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Foreword 
 
The WateReuse Research Foundation, a nonprofit corporation, sponsors research that 
advances the science of water reclamation, recycling, reuse, and desalination. The Foundation 
funds projects that meet the water reuse and desalination research needs of water and 
wastewater agencies and the public. The goal of the Foundation’s research is to ensure that 
water reuse and desalination projects provide high-quality water, protect public health, and 
improve the environment.  
 
An Operating Plan guides the Foundation’s research program. Under the plan, a research 
agenda of high-priority topics is maintained. The agenda is developed in cooperation with the 
water reuse and desalination communities including water professionals, academics, and 
Foundation subscribers. The Foundation’s research focuses on a broad range of water reuse 
research topics including: 
 

• Defining and addressing of emerging contaminants 
• Public perceptions of the benefits and risks of water reuse 
• Management practices related to indirect potable reuse 
• Groundwater recharge and aquifer storage and recovery 
• Evaluation and methods for managing salinity and desalination 
• Economics and marketing of water reuse 

 
The Operating Plan outlines the role of the Foundation’s Research Advisory Committee 
(RAC), project advisory committees (PACs), and Foundation staff. The RAC sets priorities, 
recommends projects for funding, and provides advice and recommendations on the 
Foundation’s research agenda and other related efforts. PACs are convened for each project 
and provide technical review and oversight. The Foundation’s RAC and PACs consist of 
experts in their fields and provide the Foundation with an independent review, which ensures 
the credibility of the Foundation’s research results. The Foundation’s Project Managers 
facilitate the efforts of the RAC and PACs and provide overall management of projects. 
 
The Foundation’s primary funding partners include the Bureau of Reclamation, California 
State Water Resources Control Board, the California Energy Commission, Foundation 
Subscribers, water and wastewater agencies, and other interested organizations. The 
Foundation leverages its financial and intellectual capital through these partnerships and other 
funding relationships.  
 
Desalination technologies using reverse osmosis membranes have been in development for 
more than four decades. In this study, a systematic approach to study organic fouling and 
determine the key foulants depositing on the membrane surface is presented. This study 
characterizes seawater from various locations in the United States and evaluates methods for 
characterizing clean and fouled membranes. 
 
Joseph Jacangelo 
Chair 
WateReuse Research Foundation

G. Wade Miller
Executive Director 
WateReuse Research Foundation 
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Executive Summary 
 
Desalination technologies using reverse osmosis (RO) membranes have been in development 
for more than four decades. Although significant advances in membrane technology have 
been developed to efficiently operate seawater RO (SWRO) systems, control of membrane 
fouling still seems elusive. Fouling in SWRO systems has been reported to occur because of 
the presence of colloids, microorganisms, and organics present in the seawater (Wilf and 
Klinko, 1998). Because of seawater’s complex matrix, characterization and identification of 
the nature of foulants responsible for decreased SWRO performance are incomplete.  
 
In this study, a systematic approach to study organic fouling and determine the key foulants 
depositing on the membrane surface is presented. The objectives of the study were to 
characterize seawater from various locations in the United States, evaluate methods for 
characterizing clean and fouled membranes, identify organic foulants using bench-scale RO 
experiments, study the influence of membrane properties and algal bloom (red-tide events) on 
organic fouling, and compare fouling between bench-scale SWRO operation and pilot-scale 
SWRO operation.   
 
Seawater from West Basin Municipal Water District (WBMWD), Carlsbad Desalination 
Project (CDP), Tampa Bay Desalination Plant (TBDP), and South Bay Power Plant (SBPP) 
was chosen as the feed water sources for this study. Membranes used in the study were 
DowFilmtec SW30HR, Hydranautics SWC4, and Saehan SR. To test the different seawaters 
for fouling propensity, a bench-scale RO unit was constructed at MWH in California and 
University of Illinois, Urbana-Champaign (UIUC). Experimental results and evaluation of 
methods for determining organic fouling in seawater are presented in detail in this study.     
 
To characterize the raw seawater, analytical techniques included determination of major ions, 
total organic carbon (TOC), and polysaccharide content. Major ions were determined by 
standard methods using appropriate dilutions. TOC was determined using an UV/persulfate 
analyzer, and polysaccharide content was determined using absorbance at 595 nm. In order to 
identify the major foulant depositing on the membrane surface, bench-scale experiments were 
conducted with a SEPA® cell. Rapid bench-scale experiments were conducted for a period of 
24 h under hydrodynamic conditions similar to those existing in spiral-wound elements. The 
membrane coupons from bench-scale experiments were removed after the fouling study, and 
various autopsy techniques were performed to identify the nature of foulant deposited. 
Attenuated total reflectance-Fourier transform infrared spectroscopy was used to quantify the 
organic content of the foulant layer. Scanning electron microscopy, atomic force microscopy, 
and energy dispersive spectroscopy were used to determine the surface morphology 
(before/after fouling) and inorganic constituents of the foulant layer. To determine the 
hydrophobic/hydrophilic nature of the foulant layer, contact angle analyses using one apolar 
and two polar liquids were used. Studies were also performed to determine the influence of 
membrane surface properties (surface charge, roughness, and hydrophobicity) on fouling. The 
characteristic brick-redness of most red tides is due to photosynthetic pigments of 
dinoflagellates. To determine the influence of an algal bloom on fouling behavior, algogenic 
organic matter from the cells of a marine bloom-forming dinoflagellate, Heterocapsa 
pygmaea, was used to conduct fouling experiments.  
 
Seawater characterization results showed that the concentrations of major ions in all the 
seawater sources were similar. Total dissolved solid (TDS) concentrations were in the range 
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of 31,000–33,600 mg/L, and pH was between 7.8 and 8.0. Silt density index – 15 min was 
higher (~6.3) for Tampa Bay seawater than for the other sources. Chloride and sodium were 
the major ions present in all sources. Among the divalent ions, magnesium concentration was 
significantly higher than calcium's. Concentrations of major metals (iron, aluminum, nickel, 
and copper) were below detection limits in all the raw seawater sources. Carbohydrate 
concentration of Tampa Bay seawater was higher than for seawater from Carlsbad, West 
Basin, and South Bay. Also, TOC concentration was highest for Tampa Bay (~2.5 mg/L). 
TOC concentrations for all the other sources were below the lowest detection limit.  
 
