
effects were the cause. Positively charged compounds can shield the negatively charged 
membrane surface, leading to a lower concentration of positively charged compounds at the 
membrane surface and, therefore, result in higher observed rejection.  
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Figure 4.13. Observed rejection for ionic compounds at 12 gfd: negatively charged (HCN), 
positively charged (HCP), and zwitterions (HCNP) as a function of molecular weight for NF-270 
membrane. 

 
Figure 4.14. Observed rejection for ionic compounds at 12 gfd: negatively charged (HCN), 
positively charged (HCP), and zwitterions (HCNP) as a function of molecular weight (ESPA2 
membrane). 

Negatively charged compounds exhibited greater rejection based on their size, presumably 
because of electrostatic interactions with the membrane. For example, negatively charged 
compounds displayed greater rejection for the NF-270 membrane than did nonionic 
compounds of similar molecular weight (Figure 4.15). The rejection of negatively charged 
solutes still slightly increased with increasing molecular weight, indicating that steric 
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exclusion might still affect rejection for these compounds. Ozaki and Li (2002) also observed 
negatively charged compounds exhibiting higher rejection than did nonionic compounds. 

 

 
Figure 4.15  Observed rejection of negatively charged and neutral compounds with similar 
molecular weights for NF-270 membrane. 

4.1.2 Rejection of Solutes Exhibiting Adsorptive Effects During Recycle 
Experiments 

During bench-scale rejection experiments, compounds with adsorptive interactions behaved 
differently from compounds that are rejected solely by steric interactions for the NF-270 
membrane. Adsorptive effects were not observed for the ESPA2 membrane because of the 
high rejection (greater than 90%) exhibited for the majority of the compounds independent of 
permeate flux. Adsorptive effects from using NF-270 membrane are presented in Figure 4.16 
for the rejection of two nonionic compounds with similar molecular weights, 2-naphthol 
(molecular weight = 144.2 g/mol) and triethylene glycol (molecular weight = 150.2 g/mol). 
Observed rejection values are presented over the range of permeate fluxes evaluated with a 
sampling order of 5, 28, 50, 70, and 12 gfd with an additional 12-gfd sample collected 18 h 
after the first 12-gfd sample. Because of steric effects, these two compounds were expected to 
be similarly removed. However, 2-naphthol with a Log D of 2.71 had significantly lower 
rejection than triethylene glycol with a Log D of -1.87 (Figure 4.16) and also exhibited 
decreased rejection over time, which is likely due to adsorption (i.e., rejection decreases as 
the membrane becomes saturated). Braeken et al. (2005) observed a similar behavior for 3,4-
methylnitrophenol, where rejection decreased significantly over time. Because 3,4-
methylnitrophenol and 2-naphthol do not behave like triethylene glycol, different modeling 
approaches may be required to describe rejection of compounds exhibiting adsorptive effects.  
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Compounds exhibiting adsorptive effects can also exhibit different behavior with respect to 
adsorptive effects among each other. Rejection efficiencies for two HoN compounds, 
triclosan (Log D of 5.17 and molecular weight of 289.5 g/mol) and 4-n-nonylphenol (Log D 
of 6.17 and molecular weight of 220.4 g/mol), are plotted as a function of permeate flux in 
Figure 4.17 for the NF-270 membrane. Both compounds have molecular weights above the 
MWCO of the NF-270 membrane. Nevertheless, the solutes exhibited different rejection 
behavior. Observed rejection for 4-n-nonylphenol stayed relatively constant at 85% in the 
first 12-gfd permeate sample; however, a 15% rejection decrease was observed for the second 
12-gfd sample collected after 18 h (circled point in Figure 4.17). Triclosan initially exhibited 
high rejection (98%), but rejection decreased over time (as well as with increasing flux rate). 
Rejection decreased by 47% from the first 12-gfd sample to the second 12-gfd sample 
collected 18 h later (circled point in Figure 4.17).  

About 15% of compounds of all solutes tested exhibited adsorptive effects when the NF-270 
membrane was used, and these are summarized in Table 4.1 with select solute properties 
(molecular weight and Log D [log Kow at pH 6]). Two different levels of membrane retention 
interactions were qualified: moderate and extreme. Compounds with moderate interactions 
are those with increased rejection and increasing permeate flux but greater than 5% decrease 
in rejection at 12 gfd after 18 h. Compounds with extreme interactions exhibited decreased 
rejection over time, and rejection was observed to be independent of permeate flux. 
Compounds with moderate and extreme interactions were comprised of positively charged 
compounds and neutral compounds with various molecular weights and log D values. 
Positively charged compounds could be permeating through the membrane after 18 h because 
a concentration polarization layer occurred because of electrostatic interactions between the 
solute and the negatively charged membrane as proposed by Verliefde et al. (2007).  

Previous researchers have attempted to predict rejection for compounds exhibiting 
solute−membrane interactions by correlating Log Kow values with solute rejection (Braeken et 
al., 2005; Kiso et al., 2001a; Verliefde et al., 2007). Rejection of neutral compounds during 
NF-270 membrane bench-scale experiments was compared to Log Kow values, and results are 
presented in Figure 4.18. Based on these results, no correlation was observed. This 
observation is consistent with findings reported by Kiso et al. (2001a); however, Braeken et 
al. (2005) and Verliefde et al. (2007) observed a decrease in rejection with increasing Log 
Kow values. Even though Log Kow does not directly correlate to rejection, compounds with a 
Log Kow value above 2 tend to adsorb to the membrane material.  

Of all solutes tested, 70% of the compounds with adsorptive effects are composed of aromatic 
rings with an attached proton donating group. Williams et al. (1999) and Matsuura and 
Sourirajan (1971) also observed these compounds exhibiting adsorptive effects during 
membrane filtration. These compounds have the ability to form hydrogen bonds with 
functional groups on the membrane surface, similar to water molecules, which results in 
adsorption and partitioning through the membrane. Chloroform and bromoform are relatively 
hydrophobic and also exhibit adsorptive effects, which is consistent with findings observed 
by Kiso et al. (2001b). 
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Figure 4.16. Observed rejection as a function of permeate flux for 2-naphthol and triethylene 
glycol for NF-270 membrane.  
Note: The sampling order of permeate flux was 5, 28, 50, 70, 12, and 12 gfd (18 h after the first 12-gfd sample). 

 

Figure 4.17. Observed rejection for triclosan and 4-n-nonylphenol as a function of permeate flux 
for NF-270 membrane.  
Note: The sampling order of permeate flux was 5, 28, 50, 70, 12, and 12 gfd (18 h after the first 12-gfd sample). 

 

2-Naphtol Triethylene Glycol
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Table 4.1. Compounds that Exhibit Adsorptive Effects Including Their Molecular 
Weight and Log D at pH 6 

Compound Name Class 

Level of 
Interaction 

with 
Membrane 

12-gfd 
Rejection 

12-gfd 
Rejection 
after 18 h 

Mol 
Wt 

Log D(6) 

Imiquimod HCP Moderate 0.94 0.86 240.3 1.76 

Diltiazem HCP Moderate 0.97 0.88 414.5 0.92 

Trazodone HCP Moderate 0.88 0.80 371.9 0.85 

Metformin HCP Moderate 0.74 0.60 129.2 -4.31 

TCPP HoN Moderate 0.97 0.94 430.9 1.79 

N-Nitrosodibutylamine HHoN Moderate 0.77 0.69 158.2 2.55 

4-n-Nonylphenol HoN Moderate 0.87 0.70 220.4 6.19 

Oxybenzone HoN Moderate 0.97 0.91 228.3 3.63 

Estrone HoN Moderate 0.94 0.90 270.4 3.69 

Resorcinol HN Moderate 0.04 0.02 110.1 0.76 

Bisphenol A HoN Moderate 0.77 0.74 228.3 3.43 

Ethynylestradiol HoN Moderate 0.96 0.93 296.4 4.52 

17ß-Estradiol HoN Moderate 0.92 0.89 272.4 4.13 

Trimethoprim HCP Extreme 0.78 0.71 290.3 -0.42 

Chloroform HN Extreme 0.54 0.26 119.4 1.76 

Bromoform HHoN Extreme 0.91 0.41 252.7 2.29 

Dibromochloromethane HHoN Extreme 0.85 0.21 208.3 2.2 

Bromodichloromethane HHoN Extreme 0.79 0.15 163.8 2.02 

Benzyl acetate HN Extreme 0.49 0.27 150.2 1.93 

Benzophenone HoN Extreme 0.76 0.66 182.2 3.18 

n-Nitrosodiphenylamine HoN Extreme 0.82 0.53 198.2 3.13 

Methylparaben HN Extreme 0.30 0.26 152.2 1.86 

Benzyl alcohol HN Extreme 0.01 0.08 108.1 1.03 

Propylparaben HHoN Extreme 0.43 0.32 180.2 2.92 

2,4-Dichlorophenol HoN Extreme 0.36 0.18 163.0 2.99 

2-Fluorophenol HN Extreme 0.16 0.01 112.1 1.71 

2-Phenylphenol HoN Extreme 0.33 0.24 170.2 2.94 

Triclosan HoN Extreme 0.77 0.50 289.5 5.17 

2-Naphthol HHoN Extreme 0.18 0.09 144.2 2.71 
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Figure 4.18. Observed rejection for neutral compounds as a function of Log D (pH = 6) at 12 gfd 
for NF-270 membrane 24 h after startup. 

4.1.3 Rejection of Solutes Exhibiting Adsorptive Effects During Once-Through 
Experiments 

Depending on the class of solute, it can take considerable time to reach stable or equilibrium 
conditions. Given that full-scale membrane applications operate continuously with a single 
set of membranes for long periods, it is the steady-state rejection, not the initial rejection, that 
is relevant for performance assessments. Bench-scale rejection experiments with 
recirculation, discussed in Section 4.1.2, proved to be limited in their ability to demonstrate 
equilibrium rejection for compounds that reach equilibrium slowly. To solve the problems 
associated with the recycling experiments, a once-through system was devised. The system 
was implemented specifically to examine THMs, which are representing extreme examples of 
delayed equilibrium during membrane experiments. A thorough explanation of the once-
through experimental apparatus and of the problems it was designed to resolve is provided in 
Section 3.3.1.2.  

For the THM compounds, equilibrium rejection conditions were not observed during the span 
of the once-through experiments using the cross-flow apparatus, although it appeared that 
rejection was stabilizing towards the end of the experiment after 55 h (Figures 4.19 and 4.20). 
This transient behavior can cause problems in membrane research and operation, because 
short-term experiments that may fail to adequately characterize long-term rejection of a 
contaminant are commonly performed. If transient rejection is used to characterize the 
removal of a constituent by a given membrane, the rejection levels for the 
compound/membrane pair will be overpredicted (Kimura et al., 2003a). The goal of this 
project was to develop a representative rejection data set so that rejection values from a full-
scale treatment system that has been using the same set of membranes for extended periods 
could be characterized. 

Recent publications have hypothesized that the decline in rejection level occurs although 
molecules “fill” specific sites within the membrane matrix, of which there are a limited 
number (Braeken et al., 2005). Steady-state rejection for these compounds is the result of a 
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membrane reaching a saturation point, after which there is no site to which a molecule can 
attach and become “stalled.” With the absence of available binding sites, the molecule will 
diffuse across the membrane without interrupting or replacing another molecule, forcing it 
into solution (Steinle-Darling and Reinhard, 2008). Although this phenomenon can be 
observed during simple, yet sufficiently long, bench-scale experiments, the reasons and 
mechanisms behind it are still poorly understood. It is commonly accepted that uncharged, 
“moderately” hydrophobic compounds are more prone to these types of interactions (Steinle-
Darling and Reinhard, 2008). However, there have been few hypotheses that go beyond this 
vague generalization and attempt to quantify the specific characteristics that are responsible 
for this behavior. 

Flow-through experiments for THMs depict a clear, declining rejection trend versus time for 
both membranes evaluated (NF-270 and ESPA2), indicating that these solutes form strong 
solute−membrane interactions and partition through the membrane. Results presented in 
Figures 4.19 and 4.20 illustrate THM rejection versus time during two flow-through 
experiments at a permeate flux of 12 gfd with the NF-270 and the ESPA2 membranes, 
respectively. Although the trend of decreasing rejection was observed for both membranes, 
the magnitude of the drop in rejection was dependent upon the type of membrane. With the 
ESPA2 membrane, rejection of the THMs stabilized near the end of the experiments (at 
approximately 70%), although rejection by the NF-270 membrane appeared to be decreasing 
at the termination of the experiment. The higher rejection by the ESPA2 membrane than by 
the NF-270 membrane was likely associated with a denser polymer matrix that inhibits 
partitioning and contributes to the high monovalent salt rejection. Neither of the experiments 
provides conclusive data on final, steady-state rejection values, though the curve does 
indicate that the end of the transient behavior was nearly achieved by the end of each 
experiment. More experimental run time would be necessary to provide definitive steady-
state rejection values. Unfortunately, in the once-through apparatus, tank capacity limited the 
ability to run longer experiments. 



94  WateReuse Research Foundation 

 

 

Figure 4.19. Rejection of THMs over time by NF-270 membrane at a flux of 12 gfd. 

 

 
Figure 4.20. Rejection of THMs over time by ESPA2 membrane at a flux of 12 gfd. 
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The data presented in Figures 4.19 and 4.20 demonstrate the importance of molecular 
structure in the transient behavior of the THMs. It is evident that the time it takes for rejection 
levels to drop varied among the different compounds. Bromoform and chloroform were both 
rejected by the NF-270 membrane at percentages between 10 and 20% at 50 h. However after 
10 h, bromoform exhibited a rejection of 60%, although chloroform has already reached its 
final rejection level near 10%. The trend is less clear from the ESPA2 membrane 
experimental data, but upon closer inspection, it is obvious that, especially in the early hours, 
the rejection of chloroform decreased more quickly than that of bromoform. It is evident from 
these experiments that the larger the solute, the longer it takes for the compound to reach 
steady state. This observation will be important to consider in the design of future 
experiments as it adds a complication to the experimental process used in determining steady-
state rejection values for various compounds. Larger, heavier partitioning compounds likely 
require long experimental run times to reach steady state. 

By the end of one of the membrane experiments performed with the ESPA2 membrane, the 
feed water spiked with THMs that had been running through the system for multiple days was 
replaced with deionized water. Permeate samples were taken at timed intervals and were 
tested for THM concentrations. Summarized results from this experiment are presented in 
Figure 4.21. It appeared that there was a great deal of mass accumulated within the 
membrane, as THMs continue to occur in permeate samples collected for hours after the 
spiked feed water was replaced with deionized water.  

The fact that THM permeate concentration decreased at a greater rate for the smaller solutes 
provides further evidence of the hindered transport of larger THMs through the membrane. 
The permeate concentration of each compound in the final sample is plotted against its 
respective molar mass in Figure 4.22. Although bromoform was quantified at relatively high 
concentrations in the permeate water at the conclusion of the experiment, the concentration of 
chloroform almost reached zero. This observation is the opposite of what was observed for 
rejection experiments; i.e., the same phenomenon that hinders the achievement of steady-state 
rejection for the larger THMs was likely responsible for the continual leaching of THMs from 
the membrane. Larger molecules diffuse more slowly through the membrane matrix and 
therefore desorb at a lower rate.  
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Figure 4.21. Concentration of THMs in permeate stream of deionized water experiment. 

 
Figure 4.22. Concentration of THMs in final permeate sample from deionized water experiment 

plotted by molecular mass.  
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THM rejection by the NF-270 membrane was also examined at various permeate fluxes. 
Figures 4.23 and 4.24 summarize the rejection of THMs versus time by the NF-270 
membrane at 30 and 6 gfd, respectively. In both experiments a sharp decline in rejection was 
observed at the very end of the experiments. This phenomenon is attributed to a 
corresponding sharp decline in the feed concentration that occurred at the end of the 
experiments. Unfortunately, the resolution of the data does not allow for a thorough analysis 
of the relationship between flux and rejection for THMs. The rejection values over time in the 
6- and 30-gfd experiments were very similar to those witnessed during the 12-gfd 
experiment, making it impossible to generate flux-versus-rejection curves essential to 
modeling exercises. 

 

 
Figure 4.23. Rejection of THMs over time by NF-270 membrane at flux of 30 gfd. 
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Figure 4.24. Rejection of THMs over time by NF-270 membrane at flux of 6 gfd. 

4.1.3.1 Challenges 

These investigations revealed that partitioning compounds require complex and resource-
intensive experiments to elucidate steady-state rejection values for membrane 
characterization and modeling purposes. As discussed in Section 3.3.1.2, the original issue 
that the team reacted to with a modified experimental apparatus was the mass of compound 
lost into the membranes during recycling experiments. For a flow-through apparatus, the 
period of transient behavior proved to vary among the THMs and, for the heavier THMs, 
appeared to exceed the maximum 55 h that the once-through setup could be operated. Given 
the structural differences among other compounds with solute−membrane interactions, it is 
probable that their periods of transience will also be unique. This finding points to a need for 
experimental protocols to be tailored to each specific partitioning compound to extract the 
relevant rejection values. 

Recent research by Steinle-Darling et al. (2010) reveals that the issue of competitive sorption 
further complicates the study of partitioning compounds in membrane systems. If the theory 
that there exist specific “sites” to which compounds may sorb is correct, it is likely that the 
degree of affinity between various molecules and these sites will vary. This variable affinity 
implies that the different compounds will “compete” to occupy them (Steinle-Darling et al., 
2010). Future experiments will need to be designed to incorporate this possibility. It is clear 
that, if competitive sorption affects partitioning behavior to a large degree, then single-
compound (or even several-compound) experiments will not provide data relevant to real-
world systems that certainly contain a plethora of compounds in the feed stream. 
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4.2 Rejection Databases for NF-270 and ESPA2 Membranes 

Bench-scale rejection experiments were conducted to evaluate different modeling 
approaches, as well as the adsorption-partioning behavior of solutes in membrane systems. 
For example, the phenomenological model, hydrodynamic model, solution−diffusion model, 
and SFPM all require evaluating rejection as a function of permeate flux. In addition, to 
determine which solutes adsorb and partition through membrane materials, 24-h rejection 
experiments were conducted at an operationally relevant permeate flux (i.e., 12 gfd). Once 
rejection experiments had been conducted, intrinsic rejection was calculated on the basis of 
feed-brine channel cross-flow velocity maintained during each experiment. For each 
membrane evaluated (i.e., NF-270 and ESPA2), Excel databases consisting of rejection data 
and solute properies were developed to investigate different modeling approaches to describe 
and predict the rejection of organic solutes. These databases were used in conjunction with 
Excel, Mathematica (Wolfram Research), MatLab (The Mathworks Inc.), and JMP statistical 
software (SAS) to evaluate and develop modeling approaches to describe and predict the 
rejection of organic solutes. 
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Chapter 5 

Modeling of Solute Rejection at Bench Scale 

5.1 Introduction 

The following sections describe various modeling efforts using the rejection database 
generated in controlled experiments described in Chapter 4 for the NF-270 and ESPA2 
membranes. The modeling approaches examined consist of QSPR, the phenomenological 
model, the hydrodynamic model, the solution−diffusion model, and empirical models.  

5.2  Quantitative Structure Property Relationship Model 

Previous research revealed that solutes rejected by electrostatic interactions exhibit high 
rejection, with negatively charged compounds exhibiting greater than 90% rejection and 
positively charged compounds exhibiting greater than 75% rejection (Bellona et al., 2008; 
Verliefde et al., 2007). Neutral compounds are more difficult to predict because of steric 
interactions and potential adsorptive effects. Membrane properties can vary and lead to 
different interactions with solutes. Thus, molecular descriptors can differ with respect to 
expressing the degree of solute rejection for different membranes. Therefore, developing a 
universal QSPR was not feasible. Instead, a QSPR was developed for each membrane tested 
(i.e., NF-270 and ESPA2 membrane) as described later. 

5.2.1 QSPR Development for the NF-270 Membrane 

A QSPR was developed for neutral compounds (i.e., HN, HHoN, and HoN) by utilizing the 
NF-270 membrane bench-scale database at 12 gfd developed during this study. The NF-270 
membrane bench-scale data set includes 77 neutral compounds (64 solutes of the 
development and 13 solutes of the validation set, respectively) encompassing a wide variety 
of molecular descriptors, including compounds rejected by adsorptive effects. The goal of 
this QSPR development was to determine if all neutral compounds can be predicted by using 
one model. QSPR development consists of four parts: experimental database development, 
molecular descriptor evaluation, multiple linear regressions, and model validation.  

Experimental Database Development. Rejection experiments were conducted for 77 neutral 
compounds by using the same operating conditions (figures in Appendix E). A database was 
created with the average quasi-equilibrium (i.e., rejection after 24 h of operation) rejection 
data generated at a permeate flux of 12 gfd. It is important to note that the bench-scale 
rejection database was created with virgin membranes. The solutes selected were separated 
into model development compounds and model validation compounds.  

Molecular Descriptor Evaluation. The molecular descriptors for these compounds were 
separated into different categories based on their properties and possible interactions with the 
membrane listed in Table 5.1. 
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Table 5.1. Molecular Descriptors Separated into Different Categories on the Basis of 
Their Propertiesa  

Size 
Component           

Surface Area 
Electron 

Distribution 
Hydrophobicity Solubility 

Mol wt 
SASA (solvent 
accessible) 

EHOMO Log D (Log Kow) 
Hydration 
energy 

Length 
FOSA (saturated 
hydrocarbons) 

ELUMO 
Solvation energy in 
octanol 

Aqueous 
solubility 

Width 
FISA (nitrogen and 
oxygen) 

IP 
Solvation energy in 
water 

 

Depth PISA (π bonds) Electron affinity   

Area WPSA (weakly polar) Dipole   

Volume PISA Polarization   

Stokes radius     

Mol vol     

Diffusion 
coefficient 

    

Globularity     

aDescription of properties listed in Table 3.1. 

A wide variety of molecular descriptors were initially evaluated. Size parameters were 
expected to have a significant effect on the rejection of neutral compounds as observed in 
previous studies (Agenson et al., 2003; Bellona et al., 2004; Kimura et al., 2004; Van der 
Bruggen et al., 1999). Component surface area descriptors represent the contribution of 
different components that could potentially interact with the membrane, such as  bonds or 
saturated hydrocarbons. Descriptors for electron properties also include the dipole moment, 
which has been reported to affect neutral compound rejection (Kimura et al., 2004; Libotean 
et al., 2008; Van der Bruggen et al., 1998). Hydrophobicity descriptors include Log D values. 
Braeken et al. (2005) and Verliefde et al. (2007) observed that Log D negatively correlated 
with rejection, although Kiso et al. (2001b) reported no correlation between Log D and solute 
rejection. Solubility descriptors that could affect solute transport through the membrane 
include hydration energy and solubility.  

To determine which descriptors contribute to the variability in rejection, a PLS evaluation 
was conducted in JMP 8.0.2. For the PLS evaluation, all of the molecular descriptors were 
evaluated (Table 5.2). Parameters with the least weight, parameter coefficient less than 0.05, 
and VIP less than 0.8 were removed from model development (Wold, 1995). Twelve 
parameters out of the 30 initial parameters were found to significantly affect rejection for the 
selected compounds.  

On the basis of the PLS outcome, size parameters such as Stokes radius, molecular volume, 
volume, and molecular weight were found to account for a significant portion of variability in 
the rejection data. All four size parameters have relatively equal weights and a positive effect 
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on rejection, meaning that, as steric parameters increase, rejection also increases as observed 
by Agenson et al. (2003), Kimura et al. (2004), and Van der Bruggen et al. (1999). From the 
PLS evaluation, FOSA and FISA would both have a positive effect on rejection. FOSA is the 
measure of the solvent accessible surface area of saturated carbons and attached hydrogen, 
and FISA is the measure of the solvent accessible surface area of nitrogen and oxygen. This 
finding indicates that aliphatic compounds and compounds containing nitrogen and oxygen 
atoms would exhibit greater rejection than would aromatic compounds and compounds 
without oxygen and nitrogen. PISA positively affects solute rejection. Kimura et al. (2004) 
observed solute rejection to increase with increasing polarity. Both EHOMO and ELUMO were 
negatively correlated with solute rejection (i.e., the greater the energy in the EHOMO or ELUMO, 
the less a solute is rejected). EHOMO is the highest-energy molecular orbital that contains an 
electron, and ELUMO is the lowest-energy molecular orbital that does not contain an electron. 
This finding indicates that compounds with a larger EHOMO or ELUMO will have a decrease in 
rejection because the compound is more likely to interact with the membrane polymer. IP and 
polarization were positively correlated with rejection. This finding indicates that compounds 
that are less likely to interact with the membrane will have higher rejection. No significant 
correlation was found with Log Kow during the PLS evaluation, indicating that Log Kow is not 
a good descriptor for estimating rejection, contradicting observations from Braeken et al. 
(2005) and Verliefde et al. (2007).  

A correlation matrix was developed in order to avoid using multiple parameters that highly 
correlate with each other in a QSPR model (full correlation matrix summarized in Appendix 
D). Uncorrelated parameters were employed in QSPR development in order to capture other 
solute−membrane interactions besides steric interactions, the main rejection mechanism for 
neutral compounds. All size parameters were correlated with one another; thus, only one size 
parameter was used in a given QSPR. Polarizability and SASA also correlated with size 
parameters; therefore, these size parameters were not used in QSPR models that already 
contained one size parameter. EHOMO was found to be negatively correlated (-90%) to IP. 
FOSA was marginally correlated with molecular volume (38%), although PISA, FISA, and 
ELUMO did not correlate with any other parameters found to be significant during PLS 
calculations. 

Multiple Linear Regressions. A multiple linear regression approach was employed to relate 
a combination of molecular descriptors to solute rejection. The number of descriptors utilized 
is important to model development; using too many parameters can result in overfitting and 
using too few parameters can result in solute behavior not being captured. To determine the 
optimum number of parameters, initial cross-validation in JMP was utilized. Cross-validation 
calculated an RMSE value for each possible multiparameter regression. Cross-validation of 
all molecular descriptors investigated calculated the optimum (lowest RMSE) numbered 
parameter regression for QSPR development to be 3. On the basis of this finding, QSPR 
development will consist of a three-parameter regression.  

Multiple linear regressions were conducted by using JMP. Regressions were valid and further 
explored if the statistics met the criteria listed later (see also Section 3.1.3). 

P < 0.05 

F-ratio > 2.8 

RMSE < 0.5 

R2 > 0.75 
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Table 5.2. Parameters Significant to a 3-Parameter Correlation for All Neutral 
Compounds in Experimental Database 

Category Molecular Descriptor PLS Wt VIP 

Size 

Stokes radius (nm) 0.072 1.360 

Mol vol (cm3/mol) 0.071 1.323 

Vol (A3) 0.068 1.356 

MW (g/mol) 0.054 1.247 

Component surface area 

FOSA (A2) 0.125 1.133 

SASA (A2) 0.068 1.341 

FISA (A2) 0.057 0.835 

PISA (A2) 0.050 0.934 

Electron distribution 

ELUMO (au) -0.087 0.727 

EHOMO (au) -0.063 0.824 

IP (eV) 0.084 0.803 

Polarization (A3) 0.061 1.290 

Every possible three-parameter correlation was explored where all descriptors were 
uncorrelated with each other. For example, volume and molecular volume, two highly 
correlated size descriptors, were not used in the same correlation. Out of the 84 correlations 
examined, nine were found to meet the criteria listed earlier and are listed in Tables 5.3 and 
5.4 along with relevant statistical data. The QSPRs contain one size parameter: volume, 
molecular volume, Stokes radius, or SASA, along with FOSA, PISA, EHOMO, or IP. The 
developed correlations always contained a size parameter, as steric exclusion is expected to 
be the main rejection mechanism for nonionic compounds (Agenson et al., 2003; Kimura et 
al., 2004; Van der Bruggen et al., 1999). Models containing the FOSA parameter were found 
to be more statistically significant and to provide better fits than models that included the 
FISA parameter. This finding indicates that the amount of saturated hydrocarbon surface area 
affects rejection more than the amount of nitrogen and oxygen surface area. PISA positively 
affected solute rejection, indicating polar compounds will be rejected more than will nonpolar 
compounds. Kimura et al. (2004) observed increasing rejection with increasing dipole 
moment for neutral compounds. IP also positively affects rejection. The greater the IP, the 
less likely a compound will interact with the membrane, therefore increasing rejection. EHOMO 
negatively affects rejection, indicating that a compound more likely to interact with the 
membrane polymer will have lower rejection.  