Clean membrane characterization results revealed that DowFilmtec SW30HR and Saehan SR 
membranes were relatively smooth (root mean square [RMS] roughness ~ 78 nm) when 
compared to Hydranautics SWC4 (RMS roughness ~ 150 nm). DowFilmtec SW30HR 
membrane was relatively hydrophilic compared to Hydranautics SWC4 and Saehan SR 
membranes. Streaming potential measurements were not significantly different for the 
membranes at ionic strengths greater than 100 mM and pH = 8.0.   
 
When bench-scale RO experiments were performed with all the source seawaters, no 
significant difference in normalized specific flux was observed. Hence, no correlation 
between seawater quality and fouling propensity could be made based only on flux decline 
results. Membrane properties seemed to play a role in foulant deposition when seawater was 
used. Relatively smooth and hydrophilic membrane (DowFilmtec SW30HR) exhibited 
slightly lower decline in specific flux than did relatively rough and hydrophobic membrane 
(Hydranautics SWC4). When AOM was used without any pretreatment of feed water, a gel 
layer was formed on the membrane surface. But with premicrofiltration (pre-MF), 
nonuniform deposition occurred on the membrane surface. Hence, pre-MF reduced the AOM 
content reaching the SWRO membrane. Although a minimal decline in specific flux of the 
SWRO membrane was noticed with pre-MF, deposition of foulant was evident from autopsy 
techniques.  
 
Polysaccharide-like material was identified as a major part of the foulant layer for all the 
seawater sources. The nature of foulant was similar both in rapid bench-scale studies and in a 
lead SWRO element from a pilot plant. In both bench-scale and pilot-scale evaluation, 
corrosion products were found to be deposited on the membrane surface. Because of the short 
experimental period in the bench-scale studies, uniform coverage of the foulant layer was not 
attained. But in the pilot plant element, a thick slimy cake layer consisting of protein-like and 
polysaccharide-like material was identified.    
 
The techniques and methods used in this study can be used prior to the operation of a pilot-
scale process in order to access the nature of foulant material that would preferentially 
deposit on the membrane surface. The bench-scale experiments must be combined with the 
various analyses, characterizations, and autopsy techniques described in this study to obtain 
meaningful results. An understanding of the nature of foulant will facilitate cost-effective and 
optimal design/operation of pretreatment and the overall SWRO process. 
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Chapter 1 

Introduction 

1.1 BACKGROUND  
Seawater desalination technology has been gaining acceptance for the production of 
additional freshwater because of scarcity of freshwater, technology development, and reduced 
costs. As of 2005, more than 15,000 seawater desalination facilities operated in more than 
120 countries worldwide (Voutchkov, 2005). The main drawback associated with membrane 
processes is fouling on the membrane surface, which leads to decreased productivity and 
increased operating costs from the higher applied pressure requirements and membrane 
cleaning costs. Although a number of seawater reverse osmosis (SWRO) facilities are in 
operation, there is limited understanding of the key components responsible for fouling. A 
fundamental understanding of the nature of major foulants in seawater desalination is needed 
in order to further optimize the SWRO process and reduce the energy and chemical 
requirements for efficient operation.  
 
Fouling in SWRO systems has been reported to be primarily due to the presence of colloidal 
and particulate matter, dissolved organics, and biological growth within the RO system (Wilf 
and Klinko, 1998). Precipitation of sparingly soluble salts (scaling) is less of a concern in the 
SWRO process because of the low recovery (typically 40–50%) and low concentration of 
bicarbonate ion. Transport of particulates and organic macromolecules towards the membrane 
surface is influenced by permeate drag forces acting perpendicular to the membrane surface. 
Once the particulates, colloids, and organic matter are transported to the membrane surface, a 
foulant layer is formed. In seawater, higher fouling rates have been reported to occur at a 
relatively low permeate flux (6–8 gal per sq foot per day [gfd]). Because of high ionic 
strength, electrostatic repulsive forces are suppressed, leading to a higher fouling rate at a 
lower flux (Wilf and Klinko, 1998). Colloidal and organic deposition occurs gradually, and 
fouling can be reduced by the type of pretreatment employed. Although cleaning strategies 
exist to recover the specific flux to initial value after fouling, loss of productivity due to 
system shutdown is a disadvantage.   
 
Design and operation of SWRO plants are strongly dependent on the raw water quality 
(Leparc et al., 2007; Glueckstern et al., 2002; Isias, 2001; Al-Ahmad et al., 2000; Reiss et al., 
2008). Seawater intake is either from an open surface, subsurface, or a well (Wilf and Klinko, 
1998). Past studies have determined that the turbidity, total organic carbon (TOC), bacteria, 
and chlorophyll concentrations were significantly lower for well seawater than for surface 
intake sources (Leparc et al., 2007). Silt density index – 15 min (SDI)15 values were < 3 for 
well water, whereas (SDI)15 values were ~ 6 for open intake. TOC values for well water were 
significantly different from those for open intake. Membrane manufacturers and utilities rely 
on the SDI as a parameter for predicting fouling in SWRO systems. One limitation of the 
method is the use of a 0.45-μm-pore-size filter in a dead-end filtration mode, whereas RO 
processes use crossflow velocity. Hence, the nature of foulants in SDI testing will not 
accurately represent the RO foulants. Modifications to SDI measurements have recently been 
developed to utilize a crossflow fouling sampler index (Adham and Fane, 2008), but the 
technology is still under development. 
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Pretreatment of seawater is critical for proper operation of SWRO systems. Conventional 
pretreatment using flocculation, coagulation, and multimedium filtration is widely being used 
to reduce the SDI and remove excessive turbidity and suspended solids. However, 
conventional pretreatment may not provide a complete barrier to colloids and suspended 
particles and also produces variable feed water quality (Brehant et al., 2002). Hence, 
microfiltration (MF) and ultrafiltration (UF) have become attractive pretreatment alternatives 
(Wilf and Klinko, 1999; Brehant et al., 2002). In one study, bench-scale experiments were 
performed to study the influence of different pretreatment types on SWRO fouling (Kumar et 
al., 2006). It was found that particulate matter greater than 1 μm in diameter (representing 
conventional pretreatment) caused most of the fouling. When MF and UF membranes were 
used as pretreatment, fouling was significantly lower than found in conventional pretreatment 
but no difference in flux decline was observed between MF and UF.  Lowest SWRO flux 
decline was observed when a tight UF membrane (20 kDa) was used as pretreatment, but a 
decrease in specific flux was still observed. Another study compared pilot water quality from 
MF and UF membranes and found that the water quality was better with UF pretreatment 
(Teng et al., 2003). A recent study compared MF, UF, ferric chloride (FeCl3) flocculation, 
and powdered activated carbon (Shon et al., 2007). Molecular weight peaks for the seawater 
(southwestern Korea) used consisted of 1200 Da (biopolymers), 950 Da (fulvic acids), 650 
Da (hydrolysates of humic substances), 250 Da (low-molecular-weight acids), and 90 Da 
(low-molecular-weight neutrals and amphiphilics). Coagulation with FeCl3 was found to 
preferentially remove biopolymers, whereas PAC adsorption mostly removed fulvic acids. 
Prefiltration with MF and UF removed only small amounts of large dissolved organics. Also, 
it was found that only biopolymers were preferentially deposited on the RO membrane.        
  