Each correlation yielded an R2 value above 0.8 and RMSE below 0.5, meeting the criteria of 
R2 value above 0.75 and RMSE below 0.5. The overall F-ratio was relatively high (61–67.3) 
where individual F-ratio values ranged from 4.5 to 138, above the criteria of greater than 2.8. 
As expected, the size parameters obtained the highest F-ratio and the Stokes radius was the 
most significant size parameter. Each parameter had a P of less than 0.05, indicating a low 
probability that the parameters are correlated by chance. 

It is worth noting that this QSPR modeling approach has limits. If the QSPR predicts 
rejection to be less than 0, rejection is assumed to be 0. If the QSPR predicts rejection to be 
greater than 1, rejection is assumed to be 1.  

If Rej ≤ 0, Rej = 0;  If 0 < Rej < 1, Rej = QSPR;  If Rej ≥ 1, Rej = 1
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Table 5.3. Parameters Significantly Correlated to Rejection Listed with Significant Statistics 

Parameter 1 Parameter 2 Parameter 3 R2 
Overall   
F-Ratio 

RMSE 
Coefficient 

1 2 3 Intercept 

Volume FOSA PISA 0.845 62.2 0.397 0.10343 0.04611 0.16315 -26.03 

Mol volume FOSA EHOMO 0.852 63.35 0.388 0.12029 0.04475 -215.62 -83.25 

Stokes FOSA PISA 0.848 61.63 0.393 0.36188 0.04366 
0.26102

1 
-18.21 

Stokes FOSA PISA 0.843 64.1 0.400 221.894 0.04974 0.15899 -40.48 

Stokes FOSA EHOMO 0.845 63.55 0.397 254.049 0.04961 
-

187.971 
-92.00 

SASA FOSA IP 0.854 67.32 0.386 263.68 0.04158 7.6937 -122.30 

SASA FOSA PISA 0.831 61 0.415 0.20931 0.04789 
0.18414

8 
-44.06 

SASA FOSA EHOMO 0.833 63.36 0.412 0.25056 0.0461 
-

259.289 
-116.78 

 PISA EHOMO 0.833 61.4 0.412 0.25121 0.14851 -228.92 -108.61 
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Table 5.4. Parameters Significantly Correlated to Rejection Listed with Significant 
Statistics 

Parameter 1 Parameter 2 Parameter 3 
F-Ratio P 

1 2 3 1 2 3 

Volume FOSA PISA 94.40 5.32 5.10 <0.0001 0.0252 0.0283 

Volume FOSA EHOMO 131.96 5.07 5.88 <0.0001 0.0287 0.0189 

Mol volume FOSA PISA 93.27 4.69 14.06 <0.0001 0.0351 0.0005 

Stokes FOSA PISA 97.80 6.43 4.94 <0.0001 0.0143 0.0307 

Stokes FOSA EHOMO 132.40 6.35 4.56 <0.0001 0.0149 0.0376 

Stokes FOSA IP 138.29 4.53 7.16 <0.0001 0.0383 0.01 

SASA FOSA PISA 92.12 5.68 6.51 <0.0001 0.0209 0.0137 

SASA FOSA EHOMO 131.99 5.42 8.26 <0.0001 0.0239 0.0059 

SASA PISA EHOMO 125.30 4.04 5.97 <0.0001 0.0497 0.018 

 

The two QSPR models with the highest R2 value and lowest RMSE value are listed in 
Equations 5.1 and 5.2.  

 (5.1) 

   (5.2) 

The result of applying Equations 5.1 and 5.2 to the development compounds in the bench-
scale database is illustrated in Figure 5.2. The error bars on the figures in the x direction 
represent the individual 95% confidence intervals and in the y direction represent the 
experimental deviation. The two QSPR models did yield high R2 values (0.852 for Equation 
5.1 and 0.854 for Equation 5.2); however, there were a few outliers. Compounds containing 
low FOSA values but not exhibiting adsorptive effects were underpredicted, such as 
thiabendazole. A low FOSA value usually indicates low removal because aromatic 
compounds have a greater affinity to adsorb to the membrane than do aliphatic compounds. 
Compounds that were overpredicted are compounds that exhibit extreme adsorptive effects 
(i.e., decreasing rejection with increasing permeate flux and time), such as propylparaben and 
2-fluorophenol.  

Model Validation. All of the models considered significant were internally validated by 
using the LOO cross-validation method; one compound was excluded from the data set and 
the model correlated with the remaining data. This method was repeated n times for n 
compounds in the data set. The results from this validation were then combined, and a single 
QSPR was produced yielding a q2 value. A q2 value greater than 0.5 indicated a good fit, and 
a q2 value greater than 0.9 indicated an excellent fit (Eriksson et al., 2003). The results from 
the internal validation are summarized in Table 5.5. All q2 values were greater than 0.5, 
indicating a good fit. The greatest q2 value was obtained from the QSPR containing volume, 
FOSA, and EHOMO and Stokes, FOSA, and IP described by Equations 5.1 and 5.2.  

 



 

WateReuse Research Foundation 107 

Table 5.5. Results from the LOO Cross-Validation for QSPR Internal Validation 

Parameter 1 Parameter 2 Parameter 3 q2 

Volume FOSA Polar SA 0.802 

Volume FOSA EHOMO 0.819 

Mol volume FOSA Polar SA 0.804 

Stokes FOSA Polar SA 0.795 

Stokes FOSA EHOMO 0.808 

Stokes FOSA IP 0.816 

SASA FOSA Polar SA 0.785 

SASA FOSA EHOMO 0.798 

SASA Polar SA EHOMO 0.798 

 

The two QSPR models yielding the highest q2 value, Equations 5.1 and 5.2, were externally 
validated by applying the models to the validation compounds for the NF-270 membrane 
bench-scale data (Table 3.2). Results of this comparison are presented in Figures 5.3 and 5.4.  
Equation 5.1 (Figure 5.3) yielded an R2 value of 0.734, and Equation 5.2 (Figure 5.4) yielded 
an R2 value of 0.758, suggesting that utilizing Stokes radius, FOSA, and IP was a better fit for 
this data set consisting of neutral compounds with a wide variety of molecular descriptors and 
rejection mechanisms including adsorptive effects. Most compounds were predicted within 
20%. Compounds that were underpredicted, such as carbamazepine and dilantin, had low 
FOSA values but did not adsorb to the membrane. Compounds that were overpredicted are 
the ones that exhibited extreme adsorptive effects, such as 2,4-dichlorophenol and 2-
phenylphenol. 
 

 

Figure 5.1. QSPR (volume, FOSA, EHOMO) for neutral compounds developed from bench-scale  
NF-270 membrane data. 
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Figure 5.2. QSPR (Stokes, FOSA, IP) for neutral compounds developed from bench-scale  
NF-270 membrane data. 

 

 
Figure 5.3. QSPR (volume, FOSA, EHOMO) for F-270 membrane applied to validation 
compounds. 
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Figure 5.4. QSPR (Stokes, FOSA, IP) for NF-270 membrane applied to validation compounds. 

5.2.2 QSPR Development for the ESPA2 Membrane 

QSPR development for neutral compounds was also conducted for the ESPA2 membrane by 
using the same procedure previously applied to the NF-270 membrane data set (Section 
5.2.1).  

Experimental Database Development. Rejection experiments were conducted for 64 neutral 
compounds using the same operating conditions (figures in Appendix F). A database was 
created with the average steady-state (i.e., rejection after 24 h of operation) rejection data 
generated at a permeate flux rate of 12 gfd by using virgin membranes. For model 
development, the rejection data were transformed into a Log scale because the majority of 
compounds were greater than 90% removed. The compounds were then separated into model 
development compounds and model validation compounds.  

Molecular Descriptor Evaluation. The molecular descriptors (Table 5.1) were investigated 
to determine which descriptors contribute to the variability in rejection by employing a PLS 
evaluation in JMP 8.0.2. Parameters with the least weight, parameter coefficient less than 
0.05, and VIP less than 0.8 were removed from model development (Table 5.6). Ten 
parameters out of the 30 initial parameters were found to significantly affect rejection for the 
selected compounds based on the PLS evaluation.  
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Table 5.6. Parameters Significant to a 3-Parameter Correlation for All Neutral 
Compounds in Experimental Database 
Category Molecular Descriptor PLS Wt VIP 

Size 

Length (nm) 0.145 1.060 

Width (nm) 0.091 0.987 

Wilke−Chang diffusion coefficient 
(m2/s) 

-0.234 1.258 

Stokes radius (nm) 0.088 1.132 

Vol (cm3/mol) 0.117 1.125 

Vol (A3) 0.106 1.146 

Component surface area 
FOSA (A2) -0.110 0.819 

SASA (A2) 0.130 1.170 

Electron distribution 
EHOMO (au) 0.159 0.881 

IP (eV) -0.083 1.031 

Size parameters were again found to account for a significant portion of variability in the 
rejection data, which was expected for neutral compounds. All size parameters have a 
positive effect on rejection, except for the Wilke-Chang diffusion coefficient, which is 
negatively correlated with size. From the PLS evaluation, FOSA, IP, and EHOMO affect solute 
rejection with the ESPA2 membrane differently from how they affect it with the NF-270 
membrane. FOSA has a negative effect on rejection for the ESPA2 membrane. This finding 
indicates that aliphatic compounds would have lower rejection than aromatic compounds. 
Compounds did not show strong adsorptive effects with the ESPA2 membrane because most 
compounds exhibited higher than 90% rejection. Because the adsorptive effects were not 
observed, aromatic compounds tend to have higher rejection than aliphatic compounds, given 
their larger size. IP was negatively correlated with rejection, which indicates compounds that 
are less likely to interact with the membrane will have lower rejection. EHOMO was positively 
correlated with solute rejection (i.e., the greater the energy in the EHOMO, the more a solute is 
rejected). This finding indicates that compounds with a larger EHOMO will have an increase in 
rejection.  

Multiple Linear Regressions. A three-parameter multiple linear regression approach was 
employed to relate a combination of molecular descriptors to solute rejection by using JMP. 
Regressions were valid and further explored if the statistics met the criteria previously 
defined (Section 3.5): 
 
P < 0.05  
F-ratio > 2.8 
RMSE < 0.5 
R2 > 0.75 
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All combinations of molecular descriptors found to be significant during the PLS evaluation 
were investigated, and only one correlation was found to be significant, listed in Equation 
5.3. 

   (5.3) 

This correlation includes FOSA, EHOMO, and SASA and yielded an R2 value of 0.75 and 
RMSE of 0.346. The overall F-ratio was relatively high, 43, where individual F-ratios ranged 
from 5 to 89 and P values were below 0.05, listed in Table 5.7, indicating a low probability 
that the parameters are correlated by chance. The size descriptor, SASA, obtained the greatest 
F-ratio and the most significance. This finding was expected because steric exclusion is 
expected to be the main rejection mechanism for nonionic compounds (Agenson et al., 2003; 
Kimura et al., 2004; Van der Bruggen et al., 1999).  
 

Table 5.7. Parameters Significantly Correlated to Rejection Listed with Significant 
Statistics 

Parameter 
1 

Parameter 
2 

Parameter 
3 

F-Ratio P  

1 2 3 1 2 3 

FOSA EHOMO SASA 5.134 8.711 89.091 0.028 0.005 <0.0001 

Applying the QSPR Equation 5.3 to the development compounds in the ESPA2 bench-scale 
database revealed results that are illustrated in Figure 5.5 (tables containing QSPR-predicted 
rejection versus experimental rejection are listed in Appendix F). The error bars on the 
figures in the x direction represent the individual 95% confidence intervals and in the y 
direction represent the experimental deviation. The QSPR model does contain a few outliers. 
Compounds exhibiting a high FOSA value but with a lower rejection based on size were 
overpredicted, such as ethanol, methanol, and urea. A higher FOSA value usually indicates 
low removal from the ESPA2 membrane because aromatic compounds usually have a larger 
volume, indicating compounds rejected by steric interactions.  

Model Validation. The model was internally validated by using the LOO cross-validation 
method, yielding a q2 value of 0.66 and indicating a good fit (Eriksson et al., 2003). The 
QSPR model was also externally validated by applying the model to the validation 
compounds for the ESPA2 membrane bench-scale data (Table 3.2). Results of this 
comparison are presented in Figure 5.6, and an R2 value of 0.7414 was yielded. All 
compounds were predicted within 7%. 
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Figure 5.5. QSPR (FOSA, EHOMO, SASA) for neutral compounds developed from bench-scale 
ESPA2 membrane rejection data described as Log removal. 

 

Figure 5.6. QSPR (FOSA, EHOMO, SASA) for ESPA2 membrane applied to validation 
compounds. 

5.3  Phenomenological Model 

5.3.1 Phenomenological Model for NF-270 Nanofiltration Membrane 

Rejection data for all of the organic solutes analyzed and documented in Chapter 4 were fit 
with the phenomenological model by manipulating model coefficients (σ, Ps). To achieve the 
best fit, a nonlinear fitting program in Mathematica (Wolfram Research, Champaign, IL) was 
used. Fitting the phenomenological model requires increased rejection with increased 
permeate flux and certain organic compounds studied displayed rejection-versus-flux trends 
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that cannot be described by the phenomenological model. These compounds generally 
exhibited rejection trends synonymous with solute−membrane interactions, which included 
decreasing rejection as a function of experimental run time and decreased rejection with 
increased permeate flux. In addition, a few compounds exhibited highly variable rejection 
that may be due to analytical error or degradation in the feed water container or collection 
vessel. A list of compounds whose rejection data could not be fit with the phenomenological 
model is provided in Table 5.8. Many of the compounds displaying solute−membrane 
interactions are phenol-type compounds with hydroxyl groups attached to aromatic rings 
(e.g., benzyl alcohol, 2,4-dichlorophenol, methylparaben, and 2-naphthol). The THM 
compounds (i.e., chloroform, bromoform, BDCM, and dibromochloromethane) adsorb 
strongly to membrane materials and are poorly removed after a matter of hours. These 
compounds are hypothesized to form hydrogen bonds with the active layer of 
polyamide/polypiperazine membranes and are difficult to model. Additionally, relatively 
hydrophobic solutes with carbonyl or ester functional groups (e.g., benzophenone, benzyl 
acetate, and N-nitrosodiphenylamine) were observed to adsorb to membrane material. 
Somewhat surprisingly, two positively charged compounds, trimethoprim and trazodone, also 
displayed adsorption behavior and rejection data that could not be described by the 
phenomenological model.  

 
Table 5.8. List of Compounds Not Fitting with Phenomenological Model 

Several compounds exhibited relatively constant rejection versus permeate flux, which can be 
difficult to describe with the phenomenological model (Table 5.9). Rejection data for these 
compounds were fit with the phenomenological data; however, suboptimum model fits were 
obtained. With the exception of norfloxacin (carrying negative and positive charges) and 
resorcinol (phenolic compound), most of the solutes exhibiting this behavior were relatively 
hydrophobic with hydroxyl groups attached to aliphatic or aromatic ring structures.    
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Table 5.9. List of Compounds with Less-than-Optimal Phenomenological Model Fits 

 

With the exception of the compounds described earlier, the phenomenological model 
provided sufficient fits of intrinsic rejection-versus-flux data for HN, HHoN, HoN, HCN, 
HCP, and HCNP compounds. Several examples of these phenomenological model fits of 
rejection data are provided in Figure 5.7. This fitting exercise resulted in the characterization 
of each compound with two model parameters, sigma (σ) and solute permeability (Ps). Sigma 
is considered limiting rejection and is defined as rejection at infinite flux or the reciprocal of 
the sieving coefficient. The solute permeability parameter (Ps) controls the shape of the 
rejection curve at low permeate flux and represents solute diffusion through the membrane. A 
complete list of phenomenological model parameters for the organic compounds evaluated is 
provided in Table 5.10.  

Once sigma (σ) and solute permeability (Ps) are known for a compound, rejection can be 
calculated for any permeate flux value, which does not apply to QSPR models. By correlating 
model parameters with molecular descriptors, model parameters for unknown compounds 
could potentially be calculated, which would allow the prediction of rejection at any permeate 
flux. Therefore, once model parameters were determined for the suite of compounds, 
correlations between model parameters and solute descriptors were developed. To achieve 
this, compounds were grouped into neutral (HN, HHoN, HoN, and all three grouped 
together), negatively charged, positively charged, and both positively and negatively charged 
compound bins. Because the value of solute permeability is very small, the base-10 logarithm 
of the solute permeability was used to develop correlations. 
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Figure 5.7. Sample phenomenological fits of intrinsic rejection versus permeate flux. 
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Table 5.10. Phenomenological Model Coefficients for All Organic Compounds (NF-270 Membrane) 
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The ranges of phenomenological model coefficients for the different major classes of 
compounds along with the range of molecular weights are presented in Figure 5.8. With the 
exception of the HN compounds, sigma values generally fell within a small range, especially 
for the HCN compounds. The range of sigma values for HN compounds was broader than for 
the other classes because of the impact of molecular size on rejection. Ranges of the Log Ps 
parameter for each compound class were larger than for sigma. On first inspection, it 
appeared that HCNP compounds exhibited a Log Ps  range different from that of other ionic 
compounds. However, the HCNP tended to be of less molecular weight, which may explain 
why Log Ps values for these compounds tended to be less negative than for other ionic 
compounds. Significant effort was undertaken to develop correlations between 
phenomenological model coefficients and molecular descriptors to predict model coefficients 
for “new” compounds. These efforts are discussed later. 
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Figure 5.8. Comparison of molecular weight and phenomenological coefficients for the major 
classes of compounds investigated. 
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5.3.1.1 Neutral Compounds—Solute Permeability (Ps) 

Cross-validation PLS analysis was performed to determine the most important solute 
descriptors for developing correlations with Log Ps for all neutral compounds as well as the 
optimum number of descriptors in a regression. Somewhat surprisingly, the RMSE of the best 
correlations could not be significantly improved by including more than one descriptor. In 
addition, solute size descriptors were found to be the most important for describing Log Ps for 
all of the neutral organic compounds analyzed. Size descriptors such as molecular volume, 
Stokes radius, second moment of the charge density (Sx, Sy, and Sz), molecular weight, and 
surface area descriptors were found to be the most important factors for Log Ps. Examples of 
correlations developed between Log Ps and size descriptors are presented in Figure 5.9. 
Recursive partitioning was also implemented to find the best descriptors for use in multiple 
linear regressions. Partitioning identified that the best descriptors for a multiple linear 
correlations would be the equivalent width (square root of width multiplied by depth) and the 
base-10 logarithm of solubility (Log S). The developed multiple linear regression; however, 
was not statistically significant (on the basis of t and F values for descriptor coefficients).  

 

 

    

 
 

Figure 5.9.  Correlations between Log Ps and molecular size descriptors for all neutral 
compounds. 
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For HN compounds (minus the validation compounds), the most important factors 
determining rejection included molecular volume, Stokes radius, second moment of the z axis 
charge density (Sz), solvent accessible surface area, depth, diffusion coefficient, and 
molecular weight. Correlations developed between Log Ps and molecular volume, Sz, Stokes 
radius, and molecular weight are provided in Figure 5.10. Molecular volume and Sz provided 
the best fit of Log Ps data; however, more-accessible descriptors such as Stokes radius and 
molecular weight provided statistically significant fits of Log Ps data (on the basis of the t and 
F statistic). Recursive partitioning identified depth and diffusion coefficient as the two best 
parameters for use in multiple linear regression; however, the correlation was not as 
significant as using molecular volume alone. These results indicate that, for organic solutes 
with Log Kow values less than 2 (our definition of HN compounds), molecular size is the most 
important factor for the rejection of solutes at relatively low permeate flux ranges. 

 
 

 

 

 

 

 

 

 

 

 
Figure 5.10. Correlations between HN Log Ps and molecular size descriptors. 
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The cross-validation PLS analysis was repeated for Log Ps values for the HoN compounds 
(Log Kow > 3). The most important factors for the HoN compounds were identified as critical 
point descriptors (Sx, Sy, and Sz) and solubility; however, bivariate correlations were much 
less significant than for the HN compounds (R2 < 0.4, Figure 5.11). As was previously 
mentioned, solutes that interact with membrane materials are not well described by the 
phenomenological model. Solutes that were identified as having moderate membrane 
interactions during rejection experiments exhibited relatively “flat” rejection-versus-
permeate-flux curves, which was more common among the compounds with Log Kow values 
greater than 3 (see Table 5.10). The other compounds that could not be fit with the 
phenomenological (presented in Table 5.9) model exhibited decreased rejection with 
increased flux and significant change in rejection over 24 h. On the basis of these 
observations, the phenomenological model is not a good approach for describing the rejection 
of hydrophobic compounds (Log Kow > 3) or certain compounds with functional groups that 
interact with membrane polymers (e.g., phenols). Therefore, compounds displaying 
solute−membrane interactions will be left out of further phenomenological model 
development discussion.  

 

 

 

Figure 5.11. Correlations between Log Ps and molecular descriptors for HoN compounds. 
 
Recursive partitioning was used to identify the best descriptors for multiple linear 
correlations to calculate Log Ps for HN, HHoN, and HoN compounds that exhibited minimal 
solute−membrane interaction. The most statistically significant correlation included depth, 
Log S, and Sy. This correlation was used to predict Log Ps for the training set and the 
correlation between experimental Log Ps and predicted Log Ps. As a comparison, a 
correlation was developed by using molecular volume to predict Log Ps. Experimental versus 
predicted Log Ps values are presented for both correlations in Figure 5.12.     
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Figure 5.12. Experimental versus predicted Log Ps values for neutral compounds that exhibited 
minimal solute−membrane interactions.  
 

5.3.1.2 Neutral Compounds—Sigma (σ) 
No statistically significant correlations could be developed between sigma values and 
molecular descriptors by using common statistical techniques (i.e., recursive partitioning, 
PLS, multiple linear regression, and bivariate regression). Past studies have used sigma 
values obtained through phenomenological fitting to determine a monomodal pore size 
distribution (Van der Bruggen and Vandecasteele, 2002). At infinite flux, solute transport is 
dominated by convection and diffusion can be assumed to be negligible. Therefore, a sigma 
value for a given molecule represents the reciprocal of the sieving coefficient—for example, 
the proportion of pores that are smaller than the given molecule. By running of several 
molecules of different size, a pore size distribution can be determined from reflection 
coefficients, which has been demonstrated to fit best with the Log-normal cumulative density 
function (Van der Bruggen and Vandecasteele, 2002; Bellona and Drewes, 2010).  

This exercise was carried out for different groupings of neutral compounds: all neutral 
compounds and only the aliphatic compounds with little environmental relevance (alcohols, 
sugars, urea, and uracil). The compounds with minimal environmental relevance were chosen 
because they span a wide range of molecular size (Stokes radius between 0.1 and 0.6 nm) and 
exhibited no membrane interaction. Fitting the reflection coefficients for these compounds 
with the Log-normal cumulative density function resulted in an average pore size of 0.196 nm 
and standard deviation of pore size of 0.229 nm (Figure 5.13). Using all of the neutral 
compounds to calculate a pore size distribution yielded a marginally larger average pore size 
(0.197 nm) and standard deviation of pore size (0.293 nm [Figure 5.13]). A significant 
number of reflection coefficients for the neutral compounds investigated were overpredicted 
by the monomodal Log-normal pore size distribution, indicating the Stokes radius is not the 
best size descriptor for these compounds, the pore size distribution is bimodal, or other 
molecular properties influence the reflection coefficient. Similar statistical analysis as 
discussed previously for Log Ps was carried out for the reflection coefficient; however, no 
statistically significant correlations were found with descriptors other than size descriptors.  
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Figure 5.13. Log-normal cumulative density function fits for sugars, alcohols, urea, and uracil 
(left) and all neutral organic compounds with resulting pore size average and deviation values. 

5.3.1.3 Predicting Rejection of Neutral Validation Compounds Using the 
Phenomenological Model 

Several correlations developed in the previous sections were used to predict bench-scale 
rejection for the neutral validation compounds with minimal solute−membrane interactions: 
carbemazepine, dilantin, fenofibrate, MTBE, 1-nitrosopyrrolidine, and isobutylparaben  
(Figures 5.14 through 5.19). With the exception of isobutylparaben, and of MTBE for the 
volume correlation, this approach provided reasonably good fits of rejection data spanning a 
wide permeate flux range. For the validation compounds evaluated, adding additional 
parameters to linear regression to predict Log Ps only significantly improved the model fit for 
MTBE. Therefore, it is presumable that, to characterize a given membrane, rejection 
experiments over a flux range could be run with sugar- and alcohol-type compounds spanning 
a range of size or pore size distribution (PSD) (e.g., ethanol, isopropanol, urea, glycerol, 
glucose, and sucrose) and several environmentally relevant compounds with minimal 
solute−membrane interactions (e.g., NDMA, carbamazepine, caffeine, DEET, and 
primidone). Similar correlations could be developed between phenomenological coefficients 
and molecular size to predict the rejection of neutral compounds expected to have minimal 
solute−membrane interactions. However, precaution should be taken to conduct the 
experiments so that concentration polarization is minimized. 
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Figure 5.14. Carbamazepine rejection versus permeate flux with predicted rejection.  

Top figure: Predicted model used 3-parameter correlation for Log Ps (Figure 5.12) and sugar and 
alcohol PSD (Figure 5.13).  
Bottom figure: Used 1-parameter correlation for Log Ps (Figure 5.12) and sugar and alcohol PSD 
(Figure 5.13). 
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Figure 5.15. NPYR rejection versus permeate flux with predicted rejection.  

Top figure: predicted model used 3-parameter correlation for Log Ps (Figure 5.12) and sugar and 
alcohol PSD (Figure 5.13).  
Bottom figure: used 1-parameter correlation for Log Ps (Figure 5.12) and sugar and alcohol PSD 
(Figure 5.13). 
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Figure 5.16. MTBE rejection versus permeate flux with predicted rejection.  

Top figure: predicted model used 3-parameter correlation for Log Ps (Figure 5.12) and sugar and 
alcohol PSD (Figure 5.13).  
Bottom figure: used 1-parameter correlation for Log Ps (Figure 5.12) and sugar and alcohol PSD 
(Figure 5.13). 
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Figure 5.17. Dilantin rejection versus permeate flux with predicted rejection.  

Top figure: predicted model used 3-parameter correlation for Log Ps (Figure 5.12) and sugar and 
alcohol PSD (Figure 5.13).  
Bottom figure: used 1-parameter correlation for Log Ps (Figure 5.12) and sugar and alcohol PSD 
(Figure 5.13). 
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Figure 5.18. Fenofibrate rejection versus permeate flux with predicted rejection.  

Top figure: predicted model used 3-parameter correlation for Log Ps (Figure 5.12) and sugar and 
alcohol PSD (Figure 5.13).  
Bottom figure: used 1-parameter correlation for Log Ps (Figure 5.12) and sugar and alcohol PSD 
(Figure 5.13). 
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Figure 5.19. Isobutylparaben rejection versus permeate flux with predicted rejection.  

Top figure: predicted model used 3-parameter correlation for Log Ps (Figure 5.12) and sugar and 
alcohol PSD (Figure 5.13).  
Bottom figure: used 1-parameter correlation for Log Ps (Figure 5.12) and sugar and alcohol PSD 
(Figure 5.13). 

5.3.1.4 LOO Model Validation—Neutral Organic Contaminants 

To evaluate the phenomenological-QSPR modeling approach, one compound was kept out of 
Log Ps correlation calculations using the three-parameter multiple linear regression model 
and the multiple regression model using only molecular volume. The reflection coefficient 
was calculated by using the PSD developed for sugars, alcohols, urea, and uracil discussed 
previously (Figure 5.13). This approach was used to calculate the rejection at 12-gfd 
permeate flux for the environmentally relevant neutral compounds that exhibited minimum 
membrane interactions during experiments (Figure 5.20). Three solutes, acetaminophen, 
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phenacetine and isobutylparaben, were found to be poorly fit by this approach using both 
models. Interestingly, these compounds have very similar structures, that is, a benzene ring 
with two functional groups in the para substitution pattern. Isobutylparaben and 
acetaminophen both have a phenolic moiety attached to the benzene ring, with the only 
difference being that acetaminophen has an amide group and isobutylparaben has an ester 
group in the para position. Phenacetine does not have a hydroxyl group and instead has an 
ester group and an amide group in the para position. Other similar compounds, such as 
methylparaben, benzyl acetate, and methyl salicylate, exhibited significant membrane 
interactions, had lower-than-expected rejection on the basis of size, and could not be 
described by using the phenomenological approach.   
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Figure 5.20. LOO model correlations with experimental 12-gfd rejection data. 

5.3.1.5 Ionic Compounds—Sigma (σ) and Solute Permeability (Ps) 

Sigma and especially Log Ps values for ionic compounds spanned a significantly narrower 
range than did neutral compounds (Figure 5.8). This finding may partially explain why 
developing statistically significant correlations between molecular descriptors and 
phenomenological coefficients was more difficult for ionic compounds than for neutral 
compounds. As an example, correlations developed between phenomenological model 
coefficients and size parameters were poor (Stokes radius presented in Figure 5.21). Cross-
validation PLS identified the most important descriptors for describing Log Ps as being the 
number of halogens, WPSA, FOSA, ELUMO, number of six-membered rings, and solubility, 
respectively. Increasing numbers of halogens and six-membered rings tend to result in more-
negative Log Ps values (increased rejection at low permeate flux), although an increase in 
hydrophobicity tends to make Log Ps values less negative (decreased rejection at low 
permeate flux). 

Recursive partitioning and PLS analysis were used to develop multiple linear regressions for 
predicting Log Ps for all ionic compounds from molecular descriptors. The multiple linear 
regression resulting in the best correlation (R2 = 0.66) with statistically significant 
coefficients (based on t and F-ratios) included the number of halogens, solubility, and ELUMO 
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and is presented in Figure 5.22. Although significant, this approach did not provide a high 
degree of predictive power and additional analysis was performed.  
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Figure 5.21. Correlation between phenomenological model coefficients and Stokes radius for 
ionic compounds (HCN, HCP, HCNP). 
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Figure 5.22. Experimental versus predicted Log Ps values for ionic compounds at pH 6.3 (HCN,  
HCP, HCNP). 

5.3.1.6  Ionic Compounds—HCP and HCNP 

Through trial and error and by using PLS analysis, it was observed that HCNP and HCP 
phenomenological coefficients had correlations with similar descriptors. Therefore, HCNP 
and HCP compounds were grouped together and were analyzed by using PLS analysis and 
multiple linear regression. Statistically significant multiple linear regression models were 
developed to describe Log Ps by using the number of halogens and a size parameter such as 
Stokes radius, second moments of inertia, and molecular weight. The two most statistically 
significant and correlated regressions are presented in Figure 5.23. As previously described, 
increasing the number of halogens resulted in more-negative Log Ps values, especially for 
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HCP compounds (increased rejection at low permeate flux). As expected, increasing 
molecular size also resulted in a more negative Log Ps value. Two validation compounds for 
each class of compounds (HCP and HCNP) were subsequently left out of multiple regression 
development to evaluate this modeling approach. Because second-moment-of-inertia 
descriptors are difficult to calculate, the regression using molecular weight was used to 
predict Log Ps for validation compounds. Unfortunately, no significant correlations could be 
developed between sigma values and molecular descriptors likely because of the small 
variation in sigma values for HCNP and HCP compounds. The average of HCNP and HCP 
compound sigma values was used with the standard deviation (plus and minus) for inclusion 
into the phenomenological model.  
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Figure 5.23. Experimental versus predicted Log Ps values for HCP and HCNP compounds  
at pH 6.3. 

The results of the rejection prediction exercise described earlier are presented in Figure 5.24. 
Because two sigma values were used (average sigma plus or minus standard deviation), a 
range of rejection was predicted across the permeate flux range investigated. In general, this 
approach resulted in predicted rejection within the range of experimental values, although 
baclofen rejection was underestimated at several permeate flux values. On the basis of this 
analysis, it is possible that several HCNP and HCP compounds could be selected (e.g., 
ciprofloxacin, lysine, ketoconazole, and metoprolol) to characterize a membrane’s rejection 
of HCNP and HCP compounds.   
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Figure 5.24. Experimental rejection with predicted phenomenological model predictions using 
the multiple linear regression approach presented in Figure 5.23 for baclofen (upper left, 
HCNP), ciprofloxacin (upper right, HCNP), dilitiazem (lower left, HCP), and imiquimod (lower 
right, HCP).  
Note: Sigma values used were the average of all HCNP and HCP compounds minus the validation compounds 
(0.945) plus and minus the standard deviation (0.40). 

5.3.1.7 Ionic Compounds—HCN 

Similar correlations between phenomenological coefficients and molecular descriptors 
described earlier were explored for HCN compounds. However, no strong correlations could 
be developed among sigma, Log Ps, and molecular descriptors. One possible explanation for 
the lack of correlation with descriptors could be the fact that the range of Log Ps values for 
HCN compounds was narrow (Figure 5.8). Including either HCNP or HCP compounds only 
marginally improved the significance of developed multiple linear correlations. Recursive 
partitioning could be used to develop a modeling approach with good correlations (R2 ~ 0.8) 
between predicted and experimental Log Ps values; however, there is no straightforward way 
to determine the significance of the descriptors used in the model. For example, a recursive 
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partitioning model for predicting Log Ps values for all ionic compounds was comprised of 
eight descriptors in the form of a decision tree. Although the model provided relatively good 
fits of experimental Log Ps data, a user would be required to calculate relatively complicated 
descriptors, such as second moments of the charge density, ELUMO, and surface area 
descriptors such as FOSA, PISA, and WPSA. It is worth noting that all of the HCN 
compounds evaluated, with the exception of acetic acid, exhibited greater than 90% rejection 
by the NF-270 membrane at permeate fluxes equal to or greater than 12 gfd. In addition, all 
of the HCN compounds considered to be organic contaminants were more than 94% rejected 
at permeate flux equal to or greater than 12 gfd.  

5.3.2 Phenomenological Model for the ESPA2 Membrane 

As with the NF-270 membrane, ESPA2 membrane rejection data (for most of the organic 
solutes evaluated) were fit with the phenomenological model by manipulating model 
coefficients (σ, Ps). As previously discussed, a number of NF-270 membrane organic solute 
rejection curves could not be described by the phenomenological model because of 
hypothesized solute−membrane interactions. This issue was not as pronounced with the 
ESPA2 membrane, however, and the phenomenological model could be used to describe the 
rejection of the majority of compounds evaluated. Compounds that could not be described 
include the THMs (chloroform, bromoform, BDCM, and dibromochloromethane), 
ketoconazole, trazodone, and trimethoprim. Compounds exhibiting a flat or slightly declining 
rejection-versus-flux curve resulting in less than optimal fits included 2-phenylphenol and 
propylparaben. Examples of phenomenological model fits are presented in Figure 5.25, and a 
list of phenomenological coefficients is presented in Table 5.11. 

The ranges of reflection coefficients and solute permeability coefficients for each solute 
classification is presented in Figures 5.26 and 5.27. The range of ESPA2 membrane reflection 
coefficients was much narrower than for the NF-270 membrane, as the majority of 
compounds exhibited rejection greater than 95% at elevated permeate flux. In addition, the 
ranges of reflection coefficients and solute permeability coefficients for compound 
classification were relatively similar to one another as the ESPA2 provided high rejection of 
almost all the solutes evaluated. Notable exceptions included methanol, ethanol, urea, and 
NDMA because of their small molecules.  

Reflection coefficients for sugars, alcohols, urea, and uracil were fit with the Log-normal 
cumulative Log-normal density function to determine the effective average pore radius and 
standard deviation of pore radius (Figure 5.28, left). On the basis of this approach, the 
effective average pore radius was determined to be 0.16 nm, which is approximately 20% 
smaller than the NF-270 membrane. Analysis by PLS indicated that the most significant 
descriptor for Log Ps was a solute’s diffusion coefficient, which was significantly correlated 
with Log Ps values for the sugars, alcohols, urea, and uracil (Figure 5.28, right). The 
correlation between Log Ps and diffusion coefficients for all of the nonionic organic 
compounds was less significant, and the correlations could not be improved by adding more 
descriptors to the regression. It is worth noting that, because the ESPA2 membrane provides 
such high rejection, the reflection coefficient and Log Ps data were skewed toward reflection 
coefficients of 1 and negative Log Ps values between 6 and 8.  
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Figure 5.25. Examples of phenomenological model fits of ESPA2 rejection data.



 

WateReuse Research Foundation 135 

Table 5.11. Phenomenological Model Coefficients for All Organic Compounds (ESPA2 Membrane) 
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Figure 5.26. Distribution of reflection coefficients (left) and Log Ps values (right) for ionic 
compounds with ESPA2 membrane. 
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Figure 5.27. Distribution of reflection coefficients (left) and Log Ps values (right) for nonionic 
compounds with ESPA2 membrane. 
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Figure 5.28. Cumulative Log-normal density function fit of reflection coefficient data (left) and 
Log Ps correlation with diffusion coefficient (right) for sugars, alcohols, urea, and uracil for 
ESPA2 membrane.  
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Figure 5.29. Correlation between Log Ps and diffusion coefficient for all nonionic solutes. 

5.4  Hydrodynamic Model 

5.4.1 Model Theory 

The hydrodynamic modeling approach assumes that NF membranes are composed of a 
bundle of cylindrical pores with the same radius and that the transport or flux of a nonionic 
solute within a pore is due to hindered convection and diffusion: 

      (5.1) 
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where Ki,c and Ki,d are hindrance coefficients. The average solute flux is obtained by 
integrating Equation 5.1 over the length of the pore and relating the pore concentration to the 
external feed and permeate solute concentration through solute partitioning expressions   

( ). The solute steric hindrance (λ) is defined as the ratio between the 
solute radius and the characterized average pore radius: 

         (5.2) 

If one assumes a parabolic profile of the Hagen−Poiseuille type (Bowen and Mohammad, 
1998), the solute hindrance factors for convection and diffusion are given as 

Kc  A  B C2  D3
       (5.3) 

Kd  E  F G2  H3
       (5.4) 

For the case of 0 < λ ≤ 0.8, the coefficients in Equations 5.3 and 5.4 are defined as 

A = 1.0, B = 0.054, C = -0.988, D = 0.441, E = 1.0, F = -2.30, G = 1.154, and H = 0.224 

For the case of 0.8 < λ ≤ 1.0 the coefficients are defined as 

A = -8.830, B = 19.348, C = -12.518, D = 0, E = -0.105, F = 0.318, G = -0.213, and H = 0 

For relatively narrow and long pores with fully developed velocity profiles, Deen (1987) 
reported that Equation 5.3 should be multiplied by (2-ϕ) where  

         (5.5) 

As it is speculative to assume the nature of the pore structure of NF membranes, Equation 5.5 
was used in combination with Equation 5.3 to determine the convective hindrance factor 
(Kc). By rearrangement and integration of Equation 5.1 and introduction of the Peclet 
number, the ratio between the bulk permeate and feed solute concentrations, rejection can be 
defined as 

      (5.6) 

As has been reported by Bowen et al. (1998), the Peclet number can be described as 

           (5.7) 

This representation of the Peclet number eliminates the need to characterize the thickness-to-
porosity ratio of a membrane, which is discussed later. The rejection of an uncharged solute 
(Equation 5.6), therefore, is a function of pore radius, solute size and diffusivity, and 
permeate flux. Past modeling efforts have defined the Peclet number as 
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where the term δ/Ak is the membrane thickness-to-porosity ratio. This term has been 
neglected by introducing the Hagen−Poiseuille model 
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    (5.9) 

and substituting into Equation 5.8 to get the middle term in Equation 5.7. One limitation to 
using Equation 5.9 to calculate the Peclet number is that an additional fitting parameter is 
introduced, which must be determined for each solute. If one uses Equation 5.7 to calculate 
the Peclet number, δ/Ak is neglected and rejection is mostly a function of solute size, 
membrane pore size, and permeate flux. The use of Equations 5.7 and 5.8 is discussed in the 
following section.  

5.4.2  Determination of NF-270 Pore Size 

Initially, an attempt was made to use an average membrane permeability constant determined 
through permeate flux and pressure data generated for all rejection experiments (~200) in 
Peclet number determination. The result of this exercise is presented in Figure 5.30. 
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Figure 5.30. Determination of membrane permeability constant (Lp) using permeate flux data 
from all NF-270 rejection experiments (n ≅ 200).  

For each of the permeate flux set-points, actual permeate flux and pressure were averaged and 
the standard deviation calculated. Fitting the average permeate flux-versus-pressure curve 
resulted in a very good correlation; however, standard deviations of pressure were relatively 
large. Therefore, during calculations of the Peclet number for modeling rejection of a given 
solute, the membrane permeability was calculated from each individual experiment. 

Intrinsic rejection-versus-permeate-flux curves for sugars (glucose and sucrose), alcohols 
(1,4-butanediol, ethanol, isopropanol, glycerol, and triethyleneglycol) and urea were fit with 
the hydrodynamic model by manipulating the membrane pore radius (rp) to minimize the 
error between modeled and experimental rejection values. The resulting pore radius 
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compared with each solute’s Stokes radius is presented in Figure 5.31. Because the two 
largest compounds, glucose and sucrose, were not completely rejected by the NF-270 
membrane, the pore radii for these compounds are significantly longer than for the other 
compounds. Although this result indicates that the membrane pore radius depends on the 
solute used to characterize the membrane, this approach was investigated further as a method 
to predict the rejection of nonionic organic solutes.  
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Figure 5.31. NF-270 membrane pore size determination using sugar, alcohols, and urea. 

The use of the hydrodynamic model for the purpose of predicting the rejection of nonionic 
organic solutes would require a determination of an average pore radius for use in the model. 
For example, the average value for the sugar, alcohols, and urea was determined to be 0.4 nm. 
The same exercise was repeated for all of the nonionic solutes evaluated during the course of 
this study, whereby a new membrane pore radius was calculated to achieve the best fit of 
rejection data. Several examples of hydrodynamic model fits are presented in Figure 5.32. In 
general, the hydrodynamic model provided good fits of experimental data, although the shape 
of rejection curves was not always well described by this approach. 
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Figure 5.32. Sample hydrodynamic model fits of intrinsic rejection versus permeate flux data. 
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The resulting membrane pore radii from this process are presented in Figure 5.33 (left). As 
can be observed from Figure 5.33, the pore radius generally increased with increasing 
molecular size, although there are obvious outliers. On closer inspection, many of the outliers 
included compounds exhibiting solute−membrane interactions. Many of these outliers are 
aromatically based compounds with phenolic functional groups, including 1-
naphthalenemethanol, resorcinol, acetaminophen, and isobutylparaben. Past research has 
demonstrated that these compounds interact with membrane materials and that rejection is not 
only a function of size. Therefore, the hydrodynamic model might not be appropriate for 
these compounds. Removing the outlier compounds resulted in a significant correlation 
between Stokes radius and pore radius (Figure 5.33). This finding indicates that, for the NF 
membrane evaluated, there is a distribution of pores and that the hydrodynamic approach 
using one pore radius will result in a poor fit of rejection for compounds with a large 
distribution of molecular size. The pore size distribution approach is evaluated further in the 
phenomenological modeling section.  
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Figure 5.33. NF-270 membrane pore size determination using all nonionic organic solutes. 

The hydrodynamic model using the Peclet number with the thickness-to-porosity ratio [δ/Ak, 
Equation 5.8] was also investigated. Using the Peclet number presented in Equation 5.7 
resulted in a one-fitting-parameter model (λ), which did not always adequately describe the 
rejection versus permeate flux curve for each compound (Figure 5.34). The inclusion of δ/Ak 
improved model fits significantly (examples given in Figures 5.32 and 5.34); however, it 
resulted in an additional term that needs to be predetermined to predict the rejection of a 
“new” compound. Bowen and Mohammad (1998) demonstrated by using four nonionic sugar 
compounds that δ/Ak decreased with increasing molecular size as smaller molecules can take 
a more tortuous path through the membrane. An analysis of δ/Ak values obtained for all 
nonionic compounds did not support this finding, as δ/Ak did not correlate with the Stokes 
radius (Figure 5.35).  
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Figure 5.34. Sample hydrodynamic model fits of intrinsic rejection when incorporating δ/Ak  
into the Peclet number.
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The advantage of the hydrodynamic model is that it incorporates a membrane pore radius and 
describes hindered transport through a theoretical pore structure. Theoretically, the pore 
radius of a membrane could be easily characterized by conducting rejection experiments with 
a few sugar and alcohol compounds. Describing the rejection of any nonionic solute would 
then require only a determination of a solute’s Stokes radius. This work demonstrates, 
however, that the characterized membrane pore radius increases with increasing size of the 
characterization compound employed. This finding indicates that there is a significant pore 
size distribution and that using an average pore size results in poor model predictions for 
nonionic solutes. In addition, the model accounts only for steric effects on rejection and 
therefore cannot adequately describe the rejection of compounds that associate with the 
membrane. 
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Figure 5.35. Thickness-to-porosity ratio (δ/Ak) versus Stokes radius for all nonionic solutes 
evaluated. 

5.5 Solution−Diffusion Model 

The theory of the solution−diffusion model is explained with further detail in Section 2.6.1. 
For a thorough review of the theoretical background of this model, the reader may refer to 
Wijmans and Baker (1995). To summarize, the major assumption implicit in this model is 
that the polymer matrix of the membrane is a solvent into which a molecule may partition. 
Once a compound has partitioned into this “solvent,” it will diffuse across the membrane, 
following a concentration gradient, according to Fick’s law. As a result, this model cannot be 
used to model compound behavior for membranes that contain pores within their structure. 
Pores provide an avenue for molecules to move across a membrane without partitioning into 
its polymer matrix, avoiding the type of behavior that the solution−diffusion model attempts 
to describe. ESPA2, an LPRO membrane, is thought to be relatively free of pores although 
the NF-270 membrane as an NF membrane likely contains a network of pores. Again, it is 
important that the polymer structure of membranes is not thoroughly understood and that the 
presence or absence of pores therefore is largely based on conjecture. What is clear is that the 
quantity of pores must be greater for an NF-270 membrane than for an ESPA2 membrane. 
Therefore, the solution−diffusion model is more appropriately applied to the ESPA2 
membrane than to the NF-270 membrane.   
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5.5.1 Bench-Scale Modeling 

We examine the solution−diffusion model first by using the bench-scale ESPA2 experimental 
data and the simplified model equation to develop a list of solute MTCs for all of the 
compounds. Equation 5.10 represents the simplified equation used for the solution−diffusion 
model and was adopted from Zhou’s doctoral dissertation focusing on modeling mass transfer 
through diffusion-controlled membranes (Zhou, 2004).  

      (5.10) 

The terms in Equation 5.10 are as follows: 
 
Cp = Permeate concentration 

Cf = Feed concentration 

Kw = Water’s MTC 

 = Pressure drop across membrane 

Ks = Solute MTC 

R = Recovery 

The first term in the denominator of this equation describes the permeate flux using kw, 

, and , which is a manipulation empirically developed in studies cited in 

Zhou’s dissertation to incorporate the effects of recovery. For bench-scale modeling, this 
entire term is replaced by Jw, the permeate flux, which is a set-point that is recorded with 
each sample taken in the bench-scale experiments performed under this study. This 
simplification can be done because, by definition,  is equal to Jw and because 
the manipulation for recovery is negligible under bench-scale experimental conditions. The 
highest recovery value observed was 0.993 at 30 gfd. 

Another alteration made to Equation 5.10 is the substitution of Cm for Cf. Cm is the membrane 
wall concentration determined with the film theory diffusion model, described in Section 
2.6.1. This model takes into account hydrodynamic conditions and their effects on 
concentration polarization. The membrane wall concentration is more appropriate for the 
solution−diffusion model because it is the concentration that is actually “experienced” by the 
membrane at the feed water−membrane interface. With these alterations, the working 
equation simplifies to  
Equation 5.11.  

             (5.11) 
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Manipulating this equation allowed Ks to be isolated from the other variables in Equation 
5.12, which were known for each given data point.   

           (5.12) 

This new equation was incorporated into a program developed by using MATLAB technical 
computing software to calculate Ks values. With a total of 112 compounds, it was desirable to 
have a somewhat automated method of calculating the Ks values. For this, an Excel workbook 
was created that incorporated all of the necessary data to calculate Ks values for each 
compound. Each of the 112 compounds had its own worksheet within the workbook with 
columns for JW, Cp, Cm, and rejection. The results for glutamic acid from this workbook are 
shown as an example in Table 5.12.  

Table 5.12. Sample Data Table Used for Solution−Diffusion Modeling Programa  

Jw  Cp Cm Intrinsic 
Rejection 

  (gfd) (mg/L) (ng/L) 

2.92 1.4 16.97 0.915 
2.92 1.3 16.98 0.922 
7.63 1.2 17.30 0.928 
7.63 1.1 17.30 0.934 
10.53 0.8 18.69 0.957 
10.53 0.7 18.71 0.965 
10.53 0.3 18.15 0.984 
10.53 0.4 18.14 0.980 
19.08 0.6 19.64 0.970 
19.08 0.6 19.65 0.971 
27.72 0.4 21.58 0.982 
27.72 0.5 21.56 0.978 

aData are from bench-scale experiments with glutamic acid and ESPA2 membranes. 

In Table 5.12, each row represents a single data point from an experiment with glutamic acid 
and the ESPA2 membrane. The MATLAB program calculated a unique Ks value for each 
experimental data point and then averaged these values together to come up with a single 
MTC for each compound. The list of these MTCs is provided in Table 5.13 

.
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Table 5.13. Solution−Diffusion Model MTCs for All Compounds Processed with ESPA2 Membrane 

Compound 
Ks 

(m/s) Compound 
Ks 

(m/s) Compound 
Ks 

(m/s) Compound 
Ks 

(m/s) 
Acetaminophen 1.74 Diclofenac 0.28 Methylparaben 5.85 Ranitidine 0.02 
Acetic acid  2.07 Diethylphthalate 0.35 Methyl salicylate 1.85 Resorcinol 0.61 
Alanine  3.57 Diethylstilbestrol 0.22 MTBE 0.06 Salbutamol 4.50 
Amitriptyline 0.05 1,4-Dihydroxy-benzoic 

acid 
1.13 

Metoprolol 0.86 Salicyclic acid 1.57 
Arginine  0.61 1-Naphthalenemethanol 0.21 Serine 0.75 
Atenolol  5.10 Dilantin  0.73 Naproxen  0.42 Sucralose  1.20 
Atrazine  0.54 Diltiazem 0.07 2-Naphthol 0.23 Sucrose 0.32 
Baclofen 0.99 Diphenhydramine  0.10 N-Nitrosodibutylamine  0.40 Sulfacetamide 0.91 
Benzoic acid 1.70 Enalapril maleate 0.00 N-Nitrosodiethylamine  1.34 Sulfamethoxazole 0.78 
Benzophenone  0.24 Ethanol  42.53 NDMA  15.14 Sulfadimethoxine 0.86 
Benzyl acetate 0.48 Fenofibrate 0.00 N-Nitrosodiphenylamine 0.15 Sulfadoxin 0.24 
Benzyl alcohol 1.57 Fluconazole 0.29 N-Nitrosodipropylamine  1.03 Sulfamerazine 1.09 
Bisphenol A  0.77 Fluoexetine  0.04 NMEA  5.94 Sulfasalazine 0.15 
1,4-Butanediol 1.82 2-Fluorophenol 2.89 N-Nitrosomorpholine 2.08 Tamoxifen 0.00 
Butylparaben 0.24 Furosemide 0.62 N-Nitrosopiperidine  1.48 TCPP  0.48 
Caffeine 1.33 Gemfibrozil  0.17 NPYR 2.56 TCEP  0.85 
Captopril 2.00 Glucose  0.38 4-n-Nonylphenol  0.28 TDCPP 0.21 
Carbamazepine 0.75 Glutamic acid 0.74 Norfluoxetine 0.04 Thiabendazole 0.57 
Chloretracycline 1.36 Glycerin  2.46 Oxybenzone  0.27 Trazodone 1.33 
Cimetidine 1.67 Guanidine  3.66 Pentoxifylline 0.94 Trichloroacetic acid  0.27 
Ciprofloxacin 0.91 Ibuprofen  0.68 Phenacetine 0.25 Triclocarban  0.11 
Clofibric acid 0.81 Isopropanol  1.72 Phenylalanine 3.66 Triclosan 0.30 
Cysteine  0.30 Ketoconazole 1.03 2-Phenylphenol 1.18 Triethylene glycol 1.12 
DEET  0.70 Ketoprofen 0.73 Primidone 1.21 Trimethoprim 1.65 
Dibromoacetic acid 0.25 Lysine 3.50 Propylparaben 0.90 Tyrosine 1.44 
Dichloroacetic acid 0.27 Maleic acid 0.00 Propyphenazone 0.41 Uracil 3.30 
2,4-Dichlorophenol 0.89 Methotrexate 0.56 Pseudoephedrine 1.10 Urea  42.93 

Desloratadine      0.20     Warfarin 0.08 
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After calculating the MTC, the MATLAB program generated a figure of rejection 
versus permeate flux for each of the compounds. These figures display all of the data 
points used in the calculation as circles and the model curve, predicting rejection with 
the calculated MTCs, as dots connected with a dashed line. Figure 5.36 provides three 
examples of predicted rejection for the compounds alanine, 1,4-butanediol, and 
NDMA. These figures are included here to demonstrate the approach that was used 
by the research team to visually understand the accuracy of the model for each of the 
compounds and to group them accordingly.  

As with the phenomenological model, the degree to which the solution−diffusion model 
could estimate rejection varied by compound. Solutes that expressed flat or declining 
rejection-versus-flux curves were inaccurately modeled with the solution−diffusion method. 
Furthermore, many of the compound MTCs summarized in Table 5.13 were calculated to be 
near 0 (e.g., amitriptyline and triclocarban). Very low MTCs result when a compound is 
efficiently rejected by the ESPA2 membrane. With a cluster of MTCs that are  
approximately 0, correlations between quantitative molecular parameters and MTCs lose 
resolution. As a result, the approach taken to correlate descriptors with modeled MTC values 
was performed in groups. 

By sorting through the model plots and visually examining each of figures (examples shown 
in Figure 5.36), it was possible to qualitatively group the compounds into categories 
according to the model’s accuracy. Categories for “modelability” of high, medium, and low 
were created for compounds whose models fit data accurately, moderately, and poorly, 
respectively. These groups served two purposes. One is to eliminate inaccurate MTCs from 
molecular descriptor correlation exercises. Second, it may be possible to determine if there 
are common descriptors among the compounds of each group. This understanding could 
provide a method of predicting the applicability of the solution−diffusion model for a given 
molecule. 