Problems that are due to biofouling in SWRO systems have also been reported to be of 
concern (Al-Ahmad et al., 2000). Severe increase in the applied pressure, higher decline in 
flux, and elevated permeate conductivity were reported to be caused by biofouling (Saeed et 
al., 2000; Winters, 1994; Veza et al., 2008). Biofouling was reported to be more critical when 
feed water temperature was above 25 °C. In one study, fluidized bed biological granular 
activated carbon systems were found to be effective in reducing the dissolved organic carbon 
(DOC) concentration in feed seawater and reducing biofouling potential (Visvanathan et al., 
2002).  
 
In order to identify the major foulant responsible in SWRO systems, autopsies of fouled 
membranes removed from either pilot or full-scale plants have been performed. Autopsies of 
SWRO pilot plant elements were performed utilizing an element wet test for water flow and 
salt rejection determination, a dye/Fujiwara test for oxidant uptake, inductively coupled 
plasma emission spectroscopy for metal analysis, loss on ignition for inorganic versus organic 
content, and attenuated total reflection–Fourier transform infrared (ATR-FTIR) spectroscopy 
and protein/carbohydrate analysis for organic content (Lozier et al., 2007). Such analyses 
indicated that pretreatment with conventional treatment techniques resulted in greater 
particulate, inorganic, and organic fouling than did pretreatment using MF/UF membranes.  
 
Other studies of fouling that is due to dissolved organic matter found that a mixture of 
aliphatic and aromatic compounds constitutes the total organics in seawater (Watkins and 
Gupta, 1987; Ghani et al., 2000). Seawater humic substances from three different locations in 
the Middle East were isolated and analyzed using UV-visible, infrared (IR), and fluorescence 
spectrometry. Due to organic fouling, excessive loss of productivity and salt rejection were 
experienced. Humics were reported to cause decline in specific flux in SWRO processes 
when flux rates were greater than 10 gfd and when cationic polymers were used for 
pretreatment (Winters, 1987). Humic substances are relatively stable in seawater because of 
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their polyanionic characteristic and ability to form hydrogen bonds with water molecules. 
Humics in seawater are produced by algae and bacteria through photosynthetic pathways. In 
seawater, the presence of polysaccharides and transparent exopolymers (TEPs) exuded by 
phytoplankton and bacteria can also lead to the transformation of dissolved organic matter 
into particulate form (Villacorte et al., 2009). Moreover, polysaccharides produced from 
phytoplankton and bacteria in seawater were reported to be present in high abundance 
(Allredge et al., 1993).  
 
It is difficult to control organic fouling in RO processes even when various pretreatment 
techniques are implemented. Organic fouling in SWRO processes becomes even more 
complex because of the high ionic strength and suppression of repulsive electrostatic 
interactions. Moreover, in the event of an algal bloom, the organic loading in seawater 
increases dramatically because of higher microbiological activity, therefore applying shock 
loads to the pretreatment processes. Most of the techniques used to identify the key foulants 
responsible for SWRO fouling have involved running pilot plants and monitoring 
feed/permeate water quality along with final autopsies of fouled membrane surfaces. 
Although pilot plant operation is useful in determining performance parameters in 
conjunction with full-scale operation, identification of the nature of foulants requires 
considerable time. Hence, a rapid testing method to determine the major foulants in seawater 
is desired.  

1.2. OBJECTIVES 
Specific objectives of the study are as follows: 

• Characterization of seawater from various sources in the United States. 
• Evaluation of methods for characterizing clean and fouled membranes.  
• Identification of key foulants deposited on SWRO membranes using bench-scale 

experiments.  
• Study of the influence of algal bloom on organic fouling.  
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Chapter 2 

Materials and Methods 

2.1 FEED WATER SOURCE SELECTION AND CHARACTERIZATION 
Seawater samples from West Basin Municipal Water District (WBMWD), Carlsbad 
Desalination Project (CDP), Tampa Bay Desalination Plant (TBDP), and South Bay Power 
Plant (SBPP) were chosen as the feed water sources for this study. Samples from WBMWD 
and CDP were collected from a feed water sampling port at the pilot plant. Samples from 
SBPP were collected from an open seawater intake pond feeding water to the power plant. 
Samples from TBDP were collected from a feed water sampling port at the full-scale plant. 
Three of the source seawaters (WBMWD, CDP, and SBPP) are located in California, 
whereas TBDP is located in Florida. Raw seawater samples were collected from the sites and 
delivered to the bench-scale testing facility at MWH in California and at the University of 
Illinois, Urbana-Champaign (UIUC). Water quality parameters such as pH, conductivity, and 
temperature were measured at the time of sampling. Upon receipt of the source water, 
samples were stored in a refrigerator at 4 °C to reduce microbial growth.   

2.1.1 Basic Water Quality Analysis 
Raw seawater samples were analyzed at MWH Laboratories in California.  Methods used for 
analyzing basic water quality parameters along with the respective dilutions required due to 
the high salt matrix are listed in Table 2.1.  

Carbohydrate Analysis  
Raw seawater samples were mixed with potassium ferricyanide (0.7 mM) and kept for 10 min 
in a boiling-water bath to form an initial reagent mixture. One milliliter of ferric chloride (2 
mM) and 2 mL of 2,4,6-tripyridyl-s-triazine were added to the mixture and mixed in a vortex 
mixer. Absorbance measurements at 595 nm were taken after 30 min for the samples mixed 
with various reagents. Standard absorbance curves with D-glucose were generated and 
compared with absorbance of the sample. Absorbance of Milli-Q water was used as a blank. 
For measuring polysaccharide content, 4 mL of seawater sample and 0.4 mL of 1 M HCl 
were added to 5-mL glass cuvettes. The samples were placed in a heat cabinet at 150 °C for 1 
h. After hydrolysis was completed, the sample was cooled and neutralized with 1 M NaOH 
and weighed. The samples were then quantified using a standard curve. The concentration of 
polysaccharides was calculated by subtracting the monosaccharide content using the standard 
curve based on D-glucose (Myklestad et al., 1997).  
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Table 2.1.  Analytical Methods Used for  
Seawater Characterizationa 

Parameter Method Dilution 
TDS SM 2540-C 1 
Turbidity SM 2130B 1 
TOC UV-Persulfate 5 
Protein Lowry 5 
Temperature SM 2550B 1 
pH SM 4500H+ 1 
Conductivity SM 2510B 1 
Calcium EPA 200.7 20 
Magnesium EPA 200.7 20 
Potassium EPA 200.7 20 
Sodium EPA 200.7 50 
Barium EPA  200.8 10 
Strontium EPA 200.7 10 
Bromide EPA 300 500 
Fluoride SM 4500F-C 1 
Nitrate EPA 300.0 50 
Chloride EPA 300.0 1000 
Sulfate EPA 300.0 50 
Silica EPA 200.7 20 
Boron EPA 200.7 20 
Fecal Coliform SM 9221C 1 
Total Coliform SM 9221B 1 

 

aTDS, total dissolved solids. 

2.1.2   Size Distribution of Organic Matter 
High-performance size exclusion chromatography (HPSEC) was used to quantify the size 
distribution of organic matter present in seawater samples. A column with a molecular weight 
separation range of 2 to 80 kDa (Protein-Pak 125; Waters, Milford, MA) was calibrated with 
polystyrene sulfonate standards (Polysciences, Inc., Warrington, PA). The polystyrene 
sulfonate standards used were 1.8, 4.6, 8.0, 18.0, 35.0, and 67.0 kDa. Detection was by UV 
absorbance in the range of 200 to 300 nm, with a resolution of 1 nm.  

2.2    MEMBRANE SELECTION AND CHARACTERIZATION 
Three different SWRO thin-film composite membranes were used for the study. The model 
membranes used were SWC4 (Hydranautics, Oceanside, CA), SW30HR (Dow Filmtec, 
Midland, MI), and RE4040-SR (Saehan, Seoul, SouthKorea). Hydranautics SWC4 and 
DowFilmtec SW30HR were obtained as flat sheets from the manufacturer.  Saehan RE4040-
SR membranes were cut from a 4-in. spiral-wound element. Membranes were stored in 
deonized (DI) water at 4 °C with water replaced weekly.  

2.2.1   Surface Potential 
Membrane surface zeta potential was determined with a streaming potential analyzer. When 
membranes are immersed in water, they acquire a surface charge. Because of the presence of 
co-ions and counter-ions formed on the outer layer of the surface, a charged double layer 
comprised of counter-ions near the surface and co-ions farther away from the surface is 
created. Both the membrane surface and the foulant (organic/biological) when immersed in 
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2.2.3   Contact Angle Analysis 
Contact angle measurements were obtained using a Kruss goniometer (Brant and Childress, 
2002). The contact angle between the solid surface and a liquid droplet is used to measure the 
surface energy. Measurement of surface energy through contact angle analysis is strongly 
dependent on the surface chemistry of the solid (membrane). Clean membrane coupons 
removed from the DI water storage were dried in a desiccator for 24 h before collection of 
contact angle measurements. The membrane coupons were attached to a glass slide using 
double-sided tape. At least eight equilibrium contact angles were determined for each 
membrane with the highest and lowest values discarded. The average of left and right contact 
angles was taken as the equilibrium contact angle.   

2.2.4   Surface Functionality 
ATR-FTIR spectrometry was used to study the organic functionalities of both clean and 
fouled membranes (Kumar et al., 2006). The membrane sample was attached to a crystal, and 
IR radiation was passed through an internal reflection element (IRE). The IR radiation was 
reflected several times within the crystal and detected using a spectrometer. An illustration is 
shown in Figure 2.2. The depth of penetration of the IR beam into the membrane sample is ~ 
1 μm. Absorption in the mid-IR region (4000–600 cm-1) can provide a means to acquire a 
unique spectroscopic fingerprint for each membrane and organic foulant. Small rectangular 
pieces of dry membrane (clean and fouled) were pressed against an IRE. The IRE sample 
holder was then placed on the ATR mirror assembly in the sample compartment of an FTIR 
spectrometer. Single-beam sample spectra were obtained by signal averaging multiple (256) 
scans at a resolution of 4 cm-1. Each sample spectrum was ratioed against a bare IRE 
background spectrum and then converted to absorbance. Energy dispersive spectroscopy 
(EDS) was used to determine the inorganic composition of  the foulant layer. In EDS, a beam 
of X-ray is focused on the sample. The number and energy of the emitted X-ray beam were 
detected by using an energy dispersive spectrometer. As the energy of the emitted X-rays is 
characteristic of the atomic structure of the element from which they were emitted, the 
detector allows the elemental composition of the specimen to be measured. 
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2.4.1  Equilibration Study 
After the experimental setup was cleaned, equilibration and compaction experiments were 
carried out with a solution of sodium chloride at ~50 mS/cm (similar to seawater). A constant 
pressure of 1000 psi was used for the equilibration study. Equilibration was performed until 
no significant decrease in flux occurred with time. The equilibration run served to compact 
the membrane in preparation for fouling experiments and provided a baseline to compare 
different coupons. 