Table 5.14 lists the compounds that were deemed to have high modelability with the 
solution−diffusion method. Next to the names of the compounds are several important 
molecular descriptors. There is a broad range of values for molecular weight and Log Kow, 
and all classes are represented in this list. It seems that the most consistent trend is that, with 
only three exceptions, all of the compounds have “normal” interactions with the membrane. 
This finding demonstrates the shortcoming of the solution−diffusion model. As stated before, 
this model is developed to describe diffusion of a compound through a medium. If there are 
interactions (either repellent or attractive) between the molecule and the polymer matrix, then 
the compound is not able to freely dissolve and therefore the transport phenomenon pertinent 
to the compound−membrane couple is more complex than described by Fickian diffusion. 
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Figure 5.36. Plot produced by the MATLAB model for solution−diffusion, showing rejection 
versus flux in LMH for alanine, 1,4-butanediol, NDMA, and urea.  
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Table 5.14. List of Compounds that Demonstrate High “Modelability” with 
Solution−Diffusion Method 

Compound Name Class 
Level of 
Interaction 

Mol Wt (Da) Log Kow 

1,4-Butanediol HN Normal 90.12 -1.02 
Amitriptyline  HCP Normal 277.41 1.57 
Arginine HCNP Normal 174.2 -5.29 
Baclofen HCNP Normal 213.67 -0.94 
Benzyl alcohol HN Extreme 108.1 1.03 
Butylparaben HoN Normal 194.23 3.46 
Cysteine  HCNP Normal 121.2 -2.27 
Diethylphthalate HHoN Normal 222.2 2.7 
Enalapril maleate HCN Normal 376.46 0.08 
Ethanol  HN Normal 46.1 -0.19 
Fenofibrate HoN Normal 360.8 4.8 
Fluoxetine HoN Normal 309.3 1.03 
Glucose  HN Normal 180.2 -3.17 
Glycerin HN Normal 92.1 -2.32 
Lysine HCNP Normal 146.2 -4.53 
Maleic acid HCN Normal 116.07 -4.49 
MTBE HN Normal 88.2 1.15 
NDMA  HN Normal 74.1 -0.64 
Norfluoxetine  HCP Normal 295.3 1.58 
Pentoxifylline HN Normal 278.3 0.32 
Phenacetine HN Normal 179.2 1.63 
Ranitidine HCP Normal 314.4 -1.09 
Resorcinol HN Moderate 110.1 0.76 
Tamoxifen HCP Normal 371.52 5.33 
Triethylene 
glycol  HN Normal 150.2 -1.87 
Uracil HN Moderate 112.1 -0.71 
Urea HN Normal 60.1 1.69 

Warfarin HHoN Normal 308.34 1.91 

5.5.2 Correlating Mass Transfer Coefficients with Molecular Descriptors 

In an attempt to create correlations between molecular descriptors and MTCs, a number of 
categories had to be considered. First, the category of “modelability” was used to eliminate 
compounds that could not be fit with the solution−diffusion equation. This group includes 
compounds that had declining and straight rejection-versus-flux curves. Using solute MTCs 
that did not effectively describe the rejection curves would only degrade correlations; 
therefore, these solutes were not included in the correlation exercises. By using the remaining 
compounds, different categories were included and excluded from correlations in an attempt 
to find strong correlations with a single descriptor. Examining only compounds that fit into a 
certain category is a process that would mimic the modeling of an untested compound with a 
decision tree. If one knows certain properties, including charge, Log Kow, and size-related 
descriptors, a compound can be included in an appropriate model to determine its MTC.  
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As described in Section 5.3, which discusses molecular descriptor correlations with the 
phenomenological model variables, it is most useful to compare molecules within the same 
class as they are likely subject to the same rejection mechanisms. First, all neutral compounds 
that did not exhibit low “modelability” were examined as a group. This group includes HN, 
HHoN, and HoN compounds. The strongest correlation with a single parameter for neutral 
compounds was found to be the Wilke−Chang diffusion coefficient with an R2 value of 0.60 
(Figure 5.37). It is not surprising that the best correlation for MTC was with a coefficient 
developed specifically to model diffusion. However, the fact that even this coefficient 
correlated rather poorly with MTCs suggests that mechanisms other than diffusion are likely 
involved in transmembrane transport. When the same correlation was examined for the 
individual, neutral classes alone (i.e., HN, HoN, and HHoN) and for charged and negative 
compounds, the R2 value decreased, indicating a weakening of the correlation.   

 
Figure 5.37. Correlation between Wilke−Chang diffusion coefficient and solution−diffusion 
MTCs (Ks) for neutral compounds. 

The second best R2value to come from the modeling efforts was for a correlation with the 
Stokes radius and the MTC with an R2value of 0.50 (Figure 5.38). Diffusion is largely related 
to molecule size, so again the relative strength of this correlation, compared to other 
descriptors, is logical.   
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Figure 5.38. Correlation between Stokes radius (nm) and solution−diffusion MTCs (Ks) for 
neutral compounds. 

5.5.3 Conclusions 

Considering the theoretical concept of the solution−diffusion model, this model shouldn’t be 
used to describe solute transport in NF and LPRO membranes for two main reasons. First, the 
fact that many NF membranes are thought to contain a network of pores, through which 
molecules can pass, undermines the concept that they dissolve into the membrane and diffuse 
across. Second, the solution−diffusion model does not take into account the possibility of 
membrane-solute interactions that alter the rate of diffusion. In essence, findings of this study 
suggest that the solution−diffusion model is too simple to incorporate the complex nature of 
membrane behavior with organic compounds. Furthermore, the model creates curves similar 
to those of the phenomenological model but has only one fitting parameter, although the 
phenomenological model has two. Stronger correlations were found with molecular 
descriptors for the phenomenological fitting parameters than for the solution−diffusion 
MTCs. For these reasons, the phenomenological model is deemed to be a superior method of 
modeling the rejection-versus-flux curves of organic compounds in NF membrane 
applications. Thus, the solution−diffusion model was not applied to model pilot- and full-
scale systems used in this study. 

5.6 Empirical Models—Rejection Diagram  

In this section, the rejection diagram approach developed by Bellona et al. (2004) was 
investigated by utilizing the NF-270 membrane bench-scale rejection database. The model 
was updated by employing molecular descriptors that are relatively simple to calculate and by 
utilizing the hydrodynamic model to optimize the rejection ranges. The updated rejection 
diagram was also applied to the ESPA2 membrane bench-scale rejection database to evaluate 
applications to different membranes. 

5.6.1 Optimization using the NF-270 Rejection Database 

A decision diagram approach for predicting rejection developed by Bellona et al. (2004) was 
evaluated as a method to predict NF-270 membrane bench-scale rejection data qualitatively. 
A slightly modified version of the diagram presented in Section 2.6.7 was utilized with key 
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molecular descriptors and membrane properties to calculate rejection. A summary of 
predicted versus experimental data derived in this study is provided in Figure 5.39. Because 
of the nature of the approach, only ranges of rejection can be calculated for a given solute, 
which are represented by the error bars in Figure 5.39. More than half of the compounds in 
the database had experimental rejection values outside the range predicted by the diagram 
approach; therefore, the rejection diagram was updated to provide better model fits. 
Particularly, the diagram was improved by adding molecular descriptors more readily 
available than the Taft number, as it can be very difficult to obtain these values. In addition, 
the predicted ranges can be narrowed to better fit the data.  

5.6.1.1 Updated Rejection Diagram 

Considering the findings of this study, an attempt was made to improve the precision of the 
rejection diagram. Compounds with electrostatic interactions with the membrane are highly 
rejected; however, on the basis of observations from bench-scale experiments and previous 
research by Verliefde et al. (2007), positively charged compounds exhibit lower rejection 
than do negatively charged compounds; therefore, the rejection of charged solutes was split 
into negatively charged and positively charged. Negatively charged compounds were listed as 
exhibiting greater than 90% rejection, and positively charged compounds were listed as 
exhibiting greater than 75% rejection.  

Compounds with adsorptive effects, decreasing rejection over time, exhibit two main 
properties: hydrophobic (Log Kow > 2) or a proton donating group attached (-OH or -NHn) to 
a benzene ring. The rejection diagram was updated not to include the Taft number based on 
the difficulty of calculating this descriptor. Considering the findings of this study, it was 
assumed if a compound has a proton donating group attached to a benzene ring or a Log Kow 
greater than 2, the compound will adsorb to the membrane. A compound with a proton 
donating group not attached to benzene or a Log Kow < 2 will not adsorb to the membrane. It 
should be noted that the hydrophobic cutoff was changed from Log Kow of 3 to Log Kow of 2 
because the vast number of compounds observed to adsorb to the membrane exhibited Log 
Kow values between 2 and 3 as reported by Braeken et al. (2005). Compounds with a proton 
donating group, hydroxyl group, or amine group attached to a six-ring aromatic structure can 
adsorb to the membrane surface through hydrogen bonding as reported by Williams et al. 
(1999). Compounds with adsorptive effects have lower-than-expected rejection beause of 
steric exclusion.  

The steric exclusion mechanism is split into two different pathways: one for compounds with 
adsorptive effects and one for compounds that have no interactions with the membrane. On 
the basis of the bench-scale database, steric interactions have some effect on the rejection of 
compounds that adsorb. Rejection of compounds with adsorptive effects is difficult to predict; 
therefore, the rejection ranges are very broad depending on a compound’s size. Compounds 
with rs/rp or molecular weight/MWCO ratios of less than 0.9 will be poorly removed, 
qualified as less than 30% rejected. Compounds with rs/rp or molecular weight/MWCO ratios 
between 0.9 and 1.0 will have moderate removal, specified as 30 to 70% rejected and 
compounds with rs/rp or molecular weight/MWCO ratios greater than 1.0 will be highly 
removed, representing rejection greater than 70%.  

To determine the rs/rp ratios for compounds that do not interact with the membrane, the 
hydrodynamic model was used (Bowen et al., 2004). The hydrodynamic model predicts 
rejection based solely on solute size (Stokes radius) and the pore size of the membrane. 
Rejection predicted by the hydrodynamic model is presented as a function of rs/rp in  
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Figure 5.40. From the hydrodynamic model, compounds with rs/rp ratios greater than 0.75 
will be highly rejected (greater than 80% rejection). Compounds with rs/rp ratios between 0.6 
and 0.75 exhibit moderate rejection (30 to 80%). This category is difficult to narrow down 
because of the steepness of the hydrodynamic curve between rs/rp ratios of 0.6 and 0.75. 
Compounds with rs/rp ratios of less than 0.6 exhibit poor rejection (less than 30%).  
Figure 5.41 presents the updated rejection diagram.  

In Figure 5.42, predicted rejections from the updated rejection diagram using all compounds 
are presented. Only 11% of the experimental compounds were predicted out of range with the 
updated rejection diagram. Charged compounds had a few outliers. Four negatively charged 
compounds were predicted out of range but only by a few percentage points: 90% predicted 
rejection compared to 87 and 88% experimental rejection. Only two positively charged 
compounds were overpredicted; metformin and trimethoprim exhibited 60% and 71% 
rejection, respectively. Metformin and trimethoprim did exhibit a decrease in rejection over 
time; initially, metformin exhibited 74% rejection but then decreased after 18 h to 60%, 
although trimethoprim exhibited only a 7% decrease in rejection after 18 h. The decrease in 
rejection could be due to a concentration layer buildup at the membrane surface, resulting in 
lower observed rejection because rejection takes into account only feed and permeate 
concentration (Verliefde et al., 2007).  

Only 7 of the 67 neutral compounds were predicted out of range: triethylene glycol, 
Nitrosodipropylamine (NDPA), NMEA, triclosan, acetaminophen, 2-phenylphenol, and 
bromoform. Triethylene glycol, NMEA, and acetaminophen were predicted out of range by 
only a few percentage points: 3, 6, and 1%, respectively. Bromoform was predicted to be 
poorly removed, less than 30%; however, the data supported that it was rejected by 41%. 2-
Phenylphenol exhibited only 24% rejection, where predicted rejection was between 30 and 
70%. NDPA and triclosan were greatly overpredicted, by 15 and 35%, respectively. Both of 
these compounds exhibited adsorptive effects that seem to be independent of steric 
interactions.  

   
Figure 5.39. Experimental NF-270 rejection as a function of predicted rejection values based on 
the qualitative rejection diagram. 
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Figure 5.40. Experimental rejection data as a function of rs/rp compared to the  
hydrodynamic model. 
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Figure 5.41. Modified solute rejection diagram. 
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Figure 5.42. Experimental NF-270 membrane rejection as a function of rejection predicted by 
updated rejection diagram for compounds in Table 3.2.  

5.6.2 Applying the Updated Rejection Diagram to ESPA2 Membrane Rejection 
Database 

The updated rejection diagram was applied to all compounds (Table 3.2) in the ESPA2 
membrane 12-gfd rejection database. The updated rejection diagram was able to successfully 
predict rejection for the ESPA2 membrane bench-scale data, and results are presented in 
Figure 5.43. Only 4 out of the 111 experimental compounds were predicted out of range with 
the updated rejection diagram. Ethanol, chloroform, and dichlorobromomethane were 
predicted out of range by only 5%. Isopropanol was underpredicted by 24%. This finding 
could be due to experimental error or due to isopropanol being close to the MWCO 
estimation. 

 
Figure 5.43. Experimental ESPA2 rejection compared to predicted rejection from updated  
rejection diagram.
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Chapter 6 

Validation of Rejection Models at Pilot Scale 

6.1 Introduction 

Although a significant amount of past work has been undertaken evaluating the rejection of 
organic solutes by various membranes at the bench scale, minimal work has been performed 
evaluating rejection at larger scales: specifically, on systems capable of achieving overall 
system recoveries of 60 to 85%. In addition, very little information exists on how bench-scale 
organic solute rejection trends relate to pilot- or full-scale trends and whether bench-scale 
rejection data can be used to model pilot- and full-scale rejection. The objective of this 
portion of the study was to compare the rejection of organic solutes at the bench and pilot 
scales with the ultimate goal of developing a modeling approach to describe rejection at the 
pilot and full scales. Different pilot-scale experiments using NF and RO membranes were 
conducted to support this task. 

6.2 Pilot-Scale Rejection Experiments Using Nanofiltration 
Membranes and Rejection Modeling Using QSPR and Empirical 
Models 

6.2.1 Comparing Bench- and Pilot-Scale Nanofiltration Testing 

Pilot-scale experiments were conducted on a two-stage membrane unit employing 21 4040 
spiral-wound NF-270 membranes treating microfiltered tertiary wastewater effluent provided 
by a full-scale water reclamation facility. The rejection data generated at pilot scale were used 
to evaluate models developed at bench scale including the QSPR models and the empirical 
rejection diagram.  

For this comparison, the bench- and pilot-scale systems represent different configurations that 
are operated under different conditions. Bench-scale experimentation was conducted at a low 
feed flow rate (1.5 L/min) and very low recovery (1%), although pilot-scale testing was 
conducted at a high feed flow rate (83 L/min) and high recovery (85%). Bench-scale systems 
are flat-sheet systems with a small membrane area, whereas pilot-scale systems employed 
spiral-wound configurations with a large membrane area. To compare bench scale to pilot 
scale, rejection behavior of select solutes was first examined.  

Bench-scale rejection data for caffeine and acetaminophen as a function of recovery and 
permeate flux are presented in Figure 6.1 for the NF-270 membrane. Small variations in 
recovery resulted in large changes in permeate flux rate at bench scale for caffeine and 
acetaminophen. As recovery changed between 0.1 and 1.4%, permeate flux increased from 5 
to 60 gfd. Caffeine rejection stayed relatively constant (greater than 90%), whereas 
acetaminophen rejection increased from  
40 to 70% over the permeate flux range. Observed rejection results for acetaminophen and 
caffeine as a function of recovery and permeate flux rate at pilot scale for the NF-270 
membrane are presented in Figure 6.2. Differing from bench-scale behavior, larger variations 
of recovery resulted in small variations in permeate flux at pilot scale. At pilot scale, recovery 
increased from 60 to 85%, whereas permeate flux increased only from 9 to 13 gfd. Rejection 
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of caffeine and acetaminophen stayed relatively constant as recovery and permeate flux rate 
varied.  

The bench- and pilot-scale rejection data for the NF-270 membrane are compared in Figure 
6.3. Most compounds had equal or higher rejection at pilot scale than at bench scale. This 
finding could be due to potential fouling that occurred, given that the pilot-scale feed water 
was wastewater effluent. Comerton et al. (2008) also observed higher organic solute rejection 
with fouled membranes than with virgin membranes. At pilot scale, negatively charged 
compounds were greater than 90% removed and positively charged compounds were greater 
than 84% removed. This behavior was reported by Verliefde et al. (2007) and Bellona et al. 
(2008). Bench-scale data for ionic compounds were comparable; however, trimethoprim was 
rejected by only 71% at bench scale. Most neutral compounds exhibited higher rejection at 
pilot scale than at bench scale and were greater than 80% removed, except for propylparaben, 
bisphenol A, and triclosan. All three compounds exhibited adsorptive effects at bench scale.  

Triclocarban, triclosan, and propylparaben also exhibited adsorptive effects at pilot scale for 
the NF-270 membrane. Initially high rejection (90%) was observed for triclocarban, whereas 
the compound adsorbed to the membrane, presented in Figure 6.4. As time progressed and as 
the membrane became saturated, permeation through the membrane occurred and rejection 
decreased drastically, resulting in only 44% rejection after 600 h. Triclosan and 
proplyparaben exhibited the same behavior as triclocarban, with a 50% and 30% decrease 
after 600 h, respectively. 

The bench- and pilot-scale rejection data are compared in Figure 6.5 for the ESPA2 
membrane. Rejection of most compounds was similar except for acetaminophen, caffeine, 
propylparaben, and urea. On the basis of the size of acetaminophen (molecular weight of 151 
g/mol), caffeine (molecular weight of 194 g/mol), and propylparaben (molecular weight of 
180 g/mol) and the MWCO of the ESPA2 membrane (about 100 Da), acetaminophen, 
caffeine, and propylparaben should exhibit rejection greater than 90% based on steric 
exclusion (Agenson et al., 2003; Bellona et al., 2004; Kimura et al., 2004; Van der Bruggen 
et al., 1999). This unexpected observation at pilot scale could be due to experimental errors.  
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Figure 6.1.  Bench-scale rejection for caffeine and acetaminophen as a function of permeate flux 

(primary x axis) and recovery (secondary x axis) for NF-270 membrane. 

 
Figure 6.2.  Pilot-scale rejection for caffeine and acetaminophen as a function of recovery  
(primary x axis) and permeate flux (secondary x axis) for NF-270 membrane. 
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Figure 6.3. Pilot-scale rejection at 12 gfd compared to 12-gfd bench-scale rejection for  
NF-270 membrane.  

 
Figure 6.4. Observed rejection as function of time for triclocarban at pilot scale for  

NF-270 membrane. 
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Figure 6.5. Pilot-scale rejection at 12 gfd compared to 12-gfd bench-scale rejection for  
ESPA2 membrane.  

6.2.2 QSPR Model To Describe Pilot-Scale Nanofiltration Rejection Data 

The QSPR model developed based upon the NF-270 membrane bench-scale data, restated in 
Equation 6.1, was applied to the NF-270 membrane pilot-scale data for neutral compounds. 
Rejection results of these experiments are presented in Figure 6.6. 

   (6.1) 

This QSPR model yielded the highest R2 value and lowest RMSE value for the NF-270 
membrane bench-scale database. During internal validation at bench scale, the QSPR model 
obtained the highest q2 value and was externally validated with bench-scale data yielding an 
R2 value of 0.75. Only three compounds were predicted within the confidence interval range 
seen in Table 6.1. Bisphenol A, carbamazepine, and dilantin rejection was underpredicted on 
the basis of relatively low FOSA values. Usually, compounds with low FOSA exhibit low 
rejection because of adsorptive effects; this was not the case for bisphenol A, carbamazepine, 
and dilantin. Propylparaben, triclosan, and triclocarban were overpredicted because these 
compounds exhibit extreme adsorptive effects, causing very low rejection (<50%). All of the 
compounds were predicted within 40%, with the majority predicted within 20%.  
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Figure 6.6. Developed QSPR (Stokes, FOSA, IP) applied to neutral NF-270 membrane  

pilot-scale data.  

Table 6.1. NF-270 Membrane Pilot-Scale Rejection, Predicted QSPR Rejection, and 
Percentage Difference from Experimental Pilot-Scale Data  

Compound Name Class 
Pilot-Scale Avg 

15-gfd 
Rejection 

QSPR 
Predicted 
Rejection 

Percentage  
Difference 

Propylparaben HHoN 0.21 0.59 38% 

Atrazine HHoN 0.80 0.73 -7% 

Carbamazepine HHoN 0.92 0.60 -32% 

DEET HHoN 0.86 0.73 -13% 

Dilantin HHoN 0.91 0.69 -21% 

Thiabendazole HHoN 0.70 0.45 -25% 

Acetaminophen HN 0.43 0.36 -7% 

Caffeine HN 0.96 0.58 -38% 

Methylparaben HN 0.26 0.42 16% 

Phenacetine HN 0.47 0.54 7% 

Propylphenazone HN 0.99 0.75 -24% 

Primidone HN 0.97 0.65 -32% 

Meprobamate HN 0.93 0.80 -13% 

TCEP HN 0.79 0.87 8% 

Fluoxetine HoN 0.97 0.93 -4% 

Butylparaben HoN 0.63 0.67 4% 

Bisphenol A HoN 0.88 0.67 -20% 

Triclosan HoN 0.49 0.68 19% 

Triclocarban HoN 0.44 0.70 26% 
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6.2.3 Application of the Empirical Rejection Diagram to the NF-270 
Membrane 

The rejection diagram developed with the NF-270 membrane bench-scale database provided 
an excellent fit for the pilot-scale data. The results after application of the rejection diagram 
to pilot-scale data are presented in Figure 6.7 and Table 6.2. The experimental and predicted 
rejections are listed in Table 6.2 with the respective rejection ranges and error percentages. 
Figure 6.7 presents the predicted rejection as it relates to the experimental rejection, with 
error bars representing the rejection range predicted. Overall, the rejection diagram was an 
excellent fit with only four compounds (TCEP, propylparaben, triclocarban, and triclosan) 
overpredicted. Propylparaben, triclocarban, and triclosan are very hydrophobic with Log Kow 
values of 2.92, 5.75, and 5.17, respectively. These compounds had high initial rejection, 
triclocarban and triclosan experiencing greater than 90% rejection initially, and 
propylparaben experiencing greater than 50% rejection. After saturation of the membrane 
occurred, rejection of triclocarban and triclosan decreased to below 50% and rejection of 
propylparaben decreased to 21%. These compounds can be very difficult to predict because 
of the affinity for the membrane. Besides compounds with adsorptive properties, all other 
compounds were predicted within range. The model is simple to use and can predict rejection 
for most compounds, including ionic compounds. 

 
Figure 6.7. Rejection diagram applied to NF-270 membrane pilot-scale data. 
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Table 6.2. Pilot-Scale Rejection and Predicted Rejection from Rejection Diagram for 
Experimental NF-270 Pilot-Scale Data 

Compound Name Class 
Pilot-Scale Avg 

12-gfd 
Rejection  

Rejection 
Diagram 
Predicted 
Rejection 

Rejection 
Range 
(+/-)  

Sulfamethoxazole HCN 0.97 0.95 5% 

Diclofenac HCN 0.97 0.95 5% 

Gemfibrozil HCN 0.99 0.95 5% 

Ibuprofen HCN 0.97 0.95 5% 

Ketoprofen HCN 0.90 0.95 5% 

Naproxen HCN 0.95 0.95 5% 

Atenolol HCP 0.84 0.88 12% 

Norfluoxetine HCP 0.84 0.88 12% 

Trimethoprim HCP 0.93 0.88 12% 

Propylparaben HHoN 0.21 0.50 20% 

Atrazine HHoN 0.80 0.90 10% 

Carbamazepine HHoN 0.92 0.85 15% 

DEET HHoN 0.86 0.85 15% 

Dilantin HHoN 0.91 0.85 15% 

Thiabendazole HHoN 0.70 0.50 20% 

Acetaminophen HN 0.43 0.15 15% 

Caffeine HN 0.96 0.90 10% 

Methylparaben HN 0.26 0.15 15% 

Phenacetine HN 0.47 0.50 20% 

Propylphenazone HN 0.99 0.85 15% 

Meprobamate HN 0.93 0.90 10% 

TCEP HN 0.79 0.90 10% 

Primidone HN 0.97 0.85 15% 

Butylparaben HoN 0.63 0.50 20% 

Fluoxetine HoN 0.97 0.85 15% 

Bisphenol A HoN 0.88 0.85 15% 

 



 

WateReuse Research Foundation 167 

6.3 Pilot-Scale Rejection Experiments Using Nanofiltration 
Membranes and the Phenomenological Pilot-Scale Model 

6.3.1 Introduction 

A 16- to 28-gpm pilot-scale membrane system (two-stage system with 21 4040 membrane 
elements) was installed in a pilot laboratory at CSM to conduct controlled-rejection 
experiments. The pilot system was fed by using two 500-gal tanks and experiments were 
conducted in recycle mode where concentrate and permeate were returned to the feed water 
tank to extend the length of experiments. Additionally, the membrane system was also 
deployed at a water reclamation facility in California and was tested with microfiltered, 
tertiary-treated wastewater effluent (California Title 22). Two different but very similar NF 
membranes were tested: the NF membrane (Dow/Filmtec, termed NF-4040) was used for 
controlled pilot-scale experiments in the pilot laboratory and the NF-270 membrane 
(Dow/Filmtec) was used for pilot experiments at the water reclamation facility. Pilot 
experiments conducted in the laboratory were used to develop approaches for describing 
pilot-scale rejection data, whereas data generated at the water reclamation facility were used 
to validate the modeling approaches developed previously. 

6.3.2 Model Theory 

6.3.2.1 Differential Element Approach 

Because pilot- and full-scale systems are operated at high recoveries and have large 
concentration gradients across a system, models developed for bench-scale systems, which 
are operated at extremely low recovery, are not directly applicable. To remedy this problem, 
the differential element approach (Sharma and Chellam, 2008) is a method that conceptually 
divides a membrane element or series of membrane elements into identical sub-elements that 
are treated as completely mixed reactors. Each sub-element is connected to its immediate 
neighbor by using appropriate flow and solute mass balances at steady state. The following 
equations are used for the differential element approach. The flow mass balance is given by 

              (6.1) 

where Qf(j) is the feed water flow rate of the current element, and Qf(l) and Qp(k) are the feed 
and permeate flow rate of the previously evaluated element. The solute mass balance is given 
by 

 

                                      (6.2) 

The permeate flow rate Qp(j) for each sub-element j can be calculated as 

 

(6.3) 
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where Jv(j) is the local permeate flux for sub-element j, A is the active membrane area, n is 
the number of sub-elements, Lp is the membrane solvent permeability constant, ΔP is the 
hydraulic pressure across the membrane, and Δπ(j) is the osmotic pressure difference 
calculated on the basis of the Van’t Hoff equation: 

                (6.4) 

or other empirical relationships between TDS and osmotic pressure. For experiments with 
extremely low feed concentrations, the effect of osmotic pressure on flux is expected to be 
small. The pressure drop is assumed to be linear across the membrane system, and the 
following equation can be used to calculate the driving force for permeate flow from each 
sub-element: 

 

  (6.5) 

The permeate Cp(j) and feed concentrations for each sub-element can be related by using a 
one-dimensional film theory model as 

 

    (6.6)  

The expression 

 

         (6.7) 

can be calculated from membrane transport models including the solution−diffusion model, 
the hydrodynamic model, the ENP equation approach, and the phenomenological model. For 
these models, parameters related to the membrane and the solute are inputs and the 
differential element approach is used to model the concentration gradient through the system. 
For this study, the phenomenological model was used: 

 

    (6.8) 

 

with the model parameters previously described. Once Cp(j) for each sub-element is 
determined, the weighted average permeate concentration over the entire element can be 
calculated by using 

 

            (6.9) 
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6.3.2.2 Characterization of Hydrodynamic Conditions 

In order to apply the differential element approach, a few requirements have to be fulfilled. 
First, the hydrodynamic conditions of the system need to be characterized, including an 
understanding of the cross-flow velocity across the system and the geometry of the feed-brine 
spacer and a way to calculate the MTC k in Equation 6.6. For this information, we followed 
the approach of Sharma and Chellam (2008), which was based on the approach of others 
working with large-scale membrane systems (Schock and Miquel, 1987; Geraldes and de 
Pinho, 2006). In order to calculate k, we used a commonly employed empirical mass transfer 
correlation presented as Equation 3.5 (see Chapter 3). To use the mass transfer correlation, 
the cross-flow velocity of element j is needed. It is calculated by 

                 (6.10)  

 

where Qf(j) is the feed flow rate of element j, and Ac is the channel area. The feed-brine 
channel and spacer of a membrane need to be characterized to calculate the hydraulic 
diameter (dc) and the channel area (Ac). The hydraulic diameter (dc) has been calculated by 
assuming the channel has a variable cross-section because of the spacer: 

       (6.11)  

 

where ε is the spacer porosity, h is the channel height, and SV,SP is the specific surface of the 
spacer. The porosity of the spacer can be calculated by using the average filament thickness 
and mesh size of the spacer according to 

                (6.12) 

where VSP is the volume of the spacer and VTOT is the volume occupied by the spacer. The 
specific surface of the spacer (SV,SP) is calculated by 

               (6.13) 

 

To get the information necessary to calculate the cross-flow velocity, it was necessary to 
sacrifice membrane elements and to measure channel dimensions and spacer characteristics. 
However, to calculate k in Equation 6.6 [given as k(j)], a relationship similar to that in 
Equation 3.5 is needed. The coefficients in Equation 3.5 have been reported to be dependent 
on the type and size of spiral-wound element, spacer type, and scale of membrane system 
(Sutzkover et al., 2000; Geraldes and de Pinho, 2006; Sharma and Sharma, 2008). Geraldes 
and de Pinho (2006) performed a study of spiral-wound NF-200 membrane elements, which 
were the previous generation of the NF-4040. Therefore, this mass transfer correlation was 
adopted for the determination of the mass transport coefficient [k(j)] for each element and is 
the same as in Equation 3.5.  



170 WateReuse Research Foundation 

6.3.2.3 Spreadsheet Model Development  

An additional requirement for model development was to understand and model the permeate 
flux rate [Jv(j)] in any given element throughout the pilot-scale system. A database was 
constructed that included the inlet and outlet pressures of each individual pressure vessel and 
first- and second-stage permeate flux rates at each overall system feed flow rate and recovery 
set-point. Linear regressions between inlet pressure and outlet pressure and recovery for each 
pressure vessel at each feed flow rate evaluated were then constructed. The regression 
equations allowed for the calculation of the driving pressure throughout the system, given the 
recovery and the feed flow rate and, therefore, the permeate flux rate in the system’s four 
stages if one used Equation 6.3 with the pressure data and Lp as a fitting parameter. To do 
this, the feed flow rate of the pilot-scale system was manipulated between 53 Lpm and 98 
Lpm (14 and 26 gpm) and at each flow set-point, the recovery was manipulated. During this 
exercise, the inlet and outlet of each pressure vessel were measured and the flow rates across 
the system recorded. The membrane permeability constant was measured during bench-scale 
experiments by using the sacrificed membrane elements.   

By using all of the gathered information and equations, an Excel-based differential element 
model was constructed that allowed for the evaluation of rejection over a range of recovery 
(50−90%) and feed flow rate (53 Lpm and 87 Lpm [14 and 26 gpm]). The model was 
calibrated with rejection data generated during this study, which is discussed in subsequent 
sections. 

6.3.3 NF-4040 Bench-Scale Results and Model Evaluation 

Feed water for the laboratory pilot-scale experiments was prepared by producing 1800 L of 
NF-4040 permeate from dechlorinated drinking water. This NF-4040 permeate was 
characterized by TOC analysis, electrical conductivity, ion chromatography, and inductively 
coupled plasma analysis and exhibited TOC concentrations of less than 0.3 ppm, low 
conductivity (<150 µS/cm), and a low concentration of ions (mainly sodium and chloride, 
<20 mg/L each). This feed water was spiked with the organic compound of interest at a 
nominal concentration of 700 ppb. The feed water temperature was set at 17 to 18 °C, and if 
needed, pH was adjusted to approximately 6.3. Most of the organic solutes evaluated were 
analyzed by using HPLC-DAD analysis. Experiments were conducted over a range of 
recovery and subsequent permeate flux rate set-points. Most experiments were performed at a 
constant feed flow rate of 17 gpm with system recovery manipulated by increasing the system 
back-pressure. For these experiments, system recovery values between 50 and 85% were 
evaluated and the actual values depended on where the system was operating when samples 
were collected. Samples were collected from the various sampling ports directly into HPLC 
vials and subsequently were analyzed by the HPLC-DAD method. In order to cut down on 
the number of samples, a full sampling of the system was performed only at the lowest and 
highest recovery set-points. Full sampling (14 samples total) included collecting a feed 
sample, permeate samples from each pressure vessel, all concentrate streams, and combined 
permeate streams. Otherwise, samples were collected from the feed, concentrate (first and 
second stages), and permeate (first stage, second stage, combined) streams.  
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6.3.3.1 Rejection of Organic Solutes 

Rejection data generated at bench scale for the organic solutes were fit with the 
phenomenological model by manipulating the reflection coefficient (σ) and the solute 
permeability coefficient (P). The phenomenological model satisfactorily described the 
rejection of all solutes at bench scale, and predicted values were generally within 5% of 
experimental values for all solutes evaluated. The rejection of acetaminophen, caffeine, and 
phenacetine with model fits is presented in Figure 6.8. For the NF membrane, rejection of the 
tested solutes at bench scale followed the decreasing trend of propyphenazone > DEET > 
caffeine > thiabendazole > acetaminophen. Rejection generally increased with increased 
molecular size as measured by the Stokes radius. 
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Figure 6.8. Intrinsic rejection and phenomenological model fits for acetaminophen 

(phenomenological model coefficients σ = 0.921, P = 3.15E-6 m/s), caffeine  
(σ = 0.983, P = 2.13E-7 m/s), and phenacetine (σ = 0.989, P = 1.76E-6 m/s).  

6.3.3.2 Effect of Solute Concentration on Rejection and Model Parameters 

Because solute concentrations change dramatically throughout a pilot- or full-scale treatment 
system, bench-scale experiments were conducted to evaluate the effect of solute 
concentration on rejection and the phenomenological model parameters. Acetaminophen and 
phenacetine experiments were conducted at three feed water concentrations: 300, 1000, and 
1500 μg/L (Figure 6.9). Feed water concentrations in the range of 300 to 1300 µg/L were 
found to have an undetectable influence on rejection and phenomenological model 
coefficients. Past research has demonstrated that solutes with strong solute−membrane 
interactions have increased rejection with increased concentration because of the affinity of 
the solute for the membrane and the limited sites for adsorption (Ahmad and Tan, 2004; 
Matsuura and Sourirajan, 1971). It is worth noting that acetaminophen is a compound that 
could be expected to exhibit solute−membrane interaction effects, as it has a hydroxyl group 
attached to a benzene ring. As previously mentioned, the rejection of acetaminophen is 
difficult to predict because of lower-than-expected rejection on the basis of size; however, 
acetaminophen was not observed to exhibit solute–membrane interaction (i.e., decreased 
rejection over time and decreased rejection with increased permeate flux). Acetaminophen 
behavior is significantly different from other solutes with similar structure, i.e., 
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methylparaben, benzylacetate, and methylsalicylate, which tend to sorb to membrane 
materials.  
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Figure 6.9. Observed rejection of acetaminophen (left) and phenacetine (right) versus permeate 

flux  (Jv) at different feed water concentrations (low = 300 μg/L, medium = 1000 
μg/L, high = 1500 μg/L). 
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6.3.3.3 Effect of Experimental Run Time on Rejection 

Experiments were conducted to determine the effect of experimental run time on rejection, as 
past research has demonstrated that, for certain organic solutes, equilibrium takes up to 
several  days to achieve (Kimura et al., 2003a; Hofman et al., 2007). Experiments with 
acetaminophen (Figure 6.10) and the other solutes revealed that rejection stabilized within 1 h 
and that minimal changes were observed over 20 h of continuous operation of bench-scale 
experiments.   
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Figure 6.10. Bench-scale rejection of acetaminophen by membrane specimens extracted from 

two separate spiral-wound elements versus experimental run time. 

6.3.3.4 Effect of Membrane Variability on Rejection and Model Parameters 

The pilot-scale system consisted of 21 spiral-wound elements, whereas the bench-scale 
system requires only 139 cm2 of membrane material. Therefore, three spiral-wound elements 
were sacrificed to evaluate the variability of membrane material on the rejection of 
acetaminophen and phenomenological model parameters (Figure 6.11).  
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Figure 6.11. Acetaminophen rejection versus permeate flux rate for membranes extracted from 
three spiral-wound membrane elements.  
Note: Each membrane element was evaluated in replicate. Model fits yielded the following parameters: element 1 
(σ = 0.96, P = 3.51E-6 m/s), element 2 (σ = 0.99, P = 4.50E-6 m/s), and element 3 (σ = 0.88, P = 2.92E-6 m/s). 

The rejection of acetaminophen was found to be fairly consistent among the membrane 
elements tested; however, model parameters differed more significantly with reflection 
coefficients differing by approximately 11% and the solute permeability differing by 
approximately 54%. The effect of the variability of model parameters on pilot-scale modeled 
results is presented in the next section. 

6.3.4 Pilot-Scale Model Development 

6.3.4.1 Observations from Pilot-Scale Experiments 

Pilot-scale experiments with acetaminophen and caffeine were performed by adjusting the 
overall system recovery between set-points of 50% and 90%. Sampling was performed at 
locations across the pilot-scale unit to generate a data set that could be used to calibrate the 
pilot-scale model, which is discussed in detail in the next section.  

Two separate recovery experiments were conducted: constant feed flow rate and variable 
permeate flux rate and variable feed flow rate and constant permeate flux rate. Past research 
examining pilot-scale membrane systems has reported a significant decrease in rejection with 
increasing system recovery (Hofman et al., 2007). However, rejection of both caffeine and 
acetaminophen for constant feed flow rate experiments was relatively constant over the range 
of recovery investigated (Figure 6.12). Rejection of both solutes, however, decreased with 
increasing recovery when the permeate flux rate was kept constant and when feed flow rate 
decreased. 
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Figure 6.12. Rejection of acetaminophen and caffeine versus recovery for constant feed flow rate 
and variable feed flow rate experiments.  
Notes: Constant feed flow rate experiments were performed at a feed flow rate of 64.4 Lpm (17 gpm) with a 
variable permeate flux rate to achieve recovery set-points between 50 and 90%. Variable feed flow rate 
experiments were performed at a feed flow rate of 68.1 Lpm (18 gpm), 56.8 (15), 53.0 (14), 49.2 (13), and 45.4 
(12), with the permeate flow rate held constant at 37.9 Lpm (10 gpm). 

During variable feed flow rate experiments, the cross-flow velocity was significantly reduced 
when recovery was increased, which led to concentration polarization. Because permeate flux 
was held constant, decreased rejection was observed. However, at a constant feed flow rate, 
the concentration polarization effect appeared to be offset by the increase in permeate flux as 
recovery increased, which resulted in relatively constant rejection versus recovery.  

Caffeine concentrations across the pilot-scale membrane unit during constant feed flow rate 
experiments at 60 and 80% recovery are summarized in Figures 6.13 and 6.14. As was 
expected, caffeine concentrations increased significantly (~6 times) between the feed water 
and the second-stage concentrate during 80% recovery experiments (Figure 6.13). During 
both recovery experiments, combine permeate concentrations were observed to be very 
similar, although concentrate concentrations differed significantly. It appears that, although 
increased recovery resulted in higher concentration polarization within the system (i.e., cross-
flow velocity decreased significantly), increasing recovery also raised permeate flux, which 
counteracted the effect of concentration polarization. As recovery rose, first-stage rejection 
increased because of higher permeate flux (Figure 6.14) and second-stage rejection decreased 
because of concentration polarization effects. Possibly by coincidence, these effects tended to 
cancel each other out and rejection was very stable as a function of recovery. These findings 
indicate that, for the system studied, recovery had a minimal impact on the rejection of 
nonionic organic solutes when the feed flow rate was kept constant and operated in a normal 
flow range for the elements. 
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Figure 6.13. Caffeine concentrations in feed, intraconcentrate, and concentrate samples  
as a function of recovery 
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Figure 6.14. Caffeine concentrations in permeate as a function of recovery. 

6.3.4.2 Pilot-Scale Model Calibration 

As pointed out in the previous section, the hydrodynamics of the pilot-scale system resulted 
in relatively constant rejection over a wide range of recovery set-points, which is 
hypothesized to be caused by the contradictory effects of concentration polarization and 
permeate flux on rejection. On the basis of the caffeine concentration data presented in Figure 
6.14, it appears that the second stage of the system played a large role in this phenomenon, as 
recovery had a large effect on second-stage concentrate concentrations, indicating that 
permeate flux rates changed significantly in the second stage as recovery increased. To 
effectively capture this finding in the model, caffeine data from two experiments were used to 
calibrate the model, specifically to ensure that model outputs of flow rates (e.g., permeate and 
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concentrate) and concentration fit with the experimental data. To meet this goal, it was 
necessary to use the membrane solvent permeability coefficient (Lp) as a fitting parameter so 
that the permeate flux rate of each stage of the system could be manipulated to achieve the 
correct flow rates, concentrations, and mass balances throughout the system.  

A routine was performed to find the best model fit for caffeine rejection and caffeine 
concentrations across the system by manipulating the phenomenological model parameters (σ 
and P) and the membrane solvent permeability constant in each stage of the pilot-scale 
system. The results of this procedure are presented in Figure 6.15. The ideal model 
parameters for fitting caffeine rejection and describing the concentration and flow rate 
distribution across the system were σ = 0.987, P = 6.24E-8 m-s-1, first-stage Lp = 1.15E-6 m3-
m-2-s-1-bar-1, and second-stage Lp = 9.9E-7 m3-m-2-s-1-bar-1. These Lp values used with the 
pressure data yielded model outputs of permeate flow and flux rates and permeate and 
concentrate concentrations that most satisfactorily fit the experimental data for caffeine 
(Figure 6.15). 
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Figure 6.15. Left: Rejection of caffeine from two experiments with model fit (average feed concentration = 530 μg/L, σ = 0.987, P = 6.24E-8 m/s);  
middle: 1st-stage, 2nd-stage, and combined permeate concentrations with model fit; right: 1st intrastage, 1st-stage concentrate,  
2nd intrastage, and 2nd-stage concentrate with model fit. 
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The model describes a decrease in the second-stage permeate concentration as recovery grew 
from approximately 50 to 70%, followed by an increase from 70 to approximately 89%. The 
initial decrease was due to the second-stage permeate flow and flux increasing enough to 
offset the effect of the mounting first-stage concentrate concentration and concentration 
polarization. Eventually, however, the concentration polarization effect in the second stage 
increased enough that the growth in rejection associated with higher permeate flux was not 
enough to maintain a constant second-stage permeate concentration. On the contrary, the 
first-stage permeate concentration stayed relatively constant, although the combined permeate 
increased marginally. 

6.3.4.3 Rejection of Acetaminophen, Phenacetine, DEET, and Thiabendazole 

Phenomenological model parameters determined from bench-scale experiments were used to 
model the rejection of acetaminophen, DEET, phenacetine, and thiabendazole at pilot scale. 
For acetaminophen, the highest and lowest reflection coefficient (σ) and solute permeability 
coefficient (P) as determined from bench-scale experiments with specimens taken from 
different elements were used for modeling. Acetaminophen rejection and permeate and 
concentrate concentrations with model fits are presented in Figure 6.16. The highest 
measured model coefficients determined during pilot scale provided the best model fit, with 
the lowest model parameters underpredicting rejection by approximately 10%. Unlike the 
case for caffeine, the rejection curve was more dependent upon recovery, exhibiting a 3 to 5% 
decline as recovery increased above 70%; however, the acetaminophen rejection figures 
appeared to decline slightly as well with increasing recovery. The second-stage permeate 
concentration was overpredicted by the model, which led to the combined permeate model 
output being greater than the experimental data. However, model output concentrate data 
were similar to measured data. 

DEET rejection by the NF membrane was the highest of all solutes tested, approximately 
98% for all recoveries investigated (Figure 6.17). Similar to acetaminophen, second-stage 
permeate concentrations were overpredicted, which led to the model rejection output being 
lower than the experimental values. It is worth noting that, because of high rejection, 
permeate concentrations of DEET were near the detection limit for the HPLC-DAD method. 
Phenacetine and thiabendazole pilot-scale data are summarized in Figures 6.18 and 6.19, 
respectively. For phenacetine, the first-stage permeate concentration was overpredicted, 
which led to an overprediction of rejection and of the concentrate concentrations. The 
thiabendazole model output was similar to that of phenacetine, with rejection and concentrate 
concentration overpredicted for all recoveries.  

It is worth noting that, through the development of the pilot-scale model, numerous sources 
of error were identified because of the largeness of the system. The model was partially 
calibrated to mimic the operational set-points during experiments as measured by the 
SCADA system, flow meters, and pressure gauges. The pilot-scale unit’s feed flow rate was 
controlled by a variable frequency drive that in turn was controlled by a proportional-integral-
derivative loop, which caused fluctuations in the feed flow rate, permeate flow rate, recovery, 
and pressure. Therefore, defining the conditions under which each sample was collected was 
a difficult task and could be considered a good estimate. In addition, sample concentrations 
were subject to the same overall effect of variability inherent to the system. Finally, this 
approach used phenomenological model parameters determined through bench-scale testing 
with a membrane specimen with 0.15 ft2 of area to describe the rejection of a membrane 
system with approximately 1722 ft2 of membrane area. Variation in membrane properties can 
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have a large effect on phenomenological model parameters determined at bench scale and on 
overall rejection at the pilot and full scales. Therefore, model fits for DEET, phenacetine, and 
thiabendazole were deemed to be acceptable, and this approach was evaluated for describing 
and predicting the rejection of organic contaminants by the NF-270 membrane during a pilot-
scale evaluation at a water reuse facility.  
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Figure 6.16. Left: Rejection of acetaminophen with model fit (feed concentration = 560 µg/L, solid 
rejection line: σ = 0.99, P = 2.92E-6 m/s, dashed rejection line: σ = 0.88, P = 4.5E-6 m/s); middle: 1st-
stage, 2nd-stage, and combined permeate concentrations with model fit using σ = 0.99, P = 2.92E-6 
m/s; right: 1st interstage, 1st-stage concentrate, 2nd interstage, and 2nd-stage concentrate with 
model fit using σ = 0.99, P = 2.92E-6 m/s. 
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Figure 6.17. Left: Rejection of DEET with model fit (feed concentration = 430 μg/L, σ = 0.99, P = 
6.35E-8 m/s); middle: 1st-stage, 2nd-stage, and combined permeate concentrations  
with model fit; right: 1st interstage, 1st-stage concentrate, 2nd interstage, and  
2nd-stage concentrate with model fit. 
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Figure 6.18. Top left: Rejection of phenacetine with model fit (feed concentration = 280 μg/L,  
σ = 0.989, P = 1.75E-6 m/s); top right: 1st-stage, 2nd-stage, and combined permeate concentrations 
with model fit; bottom left: 1st interstage, 1st-stage concentrate,  
2nd interstage, and 2nd-stage concentrate with model fit. 
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Figure 6.19. Top left: Rejection of thiabendazole with model fit (feed concentration = 270 μg/L,  
σ = 0.909, P = 5.08E-7 m/s); top right: 1st-stage, 2nd-stage, and combined permeate concentrations 
with model fit; bottom left: 1st interstage, 1st-stage concentrate,  
2nd interstage, and 2nd-stage concentrate with model fit. 

6.3.4.4 Effect of Feed Flow Rate on Rejection and Model Output 

The model was built to incorporate different feed flow rates, and phenacetine samples were 
collected to evaluate the effect of feed flow rate on rejection (Figure 6.20). In general, 
reducing the feed flow rate decreased rejection as a result of concentration polarization 
because of reduced cross-flow velocity. Experimental phenacetine rejection generally 
displayed the same phenomenon, with 20-gpm experiments resulting in the highest rejection 
followed by 19 and 17 gpm. This result indicates that organic contaminant rejection can be 
increased by running membrane systems at a higher feed flow rate and permeate flux.  
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Figure 6.20. Rejection of phenacetine versus recovery at three feed flow rates.  

6.3.5 Model Development and Validation—Pilot Testing of NF-270 Membrane 

6.3.5.1 Observations 

The NF-270 membrane was pilot tested for approximately 1500 h at a water reuse facility in 
Southern California for a separate WateReuse Research Foundation project (WRRF-08-010). 
Feed water for water reuse facility pilot-scale experiments was microfiltered (pore size = 0.1 
μm) tertiary-treated wastewater effluent that was pH adjusted to 6.3, with 2- to 3-mg/L 
antiscalant (King Lee Pretreat Plus) and 2- to 3-mg/L chloramine concentrations. A list of 
average concentrations of major bulk constituents in wastewater effluent feeding the pilot-
scale system is presented in Table 6.3. Pilot testing was conducted for approximately 1500 h, 
during which several operational settings were evaluated and membrane cleanings were 
performed. Four organic contaminant sampling and analysis campaigns were performed 
during testing of the NF-270 membrane. During testing, samples were collected across the 
two-stage pilot-scale system and were analyzed by LC/MS-MS for the quantification of 
organic contaminants. Rejection was evaluated under different operational settings, including 
feed flow rate and recovery. Rejection data were used to validate modeling approaches 
developed during this study.  



 

WateReuse Research Foundation 185 

Table 6.3. Average Bulk Wastewater Quality for Major Constituents 

 

 

 

 

 

 

 

A summary of feed water concentrations of quantified organic contaminants over the course 
of pilot testing is provided in Figure 6.21. Concentrations of organic contaminants ranged 
from low nanograms per liter to low micrograms per liter with atenolol, TCEP, meprobamate, 
carbamazepine, DEET, sulfamethoxazole, triclocarban, and primidone displaying the greatest 
concentrations, respectively. Depending on when samples were collected, the concentration 
of certain compounds varied significantly.  

A comparison of rejection of the various organic contaminants as a function of time is 
presented in Figure 6.22. During the first 500 h of operation, the NF-270 process was 
operated at a feed flow rate of 22 gpm and a recovery of 85%, resulting in a permeate flux of 
approximately 15 gfd. Under these conditions, operation was very stable, with almost no 
membrane fouling observed from operational data (e.g., specific flux decreased negligibly). 
Rejection determined after 24 and 500 h of operation was similar for most organic 
contaminants, with the major exception being triclocarban, which decreased significantly 
between 24 and 500 h. Triclocarban is a relatively hydrophobic (Log Kow = 4.74) antibacterial 
compound that is replaced with chlorine atoms. The observed decrease in rejection is 
hypothesized to be due to adsorptive interactions with the membrane, which resulted in 
relatively high initial rejection that decreased after some time. The rejection of several 
compounds (naproxen, diclofenac, sulfamethoxazole, and dilantin) increased slightly (~10%) 
over time, although ibuprofen, TCEP, and DEET rejection decreased slightly (~10%) over 
time. As a comparison, the rejection of major cations and anions and of bulk organic carbon 
is presented in Figure 6.23. Slight differences (~10%) in rejection for 24 h and 500 h of 
operation were also observed for certain inorganic constituents. These small discrepancies 
cannot be explained with certainty; however, possible explanations include membrane fouling 
and compaction, analytical error, and changes in feed water composition. Whatever the 
explanation, these factors are extremely difficult to incorporate into modeling approaches and 
any predictive modeling approach should be considered an estimate of rejection.       

Constituent Average StDev 
Conductivity (μS/cm) 1023.2 96.4 
UV-254 (cm-1) 0.13 0.01 
Constituent Average (mg/L) StDev (mg/L) 
DOC 6.4 0.9 
NO3-N 2.7 1.0 
Alkalinity (as CaCO3) 216.0 21.0 
Chloride 123.1 15.6 
Calcium 54.2 9.4 
Magnesium 14.5 4.0 
Phosphate 0.4 0.4 
Sodium 136.3 16.1 
Silica 10.7 1.4 
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Figure 6.21. Ranges of pharmaceutically active compounds (left) and a pesticide (atrazine), 
personal care products (DEET, propylparaben, triclocarban, triclosan), a plasticizer (TCEP), 
and a pharmaceutically active compound (meprobamate).  

 

0 0.2 0.4 0.6 0.8 1

Atenolol

Carbamazepine

DEET

Dilantin

Fluoxetine

Meprobamate

Primidone

Sulfamethoxazole

TCEP

Trimethoprim

Diclofenac

Gemfibrozil

Triclocarban

Ibuprofen

Naproxen

500 hours
24 hours

Rejection [-]  
Figure 6.22. Rejection of organic contaminants by NF-270 (22-gpm feed flow rate, 85% recovery) 
over a period of 500 h.  
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Figure 6.23. Rejection of inorganic constituents and bulk carbon by NF-270 (22-gpm feed flow 
rate, 85% recovery) over a period of 500 h.  

6.3.5.2 Phenomenological Model 

Bench-scale-derived phenomenological model coefficients were used to describe the rejection 
of organic contaminants at pilot scale. Similar to the NF-4040 pilot-scale modeling approach, 
the NF-270 membrane pilot-scale model was calibrated to describe pilot flow distributions at 
different recoveries and feed flow rates during treatment of wastewater effluent. This 
approach assumes that the feed water matrix has minimal effect upon rejection as bench-scale 
experiments were conducted with synthetic feed water (i.e., deionized water) and as the pilot 
system was fed with wastewater effluent. Given the many factors that could potentially affect 
rejection at pilot scale (e.g., analytical error, fouling, scaling, compaction, membrane 
variability, and variability in operational conditions), we believe that feed water matrix 
effects are likely insignificant. It is worth pointing out that feed water pH, which is likely to 
have the largest impact on rejection, particularly for ionic compounds, was 6.3 for both pilot- 
and bench-scale experiments. 

Model calibration was first investigated by fitting rejection data and evaluating model outputs 
of permeate and concentrate concentrations. For this process, the average measured feed 
water concentration was used in the model (averaged over the three recovery sets of 
conditions evaluated). Examples of this exercise for meprobamate and carbamazepine are 
presented in Figures 6.24 and 6.25. For most compounds, measured concentrate and permeate 
concentrations were in agreement with the model output, although some discrepancies were 
observed (see Figures 6.24 and 6.25). These differences likely occurred because these 
contaminants were quantified at very low concentrations and because there were multiple 
steps in the LC/MS-MS method including SPE, leading to some analytical error. Care was 
taken to minimize and correct for any analytical error by using radiolabeled isotope standards 
for each compound evaluated.  
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Figure 6.24. Meprobamate rejection (top left), permeate concentrations (top right, and 
concentrate concentrations (bottom left) as function of system recovery (20-gpm feed flow rate).  
Note: Model fits calculated by using bench-scale-derived phenomenological model coefficients. 
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Figure 6.25. Carbamazepine rejection (top left), permeate concentrations (top right), and 
concentrate concentrations (bottom left) as function of system recovery (20-gpm feed flow rate).  
Note: Model fits were calculated by using bench-scale-derived phenomenological model coefficients. 
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An example of model fits using bench-scale-derived phenomenological mode coefficients for 
the rejection of organic contaminants quantified in permeate and feed samples during the first 
24 h of pilot-scale testing is presented in Figure 6.26 (left, data from two feed and two 
combined permeate samples). Although most of the ionic contaminants, with the exception of 
sulfamethoxazole, were well described by this approach, several of the nonionic organic 
contaminants were underpredicted by approximately 10% (e.g., meprobamate and 
primidone). Besides sulfamethoxazole, meprobamate, and primidone, modeled rejection at 
85% recovery and a feed flow rate of 22 gpm was within 6% of experimental values. 
Unfortunately, compounds quantified in feed water that would be expected to have lower 
rejection values—such as acetaminophen, propylparaben, and caffeine—were excluded from 
this analysis because of analytical issues (e.g., low recovery of isotope standard). As a 
comparison, the average rejection values for the pilot system operating at 85% recovery and 
22 gpm feed flow rate over the 1500 h of testing are provided in Figure 6.26 (right).  
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Figure 6.26. Rejection of organic contaminants quantified in feed and permeate samples after  
24 h (left) and for three sampling campaigns performed over 1500 h of testing (right) of NF-270 
membrane at 85% recovery and feed flow rate of 22 gpm.  
Note: Model points represent rejection calculated with phenomenological coefficients derived from bench-scale 
experiments.  