2.4.2   Seawater Fouling Study 
After the clean-water flux run, seawater was tested for fouling. Unless mentioned, all source 
seawaters were prefiltered through a 0.45-μm-pore-size cartridge filter. Because one of the 
objectives was to study organic fouling, prefiltration through a 0.45-μm-pore-size filter 
resulted in only the dissolved organic fraction of seawater to be utilized in the RO bench-
scale system. The system was operated under constant pressure (1000 psi) for 24 h. The 
duration of the tests was determined from initial testing during this study where shorter (8 h) 
and longer (up to 5 days) runs were compared. From initial tests during this study, it was 
determined that 24 h was enough time for foulants to accumulate and observe a measurable 
flux decline in high fouling seawater sources. Shorter periods did not allow sufficient 
stabilization of flux and sufficient foulant accumulation. Performing bench-scale tests longer 
than 24 h also leads to corrosion issues in the system. Hence, experiments were planned to 
prevent rust buildup in the system components.  
 
A constant crossflow velocity of 0.5 m·s-1 (Re ~280) was maintained throughout the 
experiments. Permeate and feed conductivity were measured periodically every hour. After 
the experimental run was complete, the system was cleaned by flushing with DI water for 30 
min.  

2.4.3   AOM Fouling Study 
A marine bloom-forming dinoflagellate, Heterocapsa pygmaea, was used to study the 
influence of algogenic organic matter (AOM) fouling. H. pygmaea was grown in a 
sequencing batch culture. Growth of H. pygmaea was monitored using a fluorometer, and 
manual cell counts were determined with a hemacytometer. At exponential growth phase, the 
cells were extracted using centrifugation and added to seawater in the RO bench-scale 
system.  

2.5   PILOT-SCALE ELEMENT AUTOPSY 
An autopsy on the spiral-wound element obtained from Carlsbad was conducted at UIUC. 
The pilot plant was operated using Hydranautics SWC4+ membrane for a period of about 2 
weeks at ~8-gfd flux. Membrane leaves from the lead element were shipped to UIUC for 
SEM, EDS, and ATR-FTIR analysis.  

2.6   SURFACE ENERGY ANALYSIS 
Contact angles obtained from three liquids were used to determine the surface energy 
parameters of the SWRO membranes and foulant. According to van Oss (1993), the surface 
tension (γΤΟΤ�) of any medium can be divided into Lifshitz–van der Waals (γ LW) and acid–
base components (γ AB). Thus, the surface tension is 
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ABLWTOT γγγ +=  (3) 

with  

 ( )−+= γγγ 2AB
 (4) 

In this equation +γ and −γ are the electron-acceptor and electron-donor parameters of the 
acid–base component of the surface tension, respectively. Individual surface tension 
components LWγ , +γ , and −γ were determined using contact angle measurements with at 
least three different liquids with well-known surface tensions (Brant and Childress, 2002).  
Surface tension components were determined from the extended Young equation (van Oss, 
1993):  
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In this equation, θ is the contact angle, γTOT is the total surface tension, γLW is the Lifshitz–van 
der Waals component, and γ+ and γ− are the electron-acceptor and electron-donor 
components, respectively. 
 
The subscripts s and l represent the solid surface and the liquid, respectively. The surface 
tension components can be used to evaluate the free energy components per unit area, ΔGh0
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In these equations the subscripts m, c, and l represent membrane, colloid, and liquid, 
respectively, and h0 is the minimum equilibrium cutoff distance of 0.158 nm (van Oss, 1993).  
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Chapter 3 

Results and Discussion 

3.1   FEED WATER CHARACTERISTICS 
Basic feed water characteristics for all the seawater sources were quantified, and average 
values are listed in Table 3.1. Water samples were collected during the period of July–August 
2007 for WBMWD, TBDP, and CDP, whereas for SBPP they were collected during April 
2007. The (SDI)15 values were higher for TBDP and SBPP raw seawater than for CDP and 
WBMWD raw seawater. Thus, substantial pretreatment of the TBDP and SBPP seawater 
might be essential in order to decrease RO fouling due to particulates. Among the individual 
ionic species present, chloride and sodium were found to be the dominant ions in all the 
seawater sources. Among the divalent ions, magnesium was found to be present in higher 
concentrations than calcium. The concentration of magnesium and calcium was higher for 
WBMWD and SBPP than for the other two seawater sources. When polysaccharides are 
present in seawater, calcium ions bind with the carboxylic functionality present in 
polysaccharide molecules and form Ca2+-polysaccharide aggregates. The formation of such 
aggregates leads to significant flux decline due to formation of a gel-like layer on the 
membrane surface during RO plant operation (Li et al., 2007). Concentration of boron was > 
4.0 mg/L for WBMWD and SBPP. Boron concentrations were lower for TBDP and CDP 
seawaters. Because boron is uncharged in the natural seawater pH range, rejection by RO 
membranes is low without pH adjustment.  
 
Total silica concentrations in all the seawaters sources were low (<7.0 mg/L). Because silica 
concentrations were low, reactive and colloidal components of silica were not analyzed. The 
presence of silica in colloidal form can lead to colloidal fouling of RO membranes, and the 
presence of reactive silica can lead to precipitative fouling. Metals such as iron, copper, 
nickel, and aluminum were not detected in the raw seawater source. The temperature of 
seawater can play an important role in microorganism growth and hence biofouling potential 
of seawater (Al-Ahmad, 2000). Because the seawater was collected and shipped to the labs in 
California and Illinois, changes in temperature would have occurred. Hence, influence of raw 
seawater temperature is not reported in this study.  
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Table 3.1. Chemistry of Various Seawater Sourcesa 
 