Because of the low concentrations of organic contaminants in feed and permeate samples, the 
relatively complex analytical method employed, and potential sources of error during 
experimentation, measured rejection could be variable depending on the compound 
evaluated. Measured rejection values for atenolol, ketoprofen, and TCEP over 1500 h of 
testing at a feed flow rate of 22 gpm with model fits are presented in Figure 6.27. At 85% 
recovery, atenolol and TCEP measured rejection varied by approximately 10%. Pilot-scale 
model fits, therefore, provide an estimation of rejection as the observed variability cannot be 
explained.   
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Figure 6.27. Rejection values for atenolol (top left), ketoprofen (top right), and TCEP (bottom) at 
22 gpm feed flow rate.  
Note: Values collected over several sampling campaigns.  

The effect of the feed flow rate was also evaluated during pilot-scale testing, and rejection of 
organic contaminants at 22 and 16 gpm is presented in Figure 6.28. A significant decrease in 
rejection was observed for all organic contaminants, with the exception of triclocarban, when 
the pilot-scale system was operated at 16 gpm. Modeled rejection examples at 16 and 22 gpm 
feed flow rates are presented in Figure 6.28. The reduction in the calculated cross-flow 
velocity by decreasing the feed flow rate from 22 to 16 gpm resulted in a theoretical drop in 
rejection of 3 to 7%, depending on the range of rejection. The rejection of several 
compounds, however, was observed to decrease by more than 10%, which was not described 
by the model. One possible explanation is that this experiment was done after approximately 
1500 h of testing. Although the membrane had been cleaned prior to the experiment, 
membrane fouling can result in cake-enhanced concentration polarization, which would 
exacerbate the effect of cross-flow velocity on rejection. Typical membrane systems treating 
wastewater effluent are operated at approximately 10 to 12 fd permeate flux to avoid 
potential fouling issues. Operating at a recovery of 80 to 85%, while achieving 10 to 12 gfd 
permeate flux, requires a relatively low feed flow rate and, subsequently, a low cross-flow 
velocity. Because organic contaminant rejection in a two-stage system is negligibly affected 
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by recovery, operating a higher permeate flux and cross-flow velocity will likely result in 
increased rejection of organic contaminants.  
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Figure 6.28. Rejection of contaminants at 16 and 22 gpm feed flow rate and 85% recovery during 
pilot-scale testing (left) and modeled rejection at 22 and 16 gpm (right). 

6.3.6 Predicting Rejection Using Previously Developed QSPR Approach 

The nonionic QSPR approach to predict Log Ps and sigma was redeveloped by using several 
of the compounds quantified in the wastewater effluent as validation compounds. 
Carbamazepine, DEET, dilantin, meprobamate primidone, and TCEP were removed from the 
validation set, and the QSPR approaches developed previously were recalculated. The QSPR 
approach using Log solubility, second moment of the y axis charge density, and depth yielded 
a statistically significant correlation with experimental Log Ps values (R2 = 0.88). From the 
developed equation, the Log Ps for carbamazepine (-6.46), DEET (-6.63), dilantin (-6.54), 
meprobamate (-6.16), primidone (-6.16), and TCEP (-6.56) was calculated. Sigma was 
calculated by using the monomodal pore size distribution presented in the previous chapter. 
An example using pilot-scale DEET data generated at a feed flow rate of 20 gpm is presented 
in Figure 6.29. Predicted rejection was in very good agreement with observed rejection, and 
permeate and concentrate concentrations were in general agreement with observed values.  

The bench-scale phenomenological coefficients underpredicted the rejection of meprobamate 
and primidone, and these compounds’ predicted Log Ps values were very close to the bench-
scale-derived values. Therefore, this approach underpredicted the rejection of primidone and 
meprobamate. Predicted rejection of carbamazepine and dilantin was within 5% of observed 
values at 70, 80, and 85%. TCEP rejection was overpredicted by approximately 5% at all 
recoveries evaluated.  
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Figure 6.29. Observed and predicted DEET rejection values (top left) and observed and 
predicted permeate (right) and concentrate (bottom left) concentrations.  
Note: Sigma was calculated as 0.99 and Log Ps as -6.63 m/s. 
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6.4 Pilot-Scale Rejection Experiments Using the ESPA2 Reverse  
Osmosis Membrane 

6.4.1 Experimental Conditions 

Pilot-scale experiments were conducted with the pilot-scale RO system at CSM to develop a 
rejection data set for ESPA2 RO model validation. A multiday experiment was conducted by 
using synthetic feed water spiked with a suite of trace organic chemicals to assess the effect 
of operating conditions and experimental run time on rejection. Because of the MWCO of the 
ESPA2 membrane, it was anticipated that rejection would be greater than 90%; therefore, two 
sensitive LC/MS-MS methods (Chapter 3.2.5) were used for sample analysis. In addition to 
the low detection limit (< 50 ng/L), a large suite of compounds could be analyzed by using 
these methods.  

For the pilot-scale experiment, approximately 450 gal of tap water was added to one of the 
two 500-gal tanks feeding the pilot-scale system. The water was first dechlorinated (with 
sodium metabisulfite) and then was filtered with the ESPA2 membrane. During the filtration 
step, the concentrate stream was wasted and the permeate stream collected in a second 500-
gal tank and subsequently spiked with 34 compounds. The compounds that were tested by 
using the ESPA2 membrane pilot-scale experiment are listed in Table 3.4. 

During all experiments, the feed flow rate was set at 20 gpm and temperature was maintained 
at approximately 18 °C. Three recovery set-points were evaluated over the 1st day of 
experimentation: the first sample was collected at a recovery of 85% (average permeate flux 
of 13.7 gfd), the second at 75% recovery (12.1 gfd), and the third at 60% recovery (9.7 gfd). 

Once a recovery set-point was achieved, the system was allowed to run for 2 h before 
sampling took place. After collection of samples for the three recovery set-points, the 
recovery was again adjusted to 85% and was allowed to operate for 3 days. During this time, 
three more sampling events took place at approximately 24-h intervals. Before sampling 
occurred, feed water temperature, pH, and pressures and flow rates were recorded. Flow rates 
monitored included feed, combined permeate, first-stage permeate, second-stage permeate, 
first-stage concentrate, and combined concentrate. Samples were collected from each of these 
streams, and three 2-mL aliquots were collected in HPLC vials, while one 1-L bottle was 
filled with each of the permeate samples.  

Following the completion of the multiday experiment, two additional, single-compound 
experiments were performed with glycerol and urea at concentrations high enough to be 
detected by using the HPLC method described in Section 3.2.3. The rejection of urea was 
tested for five different recovery set-points ranging between 65 and 85%, with feed flow rates 
of 22 and 16 gpm. Rejection of glycerol was examined for the same range of recoveries but 
was tested only at a feed flow rate of 22 gpm. Each experimental set-point was allowed to 
equilibrate for 1 h before sampling took place. The same set of samples was taken during 
these experiments as during the multiday experiment described earlier. Results from these 
experiments are presented in the following sections. 
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6.4.2 Analytical Results 

As anticipated, a number of the compounds evaluated exhibited very high rejection by the 
ESPA2 membrane and were not detected in permeate samples by using the LC/MS-MS 
method. Compounds that were detected at levels above detection limits in more than one 
permeate sample are listed in Table 6.4. Methylparaben was detected in all samples but is 
omitted from many figures and analyses because of questionable analytical data. In the first 
four sample events methylparaben permeate and concentrate concentrations were each higher 
than the feed concentrations. This observation may be the result of the compound partitioning 
into the membrane. 

There are several reasons that some compounds were not detected in any of the experimental 
samples. One reason is that, for compounds that are known to partition into membranes, such 
as various hormones, there may have been a large amount of mass that partitioned onto the 
membrane surface or into its polymer matrix. The pilot-scale system contains approximately  
1785 sq ft of membrane surface area, and it is feasible that enough mass partitioned into the 
membrane material to decrease the feed concentration to levels below detection limits. 
Another possible explanation for not detecting certain compounds in the samples is the 
criterion for determining the detection limit. A signal-to-noise ratio of 30 was used to define 
the detection limit. Compounds with signal-to-noise ratios less than 30 were not quantified. 
For some compounds, the signal-to-noise ratio was much higher than for others and certain 
compounds with low signals were difficult to quantify. \ 
 
Table 6.4. Compounds Detected in All Samples from Pilot-Scale Experiment with  
ESPA2 Membranes by Using LC/MS-MS Method  

Compounds Detected in All Samples 

Acetaminophen Caffeine  Methylparaben 

Atrazine Cimetidine Propylparaben 

Atenolol DEET Sulfamethoxazole  

Feed concentrations over the course of the experiment were evaluated to determine the loss of 
compound mass. Figure 6.30 presents the feed water concentrations for the nine compounds 
that were detected in all samples over the 4 days that the experiment took place. A noticeable 
decline was observed during the 1st day, after which the concentration stabilized for atenolol, 
trimethoprim, propylparaben, and cimetidine. An explanation for this trend is that a loss of 
mass onto and into the membrane polymer occurred relatively quickly until a level of 
saturation was reached. This theory would explain the early, rapid concentration decline and 
the subsequent period of relative stability. Atrazine, acetaminophen, caffeine, DEET, and 
sulfamethoxazole all remained relatively stable during the entire course of the experiment, 
although DEET exhibited a decrease on the last day of the experiment.  
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Figure 6.30. Feed water concentrations of nine compounds detected over the course of the 
multiday, pilot-scale experiment.  

The main goal of the experiment was to develop a data set depicting compound rejection over 
a range of recoveries for as many compounds as possible. This data set could then be used to 
develop methods to scale up bench-scale models to larger systems such as pilot- and full-
scale membrane treatment trains. Figures 6.31 and 6.32 present the rejection-versus-recovery 
curve for the five well-removed and four poorly removed compounds, respectively. For this 
section, well-removed compounds are those that had 85% rejection or higher in all samples. 
Poorly removed compounds are those that had at least one sample with a rejection level 
below that threshold. 

Compounds that were well removed include atenolol, atrazine, DEET, sulfamethoxazole, and 
trimethoprim. The lowest molecular weight among these compounds was 191 g/mol for 
DEET. The rest of the compounds ranged from approximately 216 to 290 g/mol. Given that 
the MWCO for the ESPA2 membrane is between 70 and 100 g/mol, the most important 
rejection mechanism for each of these compounds is steric exclusion. The removal of these 
compounds varied between approximately 86% and 99%. Consistent among all the 
compounds is the lack of rejection variation across the range of recovery examined in this 
experiment. The data points for each individual compound remain within a 2 to 3% range. 
This observation is not surprising, given the limited range of flux in this experiment. In 
bench-scale experiments, flux typically spanned a range of 6 to 30 gfd, although the range 
was only 9.7 to 13.7 gfd in the pilot-scale experiment. Compounds that were poorly removed 
include caffeine, cimetidine, propylparaben, and acetaminophen. The rejection of these 
compounds as a function of recovery is presented in Figure 6.32. 
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Figure 6.31. Rejection versus recovery for well-removed compounds in ESPA2 membrane pilot-
scale experiment. 

Cimetidine exhibited a gradual increase in rejection as recovery increased; however, this 
pattern is probably due to analytical error. Figure 6.32 presents the first-stage, second-stage, 
and combined permeate concentrations of cimetidine for the three recovery set-points. As 
expected, for a given recovery, the first-stage permeate concentration is lower than that of the 
second stage. The combined permeate concentration theoretically must fall between these two 
values, and because the flow rate is higher in the first stage than in the second stage, the 
combined permeate concentration should fall closer in value to that of the first stage. In 
Figure 6.33, it is clear that only the recovery of 60% behaves in this expected way. Therefore, 
an analytical error is likely associated with both the 75 and 85% recovery data.  



198 WateReuse Research Foundation 

 

 
Figure 6.32. Rejection versus recovery for poorly removed compounds in ESPA2 membrane 
pilot-scale experiment. 

 

Figure 6.33. 1st-stage, 2nd-stage, and combined permeate concentrations of cimetidine for the 
three recovery set‐points tested in the pilot-scale experiment with ESPA2 membranes. 

Propylparaben permeate concentrations are presented in Figure 6.34. These data are 
consistent with the anticipated trend described in the previous paragraph. Also, a mass 
balance calculation performed during data analysis demonstrated that a weighted average of 
the combined concentrate and permeate concentrations correlated well with the measured 
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feed concentrations, indicating that the data are reliable. These two observations suggest that 
the trend observed for propylparaben of increasing rejection with increasing flux is accurate.  

 
Figure 6.34.  1st-stage, 2nd-stage, and combined permeate propylparaben concentrations for the 
three recovery set‐points tested in the pilot-scale experiment with ESPA2 membranes. 

Acetaminophen and caffeine both have their lowest rejection at a flux of 75% and similar 
rejection levels at 60 and 85%. It is unclear what caused the rejection to “dip” at the middle 
recovery point for each of these two compounds. Most compounds exhibit increased removal 
with increasing recovery. For some compounds, however, a decline in removal followed by 
an incline after a certain level of recovery has been observed but is unprecedented and 
therefore is probably linked to analytical error.  

Data from the experiments with urea and glycerol are presented in Figures 6.35 and 6.36, 
respectively. Both of these compounds exhibited stable rejection across the range of 
recoveries tested in the experiments. Approximately 20 to 25% of urea was rejected by the 
ESPA2 membranes in the pilot-scale experiment, whereas glycerol was removed at 
percentages between 90 and 95%. Analytical results from these two experiments are more 
reliable than those from the multiday experiment as they were spiked at elevated levels and 
then measured by using the HPLC method, which is a much simpler method. Because this 
method involves fewer steps, it may introduce less error. These data are useful for scaling up 
models developed at the bench scale in order to obtain pilot-scale data for two compounds 
that are consistently present in the permeate of installations that employ the ESPA2 RO 
membrane.  
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Figure 6.35. Rejection versus recovery for urea in ESPA2 membrane pilot-scale experiment. 

 
Figure 6.36. Rejection versus recovery for glycerol in ESPA2 membrane pilot-scale experiment. 

6.4.3  QSPR Model ESPA2 Membrane  

The QSPR model developed for the ESPA2 membrane, restated in Equation 6.14, yielded an 
R2 of 0.75 and RMSE of 0.346 and was applied to the ESPA2 pilot-scale data, presented in  
Figure 6.37. 

     (6.14) 

The model was internally validated, yielding a q2 of 0.66, and externally validated, yielding 
an R2 of 0.74. Almost half of the compounds were predicted out of range (Table 6.5). Some 
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outliers could be due to experimental error such as acetaminophen and caffeine having 
relatively low rejection.  

 
Figure 6.37. Experimental rejection for the ESPA2 membrane pilot scale compared to predicted 

rejection using the QSPR.  

Table 6.5. ESPA2 Pilot-Scale Rejection, Predicted QSPR Rejection, and Percentage 
Difference from Experimental Pilot-Scale Data  

Compound Name Class 
Pilot-Scale Avg 

12-gfd 
Rejection 

QSPR 
Predicted 
Rejection 

% 
Difference 

Atrazine HHoN 0.98 0.98 1% 

Carbamazepine HHoN 0.98 0.99 1% 

DEET HHoN 0.98 0.98 0% 

Propylparaben HHoN 0.60 0.98 38% 

Acetaminophen HN 0.35 0.98 63% 

Caffeine HN 0.73 0.96 23% 

Primidone HN 0.97 0.98 1% 

TCPP HN 0.96 0.99 3% 

TCEP HN 0.93 0.97 4% 

Glycerol HN 0.95 0.82 -13% 

Urea HN 0.20 0.74 54% 

Triclosan HoN 0.91 0.99 9% 

On the basis of the size of acetaminophen (molecular weight of 151 g/mol) and caffeine 
(molecular weight of 194) and the MWCO of the ESPA2 membrane (about 100 g/mol), 
acetaminophen and caffeine should exhibit rejection greater than 90%. Propylparaben 
(molecular weight of 180 g/mol) also exhibited lower-than-expected rejection based on steric 
interactions. Urea was also overpredicted because of its high FOSA value; however, the 
molecular weight of urea is below the MWCO so the low rejection was expected. This 
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observation was also seen at bench scale, indicating that it could be a limitation of the QSPR 
model. 

6.4.4. Application of the Rejection Diagram to the ESPA2 Membrane 

The rejection diagram provided a moderate fit for the ESPA2 pilot-scale data. The application 
of the rejection diagram at pilot scale is presented in Figure 6.38 and Table 6.7. The 
experimental and predicted rejections are listed in Table 6.6 with the respective rejection 
ranges and error percentages. Figure 6.38 presents the predicted rejection as it relates to the 
experimental rejection with error bars representing the rejection range predicted. 
Propylparaben, acetaminophen, caffeine, and urea were predicted out of range. Experimental 
rejection values for propylparaben, acetaminophen, and caffeine were lower than expected on 
the basis of their size possibly because of experimental error. Urea was overpredicted by 
10%. All other compounds tested at pilot scale were predicted within range. The model is 
simple to use and can predict rejection for most compounds for the ESPA2 membrane. 

 
Figure 6.38. ESPA2 membrane pilot-scale rejection compared to the rejection predicted from the 
updated rejection diagram. 
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Table 6.6. Bench- and Pilot-Scale Rejection, Predicted Rejection from Rejection 
Diagram, and Percentage Difference from Experimental Pilot-Scale Data for ESPA2 
Membrane  

Compound Name Class 
Pilot-Scale 
Avg 12-gfd 
Rejection 

Rejection 
Diagram 
Predicted 
Rejection 

Rejection 
Range 
(+/-) 

%Differen
ce 

Sulfamethoxazole HCN 0.99 0.95 5% -4% 

Gemfibrozil HCN 0.96 0.95 5% -1% 

Atenolol HCP 0.88 0.88 12% 0% 

Cimetidine HCP 0.79 0.88 12% 9% 

Trimethoprim HCP 0.98 0.88 12% -10% 

Carbamazepine HHoN 0.98 0.85 15% -13% 

DEET HHoN 0.98 0.85 15% -13% 

Propylparaben HHoN 0.60 0.85 15% 25% 

Atrazine HHoN 0.98 0.90 10% -8% 

Urea HN 0.20 0.50 20% 30% 

Primidone HN 0.97 0.85 15% -12% 

Acetaminophen HN 0.35 0.85 15% 50% 

Caffeine HN 0.73 0.90 10% 17% 

TCPP HN 0.96 0.90 10% -6% 

TCEP HN 0.93 0.90 10% -3% 

Glycerol HN 0.95 0.90 10% -5% 

Triclosan HoN 0.91 0.85 15% -6% 

 

6.4.5 Phenomenological Model for the ESPA2 Membrane 

Bench-scale-derived phenomenological model coefficients were input into the differential 
element model calibrated for the ESPA2 membrane to describe the rejection of organic 
solutes as a function of recovery at pilot scale. Several examples of this modeling approach 
are presented in Figure 6.39. Of the solutes presented, the worst model fit was found for the 
rejection of acetaminophen, which was significantly overpredicted. Model fits for the other 
solutes examined were in the range of experimental rejection values; however, atrazine and 
sulfamethoxazole were underpredicted by approximately 2 to 5% by using this approach. 
Similar results were observed for NF-270 membrane pilot-scale results; that is, the pilot 
model underestimated the experimental rejection for several compounds.  

One limitation of the phenomenological model is that, in the range of permeate flux 
evaluated, rejection is strongly dependent on the solute permeability coefficient (P). This 
parameter can be difficult to fully evaluate because it requires the determination of rejection 
at very low permeate flux. Although bench-scale ESPA2 membrane experiments included 
two flux set-points below 10 gfd (i.e., 3 and 7 gfd), the shape of the rejection curve could not 
always be fully characterized at low permeate flux. Compounds with high rejection (e.g., 
atrazine and sulfamethoxazole) have relatively flat rejection-versus-flux curves, which make 
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model fitting, especially at low permeate flux, a challenge. The major issue associated with 
characterizing rejection at low permeate flux is the time it takes to process an acceptable 
amount of permeate before a sample is taken for analysis. For the SEPA cells used, achieving 
a permeate flux of 3 gfd requires a permeate flow rate of approximately 1 mL/min. 
Approximately 250 mL of permeate was processed through the membrane before samples 
were collected for analysis and required approximately 4 h at a permeate flux of 3 gfd.  
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Figure 6.39. Pilot-scale rejection of organic solutes with phenomenological model fits using 
coefficients derived from bench-scale experiments 
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Chapter 7 

Validation of Rejection Models at Full Scale 

7.1 Full-Scale Sampling Campaign 

A full-scale sampling campaign was performed at the Orange County Water District 
(OCWD)’s Ground Water Replenishment (GWR) System to quantify the removal of organic 
contaminants by the ESPA2 membrane and to develop a data set for model validation at full 
scale. Samples were collected from the feed water, interstage permeate, and concentrate 
(waste stream) streams (Stages 1 and 2), combined permeate stream, and combined 
concentrate stream. For data set development purposes, samples were collected over a range 
of recovery set-points. The team had initially planned to sample at recoveries of 65, 75, and 
85%. Unfortunately, the full-scale system could not be manipulated below 76% recovery. The 
team evaluated 76, 78, and 84% recoveries during the sampling event. 

The concentrations of the organic contaminants that were quantified in the GWR RO feed 
water are presented in Figure 7.1. Out of the target analytes, only two solutes, bisphenol A 
and octylphenol, could not be quantified in the RO feed water. Concentrations of the 
quantified organic contaminants varied from the low nanograms per liter level to low 
micrograms per liter. It is important that the error bars in Figure 7.1 are calculated from the 
concentration variation in triplicate samples. 

 
Figure 7.1. Feed concentration of organic compounds quantified in OCWD’s RO feed  water 
(error bars calculated from triplicate samples).  
Note:  BHA = bisphenol A 
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Overall rejection values for the compounds quantified in the RO feed water for each recovery 
set-point are presented in Table 7.1. For many of the compounds, rejection was close to 100% 
as the compound could not be quantified in the combined permeate samples. Very low 
concentrations of DEET, atenolol, trimethoprim, meprobamate, gemfibrozil, ibuprofen, 
naproxen, sulfamethoxazole, and fluoxetine were quantified in one or more combined 
permeate samples, resulting in rejection greater than 99%. The high rejection for these 
compounds was expected because of electrostatic interactions for the ionic compounds and 
steric interactions for the nonionic compounds, given that the nonionic compounds had a 
molecular weight greater than the MWCO for the ESPA2 membrane (100 Da) (Agenson et 
al., 2003; Bellona et al., 2004; Kimura et al., 2004; Van der Bruggen et al., 1999; Verliefde et 
al., 2007; Ozaki and Li, 2002).  

Table 7.1. Rejection Values for Sampling Campaign Performed at OCWD’s Full-Scale  
RO Facility 

Compound 
Rejection: 

76% 
Recovery 

Rejection: 
78% 

Recovery 

Rejection:  
84% 

Recovery 
Type Mol Wt Log D (6) 

Benzophenone 0.673 0.729 0.732 Neutral 182.2 3.18 
DEET 0.997 0.997 0.997 Neutral 191.3 1.96 
Caffeine 1.000 1.000 1.000 Neutral 194.2 -0.13 
Ibuprofen 0.997 0.996 1.000 Negative 206.3 2.12 
Atrazine 1.000 1.000 1.000 Neutral 215.7 2.63 
Meprobamate 0.999 0.999 0.999 Neutral 218.3 0.70 
Primidone 1.000 1.000 1.000 Neutral 218.3 0.40 
Naproxen 0.999 0.999 1.000 Negative 230.3 1.81 
Carbamazepine 1.000 1.000 1.000 Neutral 236.3 2.67 
Gemfibrozil 0.999 1.000 0.999 Negative 250.3 3.12 
Dilantin 1.000 1.000 1.000 Neutral 252.3 2.52 
Sulfamethoxazole 1.000 0.999 0.999 Positive 253.3 0.49 
Atenolol 0.998 0.998 0.998 Positive 266.3 -2.73 
Diazepam 1.000 1.000 1.000 Negative 284.8 2.96 
TCEP 1.000 1.000 1.000 Neutral 285.5 0.48 
Triclosan 0.976 0.431 0.919 Neutral 289.5 5.17 
Trimethoprim 0.998 0.998 0.998 Positive 290.3 -0.42 
Musk ketone 1.000 1.000 1.000 Neutral 294.3 3.86 
Diclofenac 1.000 1.000 1.000 Negative 295.1 2.23 
Fluoxetine 1.000 0.959 1.000 Neutral 309.3 1.03 
TCPP 1.000 1.000 1.000 Neutral 327.6 1.53 
Bisphenol A 1.000 1.000 1.000 Neutral 360.5 3.50 
Atorvastatin 1.000 1.000 1.000 Negative 558.6 2.41 
Iopromide 1.000 1.000 1.000 Neutral 791.1 -2.95 

 

Benzophenone was only moderately (60–80%) rejected by the ESPA2 membrane. 
Benzophenone has a molecular weight (182 g/mol) greater than the MWCO of the ESPA2 
membrane and therefore should exhibit greater rejection than 60 to 80% on the basis of steric 
exclusion. However, benzophenone is relatively hydrophobic (Log D of 3.18) and does 
exhibit adsorptive properties that were observed at bench scale for the NF-270 membrane, 
which could cause a decrease in observed rejection. Compound rejection remained constant 
over the recovery range that was investigated for most compounds except for triclosan. 
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Triclosan exhibited 97% and 91% rejection for recovery set-points of 76 and 84%, 
respectively; however, for 78% recovery, triclosan was rejected by only 43%. This large 
decrease in rejection could be due to experimental error or to the adsorptive effects of 
triclosan that were observed at bench scale.  

On the basis of these and past results, the ESPA2 membrane reduces concentration of the 
compounds in the feed water to levels in the combined permeate that are at or below the 
detection level of the LC/MS-MS method. Although many of the compounds were below the 
detection limit in the combined permeate samples, sampling across the full-scale RO train 
allowed for the evaluation of permeate concentrations and rejection values for each stage of 
the system. An example of the first-stage, second-stage, third-stage, and combined permeate 
concentrations at 84% recovery is presented in Figure 7.2. In general, concentrations in the 
first-stage permeate are very low, usually below the detection level of the LC/MS-MS 
method. As the water leaves the first stage, however, the feed water becomes more 
concentrated and the permeate flux decreases, which yields higher second- and third-stage 
permeate concentrations. Because the permeate flow from the first stage is greater than that of 
the second and third stages and because the concentration is so low, the combined permeate is 
often also very low. Sampling the full system, therefore, offers a few advantages over 
sampling only the feed and combined permeate streams: namely, that the data can be used for 
modeling purposes and that the contribution of mass from each stage into the final permeate 
can be quantified. 

 
Figure 7.2. ESPA2 membrane permeate concentrations for five compounds  
Note: SMZ = sulfamethoxazole  
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7.2 Quantitative Structure Property Relationship Model 

The QSPR developed at bench scale for the ESPA2 membrane was applied to the compounds 
investigated at full scale. The QSPR model, restated in Equation 7.1, yielded an R2 of 0.75 
and RMSE of 0.346 at bench scale. 

   (7.1) 

The predicted rejection is compared to rejection results from full scale at 84% recovery and 
12 gfd, presented in Figure 7.3 and Table 7.2. The error bars in Figure 7.3 are the 
experimental deviation in the y direction and the model confidence intervals in the x 
direction. All compounds except benzophenone were predicted within the confidence interval 
range. During bench-scale testing with the NF-270 membrane, benzophenone exhibited 
adsorptive interactions with the membrane causing a decrease in rejection over time. This 
behavior was not observed at bench scale with the ESPA2 membrane, possibly because of the 
brevity of the experiments. The initial saturation of the compound onto the ESPA2 membrane 
before adsorption would occur could require a longer period than needed for saturation onto 
the NF-270 membrane. Because full-scale operations are continuous, the membranes were 
fully saturated at the time of sampling; therefore, benzophenone was partitioning into the 
permeate stream, resulting in lower rejection than expected based on the size of the 
compound.  

All compounds investigated at full scale, with the exception of benzophenone, were predicted 
within range. This finding indicates that a QSPR model developed at bench scale can be used 
to predict the rejection at full-scale operations by using the ESPA2 membrane. Rejection can 
be predicted only by obtaining the FOSA, SASA, and EHOMO values for a given compound. 

 

Figure 7.3. Experimental full-scale ESPA2 membrane rejection compared to QSPR  
predicted rejection. 
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Table 7.2. ESPA2 Membrane Full-Scale Rejection, Predicted QSPR Rejection, and 
Pertcentage Difference from Experimental Full-Scale Data 

Compound Name Class 
Full-Scale Avg 

12-gfd Rejection 

QSPR 
Predicted 
Rejection 

Percentage 
Difference 

Atrazine HHoN 1.00 0.98 -2% 

Carbamazepine HHoN 1.00 0.99 -1% 

DEET HHoN 1.00 0.98 -2% 

Dilantin HHoN 1.00 0.99 -1% 

Caffeine HN 1.00 0.96 -4% 

Primidone HN 1.00 0.98 -2% 

TCPP HN 1.00 0.99 -1% 

TCEP HN 1.00 0.97 -3% 

Benzophenone HoN 0.73 0.98 25% 

Bisphenol A HoN 0.98 0.99 1% 

Fluoxetine HoN 1.00 1.00 0% 

Triclosan HoN 0.92 0.99 7% 

7.3 Phenomenological Model 

An approach was developed to model rejection data obtained through a sampling campaign at 
a water reuse facility employing the ESPA2 membrane. Samples for organic contaminant 
analysis were collected across the full-scale system operating at 76, 78, and 84% recovery. In 
order to span a relatively broad range of recoveries (76–85%), the feed flow rate had to be 
reduced below the normal set-point. As a result, samples were collected across the system at 
system recoveries of 84, 78, and 76% by decreasing the feed flow rate. 

The full-scale facility does not monitor permeate or concentrate flow rates for individual 
stages in the three-stage system. Thus, to model overall rejection, it was necessary to estimate 
flow rates from individual stages by using Hydranautics’ membrane system design tool (IMS 
Design). The system configuration, measured permeate flow rate, and recovery were input 
into IMS Design, and the permeate flow rate for each stage was determined at the three 
recoveries evaluated. To more accurately characterize the permeate flux of each stage, 
experimentally determined feed water quality data (e.g., inorganic ions and pH) was input 
into IMS Design. Once the permeate flow rate was determined, the permeate flux was 
calculated for each stage. A simple mass balance model was developed that used the 
phenomenological model to calculate rejection for each stage. Unlike the pilot model 
previously discussed, an average permeate flux rate was used for each stage rather than 
breaking each stage into smaller elements. Additionally, concentration polarization was not 
considered in the modeling approach as the hydrodynamic conditions could not be assessed.  

With the exception of benzophenone and triclosan, rejection of all of the compounds 
quantified in the feed water was greater than 99%. Fitting the phenomenological/mass 
balance model to rejection data for these compounds required sigma values greater than 0.99 
and permeability coefficients (P) significant less than 10-8 m/s. Bench-scale experimentally 
derived permeability coefficients for the ESPA2 membrane were generally in the range of  
10-7 to 10-8 m/s, which would have resulted in an underestimation of rejection. This finding 
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implies that, although bench-scale rejection experiments could be used to estimate the 
rejection of organic contaminants at a larger-scale membrane system (i.e., pilot-scale system) 
employing virgin or rather unfouled membrane elements, this approach would underestimate 
the rejection of a system employing membranes that had been in operation for a long time. 
Although this situation cannot be explained with certainty, membrane compaction and 
fouling could be potential explanations.  

For the modeling exercise, the phenomenological model parameters were manipulated to fit 
experimental rejection although also approximating experimentally determined permeate and 
concentrate concentrations. Examples of model fits using this approach are presented in  
Figures 7.4 through 7.7 for atenolol, DEET, benzophenone, and meprobamate, respectively. 
This simple approach was effective for describing concentration gradients across the 
membrane system and could be used to model rejection if phenomenological coefficients are 
known. It is worth noting that, although it can be a significant challenge to quantify organic 
contaminants in a wastewater matrix at the parts-per-trillion level and permeate samples at 
very low concentrations, analytical data generally agreed with mass balance calculations. 
Through this approach, the actual presence of organic contaminants in permeate samples 
(versus false positives from contamination) could be evaluated with greater levels of 
confidence than by just measuring feed and combined permeate samples. In addition, by 
sampling across a membrane system, especially the latter stage’s permeate concentrations, an 
estimation of a solute’s combined permeate concentration can be provided. For example, 
combined permeate concentrations of the chlorinated flame retardant TCEP were below 
quantification level; however, third-stage permeate concentrations were used in conjunction 
with feed and concentrate concentrations, and model results indicate that this compound 
would be present in the combined permeate stream at 3 to 4 ng/L (Figure 7.8.). 
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Figure 7.4. Rejection of atenolol (top left), atenolol permeate concentrations (top right), and 
concentrate concentrations (bottom left).  
Note: For phenomenological model fits, sigma was 0.998 and P was 2E-9 m/s. 
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Figure 7.5. Rejection of DEET (top left), DEET permeate concentrations (top right), and 
concentrate concentrations (bottom left).  
Note: For phenomenological model fits, sigma was 0.998 and P was 7E-9 m/s. 
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Figure 7.6. Rejection of benzophenone (top left), benzophenone permeate concentrations (top 
right), and concentrate concentrations (bottom left).  
Note: For phenomenological model fits, sigma was 0.9 and P was 7E-7 m/s. 
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Figure 7.7. Rejection of meprobamate (top left), meprobamate permeate concentrations (top 
right), and concentrate concentrations (bottom left).  
Note: For phenomenological model fits, sigma was 0.9999 and P was 3E-9 m/s. 
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Figure 7.8. Rejection of TCEP (top left), TCEP permeate concentrations (top right), and 
concentrate concentrations (bottom left).  
Note: For phenomenological model fits, sigma was 0.994 and P was 3E-9 m/s. 

One of the main reasons why the development of modeling approaches to describe the 
rejection of organic contaminants has been of such interest over the past decade is the 
occurrence and subsequent poor removal of NDMA during water reuse applications. 
Although NDMA was not one of the analytes measured during the sampling campaigns, the 
research team has evaluated the rejection of NDMA at other full-scale water recycling 
facilities employing the ESPA2 membrane (Bellona et al., 2008). Bench-scale NDMA 
rejection data fit with the phenomenological model resulted in a reflection coefficient of 0.89 
and a permeability coefficient of 3.3E-6 m/s. Placing these values in the full-scale 
phenomenological/mass balance model resulted in a predicted full-scale rejection of 
approximately 40%. Past NDMA sampling results from a water reuse facility demonstrated 
ESPA2 membrane rejection of NDMA at approximately 30% (Bellona et al., 2008). 

7.4 Rejection Diagram 

The rejection diagram updated with bench-scale NF-270 membrane data was applied to 
compounds investigated at full scale. The rejection diagram provided an excellent fit for the 
ESPA2 membrane full-scale data. The application of the rejection diagram at full scale is 
presented in Figure 7.9 and Table 7.3. Figure 7.9 compares the predicted rejection with 
experimental full-scale rejection, with error bars representing the predicted rejection ranges. 
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All compounds investigated at full scale were predicted within the rejection ranges, even 
benzophenone, which was inaccurately predicted at full scale with the QSPR model. This 
finding indicates that the rejection diagram is an effective way to predict rejection. The model 
is simple to use and can predict rejection within a range for bench, pilot, and full scales for 
two different membranes.  

 

Figure 7.9. Experimental ESPA2 full-scale rejection compared to rejection predicted by  
updated rejection diagram. 
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Table 7.3. ESPA2 Membrane Full-Scale Rejection, Rejection Predicted from Rejection 
Diagram, Predicted Rejection Ranges, and Percentage Difference from Experimental 
Full-Scale Data 

Compound Name Class 
Full-Scale 
Avg 12-gfd 
Rejection 

Rejection 
Diagram 
Predicted 
Rejection 

Rejection 
Range (+/-) 

Percentage 
Difference 

Diclofenac HCN 1.000 0.95 5% -5% 

Gemfibrozil HCN 0.999 0.95 5% -5% 

Ibuprofen HCN 1.000 0.95 5% -5% 

Naproxen HCN 1.000 0.95 5% -5% 

Sulfamethoxazole HCN 0.999 0.95 5% -5% 

Atenolol HCP 0.998 0.88 12% -12% 

Trimethoprim HCP 0.998 0.88 12% -12% 

Carbamazepine HHoN 1.000 0.85 15% -15% 

DEET HHoN 0.997 0.85 15% -15% 

Dilantin HHoN 1.000 0.85 15% -15% 

Atrazine HHoN 1.000 0.90 10% -10% 

Primidone HN 1.000 0.85 15% -15% 

Caffeine HN 1.000 0.90 10% -10% 

TCPP HN 1.000 0.90 10% -10% 

TCEP HN 1.000 0.90 10% -10% 

Benzophenone HoN 0.732 0.85 15% 12% 

Bisphenol A HoN 0.983 0.85 15% -13% 

Fluoxetine HoN 1.000 0.85 15% -15% 

Triclosan HoN 0.919 0.85 15% -7% 
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Chapter 8 

Conclusions and Recommendations  

8.1 Conclusions 

8.1.1 Summary of Project Results 

The objectives of this study were (a) to evaluate molecular modeling approaches for trace 
organic solutes in high-pressure membrane applications and to determine method-
independent and reliable molecular descriptors for the development of QSPR models, (b) to 
identify, develop, and optimize membrane modeling strategies and to develop models that 
can be employed to predict the rejection of trace organic solutes, and lastly (c) to evaluate the 
efficiency with which membranes employed at full scale remove trace organic chemicals and 
to successfully predict the removal rates with the developed model(s). 

8.1.2 Literature Review 

A comprehensive literature review was conducted to identify the major factors affecting the 
rejection of organic solutes by NF and RO membranes, potentially viable modeling 
approaches, and to summarize past modeling efforts. Major findings from the literature 
review included the following: 

 The rejection of organic solutes depends on three primary mechanisms: size 
exclusion, electrostatic exclusion, and solute−membrane interactions. 

 Operational conditions such as fouling, permeate flux, concentration polarization, 
and recovery can have a significant impact on rejection. 

 Achieving equlibrium rejection conditions for solutes with membrane interactions 
can take hours to days. 

 The overall effect of membrane fouling on the rejection of organic solutes is not well 
understood. 

 Feed water matrix and temperature can impact rejection; however, pH appears to be 
the most important factor as it affects the speciation of solutes with acidic and basic 
functional groups, as well as affecting membrane surface charge.  

 Ionic organic solutes are generally well removed by NF and RO membranes 
regardless of size. 

 Nonionic solutes with solute−membrane interactions are likely to have incomplete 
removal. 

 Molecular size is a dominant factor in the rejection of nonionic solutes; however, size 
is less important for solutes with membrane interactions. 

 Limited work has been performed to predict which compounds will have strong 
solute−membrane interactions on the basis of molecular descriptors. 

 Pertinent modeling approaches include mass transfer equations, QSPR models, and 
empirical models. 



220  WateReuse Research Foundation 

 Mass transfer models are advantageous because they integrate operational conditions 
and to a limited degree solute and membrane properties. 

 QSPR models are advantageous because solute properties are easily incorporated; 
however, it can be difficult to incorporate operating conditions and membrane 
properties. 

 Empirical models are advantageous because they are simple to use. 

 Models that rely solely on solute size often overpredict rejection because 
solute−membrane interactions are not included. 

 In concept, the solution−diffusion model is advantageous because only one solute 
input parameter is required. The phenomenological model is advantageous because of 
the “black box” nature of the model and the possibility of correlating solute 
properties to the input parameters. 

 Considering the complexity and numerical effort of several modeling approaches, 
including the DSPM and the SFPM, these models may not be applicable to large-
scale membrane systems treating multicomponent aqueous solutions. 

 The differential element approach combined with the phenomenological model can 
be applied to a full-scale system and could potentially include both operational 
conditions and solute and membrane properties. 

 Adjustments to any model need to be made to account for fouling and for changes in 
temperature and feed water chemistry. In addition, experimental replication is needed 
to account for differences between different types of membranes. 

Information gained through the literature review was used to develop a representative list of 
organic solutes for experimentation, an experimental protocol for measuring rejection, and a 
list of pertinent modeling strategies for NF and RO membranes. 

8.1.3 Organic Solute Selection 

For this study, 270 organic solutes were initially selected for model development and model 
validation. The list of compounds was compiled from a variety of sources and yielded a 
relatively diverse set of organic solutes on the basis of properties (e.g., size, charge, 
hydrophobicity/hydrophilicity, etc.), relevance to membrane treatment (e.g., functional 
groups affecting rejection and likelihood of permeation), and environmental relevance (e.g., 
EPA Candidate Contaminant List, recent advancements in emerging contaminant research, 
human health, and environmental relevance). After removal of compounds that caused 
analytical and experimental issues (e.g., high volatilization, instability, and poor solubility), a 
shorter list of 137 compounds (shown in Appendix A) was generated for model development 
and validation. Care was taken that the reduced list of solutes for experimentation retained the 
diversity of the full list although covering the different rejection mechanisms. Compounds 
were categorized by expected rejection mechanism based on charge and hydrophobicity. Six 
different categories were developed: HN (less than 0.01% charged at  
pH 6.5; Log Kow < 2), HHoN (less than 0.01% charged at pH 6.5; Log Kow > 2 and  
Log Kow < 3), HoN (less than 0.01% charged at pH 6.5; Log Kow > 3), HCN (greater than 
50% negatively charged at pH 6.5), HCP (greater than 50% positively charged at pH 6.5),  
and HCNP (having both positive and negative charge at pH 6.5). 
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For each rejection mechanism subgroup, principal component analysis and k-means 
clustering/discriminate analysis was performed to further group similar compounds based on 
molecular properties calculated and compiled from various sources (e.g., Syracuse Research 
Corporation, ACD Labs, Schrödinger [software package], and Hyperchem). For HN, HHoN, 
HoN, HCN, and HCP compounds, five groups were developed, although for HCNP, three 
groups were developed. Random selection was then used to select at least 33% of the 
compounds from each grouping (all compounds were selected from groups with only two 
compounds, 66% were selected from groups with three compounds, 50% of compounds were 
selected from groups with four compounds).  

This selection process yielded a group of 134 compounds for model development and 
validation (Table 3.2). On the basis of further analysis, this final list of compounds retained 
much of the diversity of the full list based on the criteria outlined previously (e.g., properties, 
rejection mechanisms, classes of compounds, environmental relevance, etc.). The list was 
then randomized with the 33 top compounds selected for the validation set and the remaining 
101 selected for the model development set.  

8.1.4 Bench-Scale Experimentation 

Several criteria were used to develop an experimental protocol to measure organic solute 
rejection at bench scale under conditions that allowed the development of a rejection database 
for the select solutes. This database provided the basis for subsequent rejection model 
developments. These criteria included as follows: 

 The application of many identified modeling approaches requires relationships that 
describe solute rejection as a function of permeate flux.  

 Permeate flux should span a broad range and include fluxes relevant to full-scale 
applications. 

 During conduct of these experiments, concentration polarization should be 
minimized. 

 Rejection measurement should be conducted under steady-state or quasi-steady-state 
conditions to capture solutes with membrane interactions.  

 Replicate experiments should be conducted with different membrane coupons to 
capture potential membrane variability. 

Three bench-scale cross-flow SEPA testing systems were developed that included 
computerized control and data logging of temperature, permeate flow rate, and flux. For each 
compound, replicate experiments were conducted by using flat-sheet membrane material cut 
from a spiral-wound element. During experimentation, concentration polarization was 
minimized by maintaining recovery below 1.5%. Short-term rejection was evaluated at five 
permeate flux set-points spanning a range from 3 to 60 gfd. Longer-term rejection to study 
potential interactions between solutes and membranes was evaluated by operating the SEPA 
system at flux of 12 gfd for approximately 24 h. Feed and permeate samples were collected in 
replicate, and solute concentration quantified by a variety of analytical methods, including 
TOC analysis, RID, LC DAD, GC-ECD, and LC/MS-MS. By characterization of the 
hydrodynamic conditions of the testing system, intrinsic rejection (i.e., rejection in the 
absence of concentration polarization) was calculated for each compound by using feed and 
permeate concentrations. The rejection-versus-flux data were used to populate a database 
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consisting of rejection data and solute properties, which subsequently was used for model 
development.  

Because of the large number of experiments planned, two different membranes were 
employed during the study. The NF-270 membrane from Dow/Filmtec was selected as a 
representative NF membrane because this membrane had been used in previous pilot-scale 
studies using reclaimed water and exhibited excellent rejection performance for organic 
solutes, low fouling propensities, and a significantly higher specific flux than conventional 
RO membranes (Bellona and Drewes, 2007; Bellona et al., 2008). The ESPA2 membrane 
from Hydranautics was selected as a representative LPRO membrane because this membrane 
is employed at several full-scale water reclamation facilities. 

During the course of this study, an enormous number of data was generated through the 
execution of the experimental protocol. The major findings from the bench-scale rejection 
experiments were 

 The NF-270 membrane exhibited variable rejection depending on the properties of 
the organic solute and the permeate flux evaluated. Rejection was highly dependent 
on permeate flux and generally increased with increasing flux. 

 Rejection by the ESPA2 membrane was less variable across the range of permeate 
flux evaluated and for the organic solutes evaluated. 

 Both the NF-270 and ESPA2 membranes provide very good (generally greater than 
90%) rejection of ionic organic solutes at the pH evaluated (6.3). 

 Positively charged organic solutes were, in general, rejected to a lesser degree than 
were negatively charged organic solutes. 

 Solutes with significant membrane interactions exhibited decreasing rejection with 
increasing permeate flux and a decrease in rejection during short-term and 24-h 
rejection tests. 

 Approximately 15% of the solutes evaluated exhibited solute−membrane interactions 
during use of the NF-270 membrane. The effect of solute−membrane interaction on 
rejection was not as pronounced for the ESPA2 membrane. 

 During experimentation, numerous solutes were problematic because of degradation 
or hydrolysis and because of low solubility. 

 Variability between replicate experiments was generally very low. 

 Comparison of past results indicated that the source of membrane material can have a 
significant impact on rejection experiments. For example, rejection results from using 
free membrane samples from manufacturers could be significantly different from 
those for the same membrane material cut from spiral-wound elements. 

 Conducting recycle mode experiments with solutes exhibiting very strong 
solute−membrane interactions (e.g., THMs) proved difficult. These compounds 
tended to absorb into the membrane, resulting in reduced feed concentrations that 
made it difficult to accurately calculate rejection. 
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8.1.5 Bench-Scale Modeling 

Numerous possible modeling approaches for describing solute mass transfer through high-
pressure membranes were identified. Several approaches were characterized as impractical 
for describing rejection at larger-scale membrane applications, including the DSPM and the 
SFPM. Modeling approaches evaluated during this study included QSPRs, empirical models, 
the hydrodynamic model, the phenomenological model, and the solution−diffusion model. 
The major findings from the model development portion of the study included as follows: 

 The experimental protocol yielded a robust data set that could be used to evaluate 
different modeling approaches. 

 The hydrodynamic model was found to poorly predict the rejection of a wide variety 
of nonionic organic solutes, presumably because of either the difficulty of selecting 
an adequate size parameter or because of the importance of additional solute 
properties not considered in the model. In addition, this model is applicable only to 
NF membranes and nonionic solutes. 

 The phenomenological model was a simple, yet effective, approach for describing the 
rejection of a broad range of organic solutes as a function of permeate flux for both 
membranes evaluated. Additionally, statistically signficiant QSPRs were developed 
between model coefficients and solute properties to predict rejection. 

 The solution−diffusion model was an effective approach to describe rejection by the 
ESPA2 membrane; however, the model offered little advantage over the 
phenomenological model. 

 Rejection data for solutes with membrane interactions could not be fit with transport 
models evaluated during the course of the study. The SFPM can describe the 
behavior of these compounds (i.e., decreasing rejection with increasing flux); 
however, it is difficult to apply to a broad range of solutes because of the second-
order nonlinear differential equation for solute velocity. 

 QSPR modeling approaches were developed that could describe the rejection of 
solutes with and without solute−membrane interactions at a permeate flux of 12 gfd. 
In addition, multiple linear regression, PLS, and recursive partitioning analysis were 
useful for determining the dominant solute properties affecting rejection. 

 The statistical significance of developed QSPR models was greatly increased by 
using 24-h rejection data. This finding indicates that it is important to run “long-
term” experiments to adequately characterize rejection.  

 The dominant solute descriptors affecting the rejection of nonionic solutes were 
found to be size descriptors (e.g., Stokes radius, SASA, and volume), surface area 
descriptors (i.e., FOSA and PISA), and electronic descriptors (i.e., EHOMO, ELUMO, IP, 
and polarization). 

 Developing QSPRs for the entire compound list proved to be difficult, and no 
accurate approach was developed. In addition, the development of effective (on the 
basis of accuracy and statistical significance) QSPRs for ionic compounds was not 
achievable because of an inadequate descriptor for charge. Recursive partitioning can 
be used to develop a statistical approach to predict rejection; however, it requires a 
large number of solute descriptors that may not be available. 

 The rejection diagram approach, which is similar to recursive partitioning, was 
redeveloped based on findings from bench-scale experimentation. This approach is 
likely the most useful for estimating rejection as it includes basic solute descriptors 
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that are readily available. An analysis of the redeveloped rejection diagrams 
demonstrated that they can predict, within a range, the rejection of a wide variety of 
organic solutes. 

8.1.6 Pilot-Scale Model Development 

A significant portion of this study evaluated rejection at pilot scale under carefully controlled 
laboratory experiments and in the field at a water reclamation facility. This approach 
provided valuable information on comparing and upscaling bench-scale experimental 
rejection results to larger membrane systems. The major findings from this portion of the 
study included as follows: 

 System recovery has a minor influence on the rejection of organic solutes in the 
range of 50 to 90%. 

 Rejection can be increased by operating at higher cross-flow velocity (i.e., greater 
feed flow rate) and permeate flux. 

 Comparing bench-scale rejection to pilot- or full-scale rejection is difficult as bench-
scale systems are operated at low recovery and as permeate flux can vary widely, 
although the opposite holds true for large-scale systems in the field. 

 Bench-scale rejection results can be used to describe the rejection at large scale; 
however, the hydrodynamic conditions and flux and concentration gradients for a 
large-scale system need to be characterized. 

 The differential element approach combined with the phenomenological model was 
an effective modeling approach to describe rejection at pilot scale. Bench-scale-
derived phenomenological model coefficients could be used to estimate pilot-scale 
permeate concentrations and rejection. 

 QSPRs and the rejection diagram approach developed with bench-scale rejection data 
could estimate rejection at pilot scale.  

8.1.7 Full-Scale Rejection and Model Development 

A full-scale sampling campaign was conducted at a water reclamation facility employing the 
ESPA2 membrane at full scale to evaluate the rejection of a wide variety of organic 
contaminants under realistic conditions and to develop a data set for model validation. The 
findings from this portion of the study included as follows: 

 Rejection of the vast majority of the contaminants quantified in the feed water was 
greater than 99%. 

 Several solutes identified as having solute−membrane interactions were only 
incompletely rejected, including triclosan and benzophenone. 

 Rejection observed at full scale was greater than observed at bench scale. This 
finding could be due to the membrane compaction and establishment of a fouling 
layer, as the ESPA2 membrane had been operating for a significant length of time 
when sampling occurred. 

 Phenomenological model coefficients derived at bench scale for the ESPA2 
membrane would underestimate the rejection observed from the full-scale data 
because the beneficial role of the fouling layer was not considered. 
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 Similarily, QSPRs and the rejection diagrams developed by using bench-scale data 
underpredicted the rejection of organic solutes at full scale. 

8.2 Recommendations 

Different modeling approaches were evaluated during the course of the study to develop a 
broadly applicable model to predict the rejection of trace organic chemicals by NF and RO 
membranes. Although modeling approaches were developed that can estimate rejection at 
bench-, pilot-, and full-scale installations, developing accurate models for the thousands of 
potential organic contaminants is difficult for a number of previously discussed reasons. The 
research team found that bench-scale results can be used to describe the rejection of organic 
solutes at larger scales; however, changes in membrane performance over time from 
compaction, fouling, and aging are difficult to incorporate into modeling approaches. If one 
puts these issues aside, there are different modeling approaches that can be adopted based on 
the level of effort required for development. They are listed in order of increasing 
complexity: 

 The rejection diagram is a simple and effective approach for describing the range of 
rejection for a wide variety of organic solutes as it requires few, easily determined, 
solute descriptors. The rejection diagrams  were developed and tested during the 
course of this study for one RO-type membrane and one NF-type membrane.. 

 A utility looking to develop a transport model to describe the rejection of organic 
solutes would be advised to sacrifice an (fouled) element from its system and to run 
experiments (rejection as a function of permeate flux) with organic solutes spanning 
a range of size, charge, and hydrophobicity. For nonionic solutes, simple correlations 
can be developed between the reflection coefficient and permeability coefficient and 
a solute size descriptor. For ionic compounds, the measured range of reflection and 
permeability coefficients should be sufficient to estimate the range of rejection for 
these compounds. A simple mass balance model can be developed for a full-scale 
membrane system by using bench-scale-derived phenomenological coefficients. 

 The major issue with QSPR models is that they are dependent upon the conditions 
used to develop the rejection data and require a large number of rejection data to 
generate statistically significant correlations. The solute selection method employed 
during this study proved to be a good approach for selecting solutes for QSPR 
development. 

8.3 Future Research Needs 

A number of research questions were raised during the completion of this study that should 
be studied further to understand the transport of organic compounds through NF and RO 
membranes. These include the following: 

 Understanding the solute properties that result in adsorption and partitioning through 
membrane materials and developing modeling approaches for these compounds. 

 Quantifying the time it takes to reach rejection equilibrium conditions for a broad 
range of solutes with strong membrane interactions.  

 Quantifying the effect of membrane compaction and fouling on the rejection of 
organic solutes. 
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 Identifying membrane-specific descriptors that affect solute mass transport.  

 Integrating membrane-specific descriptors into rejection models. 
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Appendix A 

Supplemental Information 
Table A.1. Compounds Selected For Study. 1Data from Chemfinder/SRC Physprop; 
2Data from ACD Software (v. 8.14) 
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Appendix B   

Equations Employed 
 
Ionic Strength: 

 

 

(B.1) 

Where I is the ionic strength, ci is the molar concentration in moles per liter, and zi is the 
charge of the solute 

Permeate Flux: 

 

 

(B.2) 

Where Jv is the permeate flux, Qp is the volumetric permeate flow rate, and A is the cross-
sectional area of the membrane. 