Analyte Units 
Location 

West Basin Tampa Bay Carlsbad South Bay 
Alkalinity in CaCO3 units mg/L 114 155 92 110 
Bicarb. alkalinity as HCO3 mg/L 140 190 110 130 
pH pH units 8 7.8 7.9 7.8 
(SDI)15 — 4.3 6.3 4 5.8 
TDS mg/L 33,660 31,150 33,040 33,450 
TOC mg/L < 1 2.5 < 1 NA 
Boron mg/L 4.7 3.8 2.4 4.6 
Barium μg/L ND ND ND ND 
Bromide mg/L 62.6 56.2 66.4 60.6 
Strontium mg/L 7.3 6.6 7.4 7.3 
Calcium mg/L 390 360 200 400 
Magnesium mg/L 1300 1100 650 1300 
Potassium mg/L 380 320 190 370 
Sodium mg/L 11,000 8800 5200 10,000 
Chloride mg/L 19,000 16,000 19,000 18,000 
Fluoride mg/L 1 0.9 0.9 0.9 
Sulfate mg/L 2700 2000 3000 2660 
Silica mg/L ND 6.7 3.5 NA 
Iron mg/L ND ND ND NA 
Copper mg/L ND ND ND NA 
Nickel mg/L ND ND ND NA 
Aluminum mg/L ND ND ND NA 
Ammonia nitrogen mg/L ND 0.1 0.1 0.08 
Chlorophyll a mg/L <2.0 <2.0 <2.0 NA 
Fecal coliform bacteria MPNM <2.0 <2.0 17 2 
Total coliform bacteria MPNM <2.0 <2.0 17 8 

aND, not detectable; NA, not available ; TDS, total dissolved solids. 
 

In order to quantify algal presence in the seawater source, chlorophyll a concentrations were 
determined using UV absorption. Chlorophyll a was not detected in any seawater source. 
Because chlorophyll b and chlorophyll c are in general at a lower concentration than 
chlorophyll a, they were not analyzed (Leparc et al., 2007). Higher chlorophyll a 
concentrations are possible in the seawater when an algal bloom (red tide event) occurs. All 
seawater sources collected during this study did not have the influence of algal blooms. 
Although in this study the water samples tested were not under the influence of algal blooms, 
when an algal bloom occurs, more than 25% of pigment concentrations have been reported to 
pass through conventional pretreatment processes (Leparc et al., 2007). Hence, during algal 
blooms, a substantial amount of pigment concentration can pass through conventional 
prefiltration and reach the SWRO membrane. TOC concentrations were measured to 
determine the total organic content in the various seawater sources. In order to measure TOC, 
samples were diluted five times to reduce interference due to high chloride concentrations. 
Because of dilution of the samples, TOC concentrations for most sources tested were below 
the lowest detection limit (0.5 mg/L) except for TBDP. Seawater from TBDP had a TOC 
concentration of 2.5 ± 0.7 mg/L.  
 
In seawater, the presence of polysaccharides and transparent exopolymers exuded by 
phytoplankton and bacteria can lead to the transformation of dissolved organic matter into 
particulate form. Polysaccharides produced from phytoplankton and bacteria in seawater were 



 

W

re
(a
m
sa
ca
su
po
T
co
pe
us
st
al
lim
 
 

F
 
 

 3
S
B
m
hy
th

3
In
pe

WateReuse Res

eported to be 
as milligrams 

measurements 
amples were h
arbohydrates 
ugars, the diff
olysaccharide

TBDP water h
ontent. To det
erformed. Alt
sed was 1.8 k
tandard conce
lso not report
mits.  

igure 3.1. Mea

3.2   CLEAN
WRO membr

Based on the m
manufacturing
ydrophobicity
he membrane 

.2.1  Surfac
n order to qua
erformed on t

search Founda

present in hig
per liter of g
were perform

heated at 100
to their mono
ference betwe
e concentratio
aving the hig
termine the si
though peaks 

kDa, and henc
entration and 
ed because of

asured carboh

N MEMBRA
ranes are prim
manufacturing
g process, mem
y vary. Hence
surface prope

ce Morpholo
alitatively dete
the model me

tion 

gh abundance
lucose) for al

med for hydro
°C overnight 

omeric subun
een the hydro
on. All the sea
hest monome
ize fraction o
were found o

ce the values o
irreproducibl
f dilution of s

hydrate concen

ANE CHAR
marily of thin-
g procedure a
mbrane surfac
e, an array of 
erties.   

ogy using SE
ermine the su

embranes. SEM

e (Allredge et 
ll the source w
olyzed and no

with hydroch
its. Because t
lyzed and the
awater source
eric and polym
f the polysacc
of <1.8 kDa, t
obtained for t
le. Protein con
samples leadin

ntrations for t

RACTERIS
-film compos
nd surface mo
ce properties 
characterizat

EM 
urface morpho
M images of 

al., 1993). C
waters are sho
onhydrolyzed 
hloric acid to 
the assay is se
e nonhydrolyz
es have polysa
meric fraction
charides, HPS
the lowest co
the seawater s
ncentrations i
ng to quantifi

the various se

STICS 
site polyamide
odifications u
such as surfa

tion technique

ology of clean
clean SWRO

arbohydrate c
own in Figure
samples. Hyd
convert poly

ensitive only 
zed samples i
accharides pr
n of the carbo
SEC analysis 

oncentration o
sources were 
in the seawate

fication below

eawater source

e (TFC-PA) c
used during th
ace charge, rou
es was utilize

n membranes
O membranes 

1

compositions 
e 3.1. Two 
drolyzed 

ymeric 
to monomeri

is the 
resent, with 
ohydrate 

was 
of standards 

below the 
er sources are

w detection 

es. 

composition. 
he 
ughness, and 
d to determin

, SEM was 
are shown in

17 

c 

e 

 

ne 

n 



18  

Figur
SWRO
SEM 
shown
on the
 
 

Figur
(b) Sa
 

e 3.2. The SE
O membranes
images of Sa
n in Figure 3.
e membrane s

 
e 3.2. SEM im

aehan SR, and

EM images sh
s have a roug

aehan SR mem
.3. The image
surface.  

mages of clean 
d (c) DowFilmt

hown were ob
gh surface mo
mbrane at high
es show a com

(a) Hydranau
tec SW30HR m

tained at a ma
rphology that
her magnifica

mplex morpho

 

utics SWC4, 
membranes.

WateRe

agnification o
t is typical for
ations (50,000
ology of the p

euse Research 

of 10,000×. A
r TFC-PA me
0× and 75,00

polymer matri

Foundation 

All three 
embranes. 
0×) are 
ix found 



 

W

F
an

3
T
ch
m
po
se
th
st
 
Z
m
m
m
po
in
ne
of
be
m
 
St
(D
io
va
m
de

WateReuse Res

igure 3.3. SEM
nd (b) 75,000×

.2.2   Surfac
The distributio
hemistry (pH 

membrane surf
otential decre
eawater, beca
he membrane 
teeply near th

Zeta potentials
membranes are
membrane was
mM, and 100 m

olyamide mem
ncrease in pH 
egative) with 
f the zeta pote
ecome less ne

material at hig

treaming pote
DowFilmtec S
onic-strength 
alue indicates

material will b
etermining str

search Founda

M images of th
× magnificatio

ce Charge u
on of charged 

and ionic stre
face functiona
eases steadily 
ause of very h

and the foula
he membrane 

s calculated fr
e shown in Fi
s tested over a
mM). Becaus
mbrane surfac
(Childress an
an increase i

ential in the r
egative, indic
her salinity co

ential was als
SW30HR and
conditions, th
s that the elec

be similar. At 
reaming pote

tion 

he Saehan SR 
ons. 

using Stream
ions near a m
ength) becaus
ality. In the c
until it reach

high ionic stre
ant can be sig
surface.  

rom streaming
igure 3.4. The
a wide pH ran
e of deproton
ce, the zeta p
nd Elimelech,
n ionic streng

range of opera
ating a higher
onditions.  

o measured a
d Saehan SR) 
heir zeta poten
ctrostatic repu
high ionic str
ntial measure

membrane at

ming Potent
membrane sur
se they influe
ase of low-io

hes a distance 
ength, electros
nificantly sup

g potential m
e streaming po
nge and under
nation of the c
otential decre
, 1996). The z
gth. Because o
ational pH va
r fouling pote

at a pH of 8.0 
at an ionic st
ntial values a

ulsive force be
rengths (> 100
ements.  

t (a) 50,000× 

tial Measure
rface is depen
ence protonati
onic-strength s

where electro
static double 
ppressed and 

measurements 
otential of Hy
r different ion
carboxylate fu
eases (become
zeta potential
of double lay

alues for SWR
ential of nega

for the other 
trength of 100
are quite simil
etween the m
0 mM), the in

ements 
ndent on the s
ion/deprotona
solutions, the
oneutrality ex
layer interact
the potential 

obtained for t
ydranautics S
nic strengths 
unctional grou
es more nega
l increases (be

yer compressio
RO operations
atively charge

two model m
0 mM. Under
lar. A similar 

membrane and 
nstrument is i

1

olution 
ation of the 
e electrical 
xists. For 
tions between
decreases 

the model 
SWC4 

(1 mM, 10 
ups on the 

ative) with an 
ecomes less 
on, the values
s tend to 
ed organic 

membranes 
r these high- 

zeta potentia
foulant 

incapable of 

19 

 

n 

s 

al 



20   WateReuse Research Foundation 

 
Figure 3.4. Zeta potential as a function of pH and ionic strength for the model membranes. 

3.2.3   Surface Roughness using AFM 
Surface roughness of the model membranes was determined using AFM. AFM topographs 
were obtained for all three membranes. The 2D and 3D images obtained from these 
measurements are shown in Figure 3.5. From the AFM images and the roughness values, it 
appears that the DowFilmtec SW30HR and Saehan SR membranes have similar surface 
topologies, whereas the Hydranautics SWC4 has significantly higher roughness. The 
measured roughness parameters for the model SWRO membranes used in this study are 
shown in Table 3.2. Root mean square (RMS) roughness and average roughness (Raverage) are 
reported. The Hydranautics SWC4 membrane has significantly higher roughness than do the 
DowFilmtec SW30HR and Saehan SR membranes. Surface roughness of membranes can 
significantly reduce the range and magnitude of interfacial interactions (especially 
electrostatic interactions), leading to higher fouling potential (Hoek et al., 2003). Because of 
the presence of high ionic strength in seawater, the electrostatic interactions are further 
suppressed. Thus, rougher membranes (Hydranautics SWC4) will exhibit higher fouling 
potential than will relatively smoother membranes (DowFilmtec SW30HR and Saehan SR).  
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Because DI water does not accurately represent the contact angles for all media, the extent of 
hydrophobicity for the SWRO membranes was determined using the acid–base approach 
proposed using two polar (water, ethylene glycol) and one apolar (diiodomethane) medium 
(van Oss, 1993). The contact angles obtained using the three liquids on all the membranes are 
shown in Figure 3.7. The DowFilmtec SW30HR membrane had the smallest contact angle for 
polar liquids (water and ethylene glycol) when compared to the Hydranautics SWC4 and 
Saehan SR membranes. The DowFilmtec SW30HR membrane also had the greatest contact 
angle with the apolar (diiodomethane) liquid when compared to the other two membranes.  
 

 

Figure 3.7. Comparison of contact angles using 3 liquids on model SWRO membranes. 
 
Contact angles obtained from the three liquids were used to determine the surface energy 
parameters of the SWRO membranes. Calculated surface energy parameters for the model 
membranes are listed in Table 3.3. The Lifshitz–van der Waals component is lowest for 
DowFilmtec SW30HR membrane. Because of the small contact angles of the DowFilmtec 
SW30HR membrane with polar liquids, the electron-donor component for this membrane is 
significantly higher than for the other membranes. The presence of high electron-donor (γ−)  
component on the membrane surface suggests the presence of more electron-donor surface 
functional groups exposed on the surface that could accept a proton from water to form 
structured layers of water molecules on the membrane surface, hence having a surface that is 
relatively hydrophilic. The free energy of cohesion (ΔGCO) is the interaction free energy (per 
unit area) when two surfaces of the same material are immersed in solvent (water) and 
brought into contact. The free energy of cohesion was calculated using equations 6 and 7 and 
utilizing the properties of membrane and water alone. The free energy of cohesion values 
gives more quantitative insight into the hydrophobicity/hydrophilicity of the membranes. 
Positive values of the free energy of cohesion represent a hydrophilic surface, whereas 
negative values suggest a hydrophobic surface. Hence, the DowFilmtec SW30HR membrane 
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is more hydrophilic (positive ΔGCO) than are the Hydranautics SWC4 and Saehan SR 
membranes (negative ΔGCO).     
 