Recovery: 

 

 

(B.3) 

Where Qp is the volumetric permeate flow rate and Qf is the volumetric feed flow rate. 

Sherwood Number: 

 

 

(B.4) 

Where Sh is the Sherwood number, k is the MTC, dH is the hydraulic diameter, Di is the 
diffusion coefficient of the solute, Re is the Reynolds number, Sc is the Schmidt number, and 
a, b, and c were found experimentally to be 0.42, 0.5, and 0.33, respectively. 

 

 

(B.5) 

Where r is density, V is cross-flow velocity, and m is viscosity. 

 

 

(B.6) 

 

 



 

250  WateReuse Research Foundation 

 

 

(B.7) 

Where hsp is the height of the feed space, Sv,sp is defined by Equation A-9, and e is the 
porosity of the feed spacer (Schock and Miquel, 1987).  

 

 

(B.8) 

Where b is the channel width (Schock and Miquel, 1987). 

 

 

(B.9) 

Where d is the membrane thickness (Schock and Miquel, 1987). 

Wilke−Chang Correlation for Determining the Solute Diffusion Coefficient: 

 

 

(B.10)

Where is an association factor for hydrogen bonding (set at 2.26 for water as the solvent), 
M is the molecular weight of the solvent (grams/mole), T is temperature, h is kinematic 
viscosity, and Vs is the molar volume of the solute. 

LaBas molecular volume: 

 

 

(B.11)

Where V’B,i are the molar volumes increments assigned to each substituent group. A list of 
molar volumes assigned to various substituent groups is presented in Table B.1. 
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Table B.1. LaBas Molar Volume Increments (Hofman et al., 2007) 

Atom DV’B,i  (106m3/mol) Atom DV’B,i  (106m3/mol) 

C 14.8 Br 27.0 

H 3.7 Cl in R-CHCl-R’ 24.6 

O (except as below) 7.4 Cl in RCl 21.6 

      Carbonyl 7.4 F 8.7 

      Aldehyde, ketone 7.4 I 37.0 

      Methyl ether 9.9 S 25.6 

      Ethyl ester 9.9 P 27.0 

      Higher esters 9.9 Ring  

      Higher ethers 9.9      3-membered -6.0 

      Acids (-OH) 11.0      4-membered -8.6 

      Joined to S, P, N 8.3      5-membered -11.5 

N  Double bonded 15.6      6-membered -15.0 

     Primary amine 10.5      Napthalene -30.0 

     Secondary amine 12.0      Anthracene -47.5 

 

Stokes−Einstein equation for determining Stokes radius: 

 

 

(B.12)

Where kB is Boltzman constant (J/K). 
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Appendix C 

Quality Control of Bench-Scale 
Experimentation 
 
Quality control experiments were carried out to ensure minimal variability during bench-scale 
testing. These experiments examined the effects of solutes tested alone or in a mixture or at 
high or low feed concentration or when methanol was used as a cosolvent. The variability 
between membranes was also examined. The experiments were conducted at bench scale with 
the same procedure described in Chapter 3.3.1.1.  

Single Solute versus Mixture. With the large number of compounds to be tested and 
experiments and analytical tests being very time-consuming, testing each compound 
individually was not possible. Therefore, solutes were tested in batches of three to five 
compounds at a time as long as analytical tests allowed for quantification. A few compounds 
were tested individually to confirm little or no variability. All compounds tested exhibited 
little or no variability in results. Caffeine tested individually and in a mixture with 2-naphthol 
and resorcinol showed almost no variation in rejection under the same operating conditions as 
illustrated in Figure C.1. 

Feed Water Concentration. Some analytical methods required different feed water 
concentrations. Before experiments began, a series of tests using different feed concentrations 
was performed to observe the effect of solute concentration on rejection. All compounds 
tested exhibited little or no variability. Caffeine was tested with a feed water concentration of 
700 g/L and 5 mg/L and exhibited little or no variability (Figure C.2). 

 

Figure C.1. Experiment with caffeine to test the effect of other solutes on rejection under the 
same operating conditions. The mixture consisted of caffeine with 2-naphthol and 
resorcinol. 
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Membrane Variability. Previous studies reported variability between membrane specimens 
with respect to solute rejection (Hofman et al., 2007). Rejection can vary between flat-sheet 
and spiral-wound membranes and also within a spiral-wound membrane. These variations are 
most likely due to imperfections during the membrane casting process. This variability was 
tested by using flat-sheet and spiral-wound membrane specimens with different compounds. 
The results from an experiment with caffeine, presented in Figure C.3, illustrate the greatest 
difference in results, with as much as 6% difference in rejection for the same permeate flux. 
Duplicate experiments on different membrane specimens were carried out in order to account 
for this variability.  

Methanol as a Cosolvent. Some compounds are very hydrophobic and therefore have very 
low solubilities. These compounds needed a cosolvent in order to prepare the spike solution 
for experimentation. Preliminary experiments were conducted to test the effects of using 
methanol as a cosolvent with a variety of compounds. Two different experiments were 
conducted: one where a compound was dissolved in 100% methanol and another where a 
compound was dissolved in 100% deionized water. Little variability was observed whether 
methanol or deionized water was used as the solvent for 2-naphthol (Figure C.4). 

 

Figure C.2. Experiment with caffeine testing the variability in rejection with high concentration 
and low concentration under the same operating conditions. 
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Figure C.3. Experiment with caffeine testing the variability between membrane specimens from 
a spiral-wound element and flat sheets under the same operating conditions. 

 

 

Figure C.4. Experiment with 2-naphthol testing the effects of using methanol as a solvent in 
order to increase solubility of the compound. 
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Appendix D 

Correlation Matrix for Descriptors 
Table D.1. Correlation Matrix for All the Descriptors Examined 

 MW Length Width Depth EqWidth 
Vol 
(A3) 

Area (A2) Hyd Energy Polarization 
LaBas Mol 

Vol 
W-C 
Diff 

MW 1.00 0.68 0.75 0.72 0.85 0.93 0.63 0.05 0.92 0.95 -0.83 

Length (nm) 0.68 1.00 0.52 0.57 0.62 0.86 0.65 -0.05 0.83 0.83 -0.84 

Width (nm) 0.75 0.52 1.00 0.52 0.88 0.80 0.58 0.05 0.78 0.78 -0.75 

Depth (nm) 0.72 0.57 0.52 1.00 0.86 0.76 0.53 0.07 0.74 0.78 -0.66 

EqWidth (nm) 0.85 0.62 0.88 0.86 1.00 0.89 0.64 0.07 0.87 0.90 -0.81 

Vol (A3) 0.93 0.86 0.80 0.76 0.89 1.00 0.74 0.03 0.98 0.99 -0.90 

Area (A2) 0.63 0.65 0.58 0.53 0.64 0.74 1.00 0.25 0.61 0.68 -0.62 

Hydration E  0.05 -0.05 0.05 0.07 0.07 0.03 0.25 1.00 0.00 0.03 -0.04 

Polarization (A3) 0.92 0.83 0.78 0.74 0.87 0.98 0.61 0.00 1.00 0.98 -0.90 

LaBas Mol Vol  0.95 0.83 0.78 0.78 0.90 0.99 0.68 0.03 0.98 1.00 -0.89 

W-C Diff Coeff  -0.83 -0.84 -0.75 -0.66 -0.81 -0.90 -0.62 -0.04 -0.90 -0.89 1.00 

Stokes radius  0.93 0.85 0.78 0.77 0.89 0.99 0.68 0.03 0.98 0.99 -0.93 

Log D (6) 0.32 0.44 0.33 0.11 0.26 0.42 0.39 0.38 0.48 0.38 -0.42 

Vol (cm3/mol) 0.91 0.84 0.78 0.77 0.89 0.98 0.71 0.12 0.97 0.98 -0.89 

Polar SA (A2) 0.43 0.25 0.33 0.40 0.42 0.37 0.07 -0.58 0.33 0.40 -0.32 

Dipole 0.13 0.08 0.32 0.26 0.34 0.15 0.00 0.20 0.16 0.17 -0.18 

SASA 0.89 0.89 0.78 0.76 0.88 0.97 0.69 0.04 0.96 0.97 -0.92 

FOSA 0.21 0.42 0.14 0.58 0.41 0.39 0.49 0.11 0.29 0.38 -0.32 

FISA 0.10 0.12 0.08 0.21 0.17 0.11 -0.17 -0.71 0.10 0.13 -0.10 

PISA 0.23 0.40 0.35 -0.03 0.19 0.30 -0.05 -0.01 0.42 0.29 -0.39 

WPSA 0.48 -0.05 0.27 0.11 0.22 0.25 0.42 0.43 0.19 0.26 -0.16 

 MW Length Width Depth EqWidth 
Vol 
(A3)

Area (A2) Hyd Energy Polarization 
LaBas Mol 

Vol
W-C 
Diff

Vol 0.91 0.86 0.79 0.78 0.90 0.99 0.68 0.03 0.98 0.99 -0.91 

glob -0.66 -0.84 -0.59 -0.56 -0.66 -0.78 -0.64 -0.10 -0.74 -0.77 0.81 

QPpolrz 0.88 0.84 0.80 0.70 0.86 0.96 0.61 0.09 0.99 0.96 -0.90 

QPlogPC16 0.92 0.79 0.81 0.68 0.86 0.95 0.57 -0.11 0.96 0.95 -0.89 

QPlogPoct 0.80 0.62 0.64 0.68 0.76 0.79 0.35 -0.41 0.79 0.81 -0.71 

QPlogPw 0.38 0.24 0.24 0.38 0.36 0.32 -0.07 -0.67 0.33 0.36 -0.29 

QPlogPo/w 0.55 0.55 0.52 0.28 0.47 0.62 0.58 0.50 0.64 0.59 -0.57 

QPlogS -0.79 -0.75 -0.70 -0.52 -0.70 -0.85 -0.65 -0.23 -0.87 -0.83 0.80 

CIQPlogS -0.83 -0.66 -0.74 -0.52 -0.73 -0.85 -0.69 -0.23 -0.85 -0.83 0.72 

IP (eV) -0.20 -0.41 -0.43 -0.07 -0.29 -0.35 -0.11 0.11 -0.44 -0.32 0.47 

EA (eV) 0.49 0.28 0.48 0.11 0.34 0.40 0.21 0.36 0.45 0.39 -0.54 

EHOMO 0.07 0.42 0.26 0.07 0.19 0.26 0.02 -0.24 0.35 0.24 -0.41 

ELUMO -0.04 -0.06 -0.10 0.05 -0.03 -0.03 0.09 -0.38 -0.11 -0.02 0.24 

Pot Energy 0.49 0.45 0.28 0.51 0.45 0.51 0.06 -0.32 0.60 0.53 -0.48 
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Table D.2. 

 Stokes Log D (6) 
Vol 

(cm3/mol) 
Polar SA Dipole SASA FOSA FISA PISA WPSA Vol glob 

MW 0.93 0.32 0.91 0.43 0.13 0.89 0.21 0.10 0.23 0.48 0.91 -0.66 

Length (nm) 0.85 0.44 0.84 0.25 0.08 0.89 0.42 0.12 0.40 -0.05 0.86 -0.84 

Width (nm) 0.78 0.33 0.78 0.33 0.32 0.78 0.14 0.08 0.35 0.27 0.79 -0.59 

Depth (nm) 0.77 0.11 0.77 0.40 0.26 0.76 0.58 0.21 -0.03 0.11 0.78 -0.56 

EqWidth (nm) 0.89 0.26 0.89 0.42 0.34 0.88 0.41 0.17 0.19 0.22 0.90 -0.66 

Vol (A3) 0.99 0.42 0.98 0.37 0.15 0.97 0.39 0.11 0.30 0.25 0.99 -0.78 

Area (A2) 0.68 0.39 0.71 0.07 0.00 0.69 0.49 -0.17 -0.05 0.42 0.68 -0.64 

Hydration E  0.03 0.38 0.12 -0.58 0.20 0.04 0.11 -0.71 -0.01 0.43 0.03 -0.10 

Polarization 
(A3) 

0.98 0.48 0.97 0.33 0.16 0.96 0.29 0.10 0.42 0.19 0.98 -0.74 

LaBas Mol Vol  0.99 0.38 0.98 0.40 0.17 0.97 0.38 0.13 0.29 0.26 0.99 -0.77 

W-C Diff Coeff  -0.93 -0.42 -0.89 -0.32 -0.18 -0.92 -0.32 -0.10 -0.39 -0.16 -0.91 0.81 

Stokes radius  1.00 0.40 0.98 0.39 0.18 0.98 0.38 0.13 0.32 0.23 0.99 -0.80 

Log D (6) 0.40 1.00 0.46 -0.45 -0.08 0.41 -0.04 -0.45 0.52 0.17 0.39 -0.40 

Vol (cm3/mol) 0.98 0.46 1.00 0.27 0.18 0.97 0.40 0.03 0.32 0.25 0.98 -0.78 

Polar SA (A2) 0.39 -0.45 0.27 1.00 0.29 0.37 0.17 0.84 -0.18 -0.09 0.39 -0.23 

Dipole 0.18 -0.08 0.18 0.29 1.00 0.22 0.11 0.31 0.10 -0.21 0.21 -0.21 

SASA 0.98 0.41 0.97 0.37 0.22 1.00 0.39 0.12 0.37 0.18 0.99 -0.88 

FOSA 0.38 -0.04 0.40 0.17 0.11 0.39 1.00 0.11 -0.49 -0.22 0.40 -0.31 

FISA 0.13 -0.45 0.03 0.84 0.31 0.12 0.11 1.00 -0.17 -0.44 0.14 -0.04 

PISA 0.32 0.52 0.32 -0.18 0.10 0.37 -0.49 -0.17 1.00 -0.13 0.34 -0.42 

WPSA 0.23 0.17 0.25 -0.09 -0.21 0.18 -0.22 -0.44 -0.13 1.00 0.19 -0.12 

Vol 0.99 0.39 0.98 0.39 0.21 0.99 0.40 0.14 0.34 0.19 1.00 -0.82 

glob -0.80 -0.40 -0.78 -0.23 -0.21 -0.88 -0.31 -0.04 -0.42 -0.12 -0.82 1.00 

QPpolrz 0.96 0.52 0.96 0.24 0.21 0.96 0.27 0.03 0.50 0.17 0.97 -0.79 

QPlogPC16 0.95 0.39 0.92 0.47 0.18 0.94 0.14 0.23 0.46 0.23 0.95 -0.75 

QPlogPoct 0.80 0.00 0.73 0.81 0.24 0.78 0.23 0.61 0.16 0.05 0.80 -0.56 

QPlogPw 0.35 -0.41 0.24 0.93 0.22 0.32 0.06 0.84 -0.05 -0.18 0.35 -0.16 

QPlogPo/w 0.59 0.80 0.67 -0.44 -0.13 0.60 0.02 -0.61 0.53 0.44 0.59 -0.57 

 Stokes Log D (6) 
Vol 

(cm3/mol) 
Polar SA Dipole SASA FOSA FISA PISA WPSA Vol glob 

QPlogS -0.84 -0.70 -0.86 0.01 0.03 -0.85 -0.13 0.22 -0.51 -0.37 -0.84 0.77 

CIQPlogS -0.82 -0.62 -0.85 -0.01 0.05 -0.79 -0.09 0.23 -0.40 -0.51 -0.81 0.62 

IP (eV) -0.36 -0.57 -0.35 0.11 -0.03 -0.40 0.02 0.09 -0.62 0.26 -0.37 0.41 

EA (eV) 0.43 0.47 0.41 -0.07 0.27 0.43 -0.22 -0.22 0.47 0.35 0.41 -0.39 

EHOMO 0.29 0.45 0.26 -0.06 0.06 0.35 0.07 0.07 0.58 -0.49 0.31 -0.40 

ELUMO -0.07 -0.28 -0.05 0.24 -0.39 -0.08 0.14 0.20 -0.38 0.08 -0.07 0.10 

Pot Energy 0.53 0.10 0.48 0.41 0.12 0.47 0.27 0.43 0.16 -0.28 0.52 -0.19 
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Table D.3. 

 Qppolrz QPlogPC16 QPlogPoct QPlogPw QPlogPo/w QPlogS CIQPlogS IP EA EHOMO ELUMO Pot Energy 

MW 0.88 0.92 0.80 0.38 0.55 -0.79 -0.83 -0.20 0.49 0.07 -0.04 0.49 

Length (nm) 0.84 0.79 0.62 0.24 0.55 -0.75 -0.66 -0.41 0.28 0.42 -0.06 0.45 

Width (nm) 0.80 0.81 0.64 0.24 0.52 -0.70 -0.74 -0.43 0.48 0.26 -0.10 0.28 

Depth (nm) 0.70 0.68 0.68 0.38 0.28 -0.52 -0.52 -0.07 0.11 0.07 0.05 0.51 

EqWidth (nm) 0.86 0.86 0.76 0.36 0.47 -0.70 -0.73 -0.29 0.34 0.19 -0.03 0.45 

Vol (A3) 0.96 0.95 0.79 0.32 0.62 -0.85 -0.85 -0.35 0.40 0.26 -0.03 0.51 

Area (A2) 0.61 0.57 0.35 -0.07 0.58 -0.65 -0.69 -0.11 0.21 0.02 0.09 0.06 

Hyrdration E  0.09 -0.11 -0.41 -0.67 0.50 -0.23 -0.23 0.11 0.36 -0.24 -0.38 -0.32 

Polarization (A3) 0.99 0.96 0.79 0.33 0.64 -0.87 -0.85 -0.44 0.45 0.35 -0.11 0.60 

LaBas Mol Vol  0.96 0.95 0.81 0.36 0.59 -0.83 -0.83 -0.32 0.39 0.24 -0.02 0.53 

W-C Diff Coeff  -0.90 -0.89 -0.71 -0.29 -0.57 0.80 0.72 0.47 -0.54 -0.41 0.24 -0.48 

Stokes radius  0.96 0.95 0.80 0.35 0.59 -0.84 -0.82 -0.36 0.43 0.29 -0.07 0.53 

Log D (6) 0.52 0.39 0.00 -0.41 0.80 -0.70 -0.62 -0.57 0.47 0.45 -0.28 0.10 

Vol (cm3/mol) 0.96 0.92 0.73 0.24 0.67 -0.86 -0.85 -0.35 0.41 0.26 -0.05 0.48 

Polar SA (A2) 0.24 0.47 0.81 0.93 -0.44 0.01 -0.01 0.11 -0.07 -0.06 0.24 0.41 

Dipole 0.21 0.18 0.24 0.22 -0.13 0.03 0.05 -0.03 0.27 0.06 -0.39 0.12 

SASA 0.96 0.94 0.78 0.32 0.60 -0.85 -0.79 -0.40 0.43 0.35 -0.08 0.47 

FOSA 0.27 0.14 0.23 0.06 0.02 -0.13 -0.09 0.02 -0.22 0.07 0.14 0.27 

FISA 0.03 0.23 0.61 0.84 -0.61 0.22 0.23 0.09 -0.22 0.07 0.20 0.43 

PISA 0.50 0.46 0.16 -0.05 0.53 -0.51 -0.40 -0.62 0.47 0.58 -0.38 0.16 

WPSA 0.17 0.23 0.05 -0.18 0.44 -0.37 -0.51 0.26 0.35 -0.49 0.08 -0.28 

Vol 0.97 0.95 0.80 0.35 0.59 -0.84 -0.81 -0.37 0.41 0.31 -0.07 0.52 

Glob -0.79 -0.75 -0.56 -0.16 -0.57 0.77 0.62 0.41 -0.39 -0.40 0.10 -0.19 

QPpolrz 1.00 0.94 0.72 0.24 0.69 -0.89 -0.85 -0.50 0.50 0.41 -0.18 0.53 

QPlogPC16 0.94 1.00 0.86 0.47 0.54 -0.83 -0.81 -0.40 0.46 0.31 -0.06 0.54 

QPlogPoct 0.72 0.86 1.00 0.82 0.09 -0.50 -0.49 -0.19 0.18 0.17 0.15 0.65 

QPlogPw 0.24 0.47 0.82 1.00 -0.46 0.04 0.04 0.03 -0.12 0.01 0.27 0.52 

QPlogPo/w 0.69 0.54 0.09 -0.46 1.00 -0.89 -0.86 -0.42 0.52 0.27 -0.21 0.04 

QPlogS -0.89 -0.83 -0.50 0.04 -0.89 1.00 0.94 0.45 -0.51 -0.33 0.12 -0.33 

 Qppolrz QPlogPC16 QPlogPoct QPlogPw QPlogPo/w QPlogS CIQPlogS IP EA EHOMO ELUMO Pot Energy 

CIQPlogS -0.85 -0.81 -0.49 0.04 -0.86 0.94 1.00 0.32 -0.45 -0.15 0.03 -0.26 

IP (eV) -0.50 -0.40 -0.19 0.03 -0.42 0.45 0.32 1.00 -0.44 -0.90 0.31 -0.24 

EA (eV) 0.50 0.46 0.18 -0.12 0.52 -0.51 -0.45 -0.44 1.00 0.25 -0.71 0.13 

EHOMO 
0.41 0.31 0.17 0.01 0.27 -0.33 -0.15 -0.90 0.25 1.00 -0.25 0.27 

ELUMO 
-0.18 -0.06 0.15 0.27 -0.21 0.12 0.03 0.31 -0.71 -0.25 1.00 -0.17 

Pot Energy 0.53 0.54 0.65 0.52 0.04 -0.33 -0.26 -0.24 0.13 0.27 -0.17 1.00 
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Appendix E  

NF-270 Membrane Experimental Bench-Scale 
Rejection Diagrams 
 

Acetaminophen    Amitriptyline 

 

 

Alanine    Arginine 

 

 

Atenolol    Atrazine 
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Baclofen    Benzoic Acid 

 

 

Benzophenone    Benzyl Acetate 

 

 

Benzyl Alcohol    Bisphenol A 
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1,4-Butanediol    Isobutylparaben 

 

 

Caffeine    Captopril 

 

 

Carbamazepine    Ciprofloxacin 
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Clofibric Acid    Cysteine 

 

DEET     Desloratadine 

 

 

Dibromoacetic Acid    Dichloroacetic Acid 
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2,4-Dichlorophenol    Diclofenac 

 

 

Diethylstilbestrol    Diethylphthalate 

 

 

1,4-Dihydrobenzoic Acid    Dilantin 
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Diltiazem    Diphenhydramine 

 

 

Enalapril    Ethanol 

 

 

Ethynylestradiol    17-Estradiol 
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Estriol      Estrone 

  

 

Fenofibrate     Fluconazole 

  

 

2-Fluorophenol    Fluoxetine 

  



 

268  WateReuse Research Foundation 

Furosemide    Gemfibrozil 

  

Glycerol    Glucose 

  

 

Glutamic Acid    Guanidine 
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Histidine    Ibuprofen 

  

 

Imiquimod    Isopropanol 

  

 

Ketoconazole    Ketoprofen 

  



 

270  WateReuse Research Foundation 

Lysine    Maleic Acid 

  

Meprobamate    Metformin 

 

 

Methanol    Methotrexate 
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Methylparaben    Metoprolol 

 

 

2-Naphthol    1-Naphthalene-Methanol 

 

Naproxen              N-Nitrosodibutylamine 
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NDEA    NDMA 

 

N-Nitrosodiphenylamine   N-Nitrosodipropylamine 

 

 

NMEA    N-Nitrosomorpholine 
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N-Nitrosopiperidine    NPYR 

 

 

4-n-Nonylphenol    Norfluoxetine 

 

Oxybenzone    Pentoxifylline 

 



 

274  WateReuse Research Foundation 

Phenacetine    Phenylalanine 

 

2-Phenylphenol    Primidone 

 

 

Propylparaben    Progesterone 
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Propyphenazone    Pseudoephedrine 

 

 

Ranitidine    Resorcinol 

 

Salbutamol    Salicylic Acid 

 



 

276  WateReuse Research Foundation 

Serine     Sucralose 

 

Sucrose    Sulfacetamide 

 

 

Sulfadimethoxine    Sulfadioxin 
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Sulfamerazine     Sulfamethoxazole 

 

 

Sulfasalazine    Tamoxifen 

 

 

TCEP  TCPP          

 



 

278  WateReuse Research Foundation 

 

TDCPP  Testosterone 

 

 

Thiabendazole    Trazodone 

 

 

Trichloroacetic Acid    Triclosan 
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Triethylene Glycol    Trimethoprim 

  

 

Tyrosine    Uracil 

  

 

Urea      Warfarin 
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Appendix F  

ESPA2 Membrane Experimental Bench-Scale 
Rejection Diagrams 

 

Acetaminophen    Acetic Acid 

 

 

Alanine    Amitriptyline 

 



282  WateReuse Research Foundation 

Arginine    Atenolol 

 

 

Atrazine    Baclofen 

 

 

Benzoic Acid    Benzophenone 
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Benzyl Acetate    Benzyl Alcohol 

  

 

 

Bisphenol A    1,1-Butanediol 

  

 

Butylparaben    Caffeine 

 



284  WateReuse Research Foundation 

Captopril    Carbamazapine 

  

 

 

Cimetidine    Ciprofloxacin 

  

 

Clofibric Acid    Cysteine 
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DEET    Desloratdine 

  

 

 

Dibromoacetic Acid    Dichloroacetic Acid 

  

 

2,4-Dichlorophenol    Diclofenac 

  



286  WateReuse Research Foundation 

Diethylamine     Diethylphthalate 

  

 

 

1,4-Dihydroxylbenzoic Acid    Dilantin 

  

 

Diltiazem     Diphenhydramine 
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Enalapril     Ethanol 

  

 

 

Fenofibrate    Fluconazole 

  

 

Fluoexetine    2-Fluorophenol 

  



288  WateReuse Research Foundation 

Furosemide     Gemfirozil 

  

 

 

Glucose     Glutamic Acid 

  

 

Glycerol     Guanidine 
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Ibuprofen    Isopropanol 

  

 

 

Ketoconazole     Ketoprofen 

  

 

Lysine      Maleic Acid 

  



290  WateReuse Research Foundation 

Methanol     Methotrexate 

  

 

 

Methylamine     Methylparaben 

  

 

MTBE    Metoprolol 
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1-Naphthalenemethanol    Naproxen 

  

 

 

 

2-Naphthol   N-Nitrosodibutylamine  

  

 

NDEA NDMA 

  



292  WateReuse Research Foundation 

N-Nitrosodiphenylamine   N-Nitrosodipropylamine  

  

 

NMEA    N-Nitrosomorpholine 

  

 

N-Nitrosopiperidine    NPYR 
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4-n-Nonylphenol    Norfluoxetine 

  

 

 

Oxybenzone    Pentoxifylline 

  

 

Phenacetine     Phenylalanine 

  



294  WateReuse Research Foundation 

2-Phenylphenol    Primidone 

  

 

 

Propylparaben    Propyphenazone 

  

 

Pseudoephedrine    Ranitidine 
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Resorcinol     Salbutamol 

  

 

 

Salicylic Acid    Serine 

  

 

Sucralose    Sucrose 
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Sulfacetamide    Sulfamethoxazole 

  

 

 

Sulfadimethoxine    Sulfadoxin 

  

 

Sulfamerazine    Sulfasalazine 

  



 

 

WateReuse Research Foundation 297 

Tamoxifen     TCPP 

 

 

 

TCEP   TDCPP 

  

 

Thiabendazole     Trazodone 

  



298  WateReuse Research Foundation 

Trichloroacetic Acid    Triclocarban 

  

 

Triclosan     Triethylene Glycol 

  

 

Trimethoprim     Tyrosine 
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Uracil      Urea 

  
 

    Warfarin       
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