    
Table 3.3. Surface Energy Parameters (mJ/m2) 
for Clean SWRO Membranes 
 

Membrane 

Values for: 

γLW γ+ γ- ΔGCO 
Hydranautics SWC4 46.7 4.4 13.4 -25.8 
DowFilmtec SW30HR 39.9 3.8 37.0 7.4 
Saehan SR 44.9 3.9 9.3 -32.9 
   

3.3    BENCH-SCALE TESTING OF DIFFERENT SEAWATER SOURCES 
Fouling experiments were conducted with actual seawater immediately after compaction. 
Temperature-corrected normalized specific flux obtained from three seawater sources for 
studies conducted at both UIUC and MWH is shown in Figure 3.8a and Figure 3.8b, 
respectively. For all three seawater sources tested, the normalized specific flux did not vary 
significantly for the study conducted at UIUC and MWH. Similar trends were observed in 
both studies. Hence, the seawater samples collected for testing during this study did not 
exhibit a substantial decrease in normalized specific flux with time. Bench-scale tests were 
performed for only 24 h based on experience from previous studies where shorter (8 h) and 
longer (up to 5 days) runs were compared. From previous studies, it was determined that 24 h 
was enough time for foulants to accumulate and to observe measurable flux decline in waters. 
Shorter periods did not allow sufficient stabilization of flux. The normalized specific flux was 
lower for the studies conducted at MWH than in the data from UIUC. The normalized 
specific flux also dropped steeply after 16 h for the study conducted with West Basin 
seawater at MWH. After 16 h of operation, the salt passage also increased. The decreased 
flux obtained for MWH runs occurred because of corrosion issues encountered in the 
experimental setup and not because of changes in source-water chemistry. The issue of 
corrosion is described in detail later in the report. Because of corrosion debris being deposited 
on the membrane surface, observed rejection for studies conducted at MWH was about 1% 
lower than the rejection at UIUC. Conductivity rejection was about 98% (±0.08) for the 
Hydranautics SWC4 membrane for the study conducted at MWH and was more than 99.3% 
(± 0.04) for the study conducted at UIUC. Although a difference in specific flux was not 
observed for the three seawater sources, deposition of foulant on the membrane surface is 
possible.  
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Figure 3.8. Normalized specific flux for all 3 seawater sources for studies conducted with 
Hydranautics SWC4 membranes performed at (a) UIUC  and (b) MWH. 
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Figure 3.22. ATR-FTIR spectra from the fouled membrane coupon run with Carlsbad seawater 
at MWH. 
 

3.3.4 Determination of Surface Energy of Foulant Layer 

To determine the change in surface energy after fouling, contact angle measurements were 
performed on Hydranautics SWC4 membranes after bench-scale experiments with West 
Basin, Tampa Bay, and Carlsbad seawater. The contact angles are shown in Figure 3.23. The 
contact angles of the apolar liquid (diiodomethane) increased significantly (~50°) for the 
membrane after being filtered with all three source waters when compared to clean membrane 
diiodomethane angle (~ 22°). Water contact angles decreased significantly when the 
membrane was tested with Tampa Bay seawater. Contact angles with ethylene glycol also 
increased significantly when compared to the clean membrane angle (~12°).  

 

Figure 3.23. Comparison of contact angles using 3 liquids on fouled 
Hydranautics SWC4 membrane. 
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3.4   IMPACT OF MEMBRANE TYPE ON FOULING  
Influence of membrane properties on fouling was studied using Hydranautics SWC4 and 
DowFilmtec SW30HR membranes. Initial studies were performed with South Bay seawater, 
and the normalized specific flux for the two membranes is shown in Figure 3.25. From 
previous experience it was found that operating the bench-scale system longer than 10 h led 
to corrosion issues. Thus, the experiment was conducted for only 6 h. Also, because a 
significant decline in specific flux was not obtained for the three seawater sources (West 
Basin, Tampa Bay, and Carlsbad), seawater from South Bay was used for this study. The 
normalized specific flux decline was slightly higher for the rough and hydrophobic 
membrane (Hydranautics SWC4) than for the smooth and hydrophilic membrane 
(DowFilmtec SW30HR). Although a slightly lower normalized specific flux for DowFilmtec 
SW30HR membrane was observed, it is not clear if the results are significantly different. In 
general, smooth and hydrophilic membranes exhibit lower fouling potential than do rough 
and hydrophobic membranes (Elimelech et al., 1997).  When the surface of the membrane is 
hydrophilic, water molecules form its natural structure through hydrogen bonding. Because of 
the high electron component (γ-) of the DowFilmtec SW30HR membrane, hydrophilic 
repulsion between the organic foulant and the membrane surface leads to less deposition and 
a smaller decrease in normalized specific flux. When the membrane surface is hydrophobic, 
water experiences a repulsive force that disturbs the natural water structuring on the 
membrane surface and leads to hydrophobic attraction between the foulant and membrane 
surface. 
 
    

 
Figure 3.25. Comparison of normalized specific flux for Hydranautics SWC4 and DowFilmtec 
SW30HR membranes with South Bay seawater. 
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3.5  IMPACT OF AOM FOULING   
To determine the influence of membrane type and AOM fouling in the feed water, bench-
scale experiments were conducted using H. pygmaea cells. SEM images of H. pygmaea are 
shown in Figure 3.26. In Figure 3.26a, a typical cell is shown; the double-sectioned body is 
fairly standard morphology. In Figure 3.26b, two cells are connected, possibly because of 
incomplete cell division. One of the cells’ structure has been compromised. In Figure 3.26c, 
an intact cell sits beside a mass of material that appears to be a second, broken cell. It is 
presumed that the small jagged clusters are organelles that were released upon cell lysis. Such 
lysis and release of organic matter might occur during a spike of phytoplankton entering the 
RO unit.  
 
To determine the influence of membrane properties, both Hydranautics SWC4 (rough, 
hydrophobic) and DowFilmtec SW30HR (smooth, hydrophilic) membranes were used. 
Because the Saehan SR membrane did not have significant differences in surface properties 
(roughness and hydrophobicity) from the Hydranautics SWC4 membrane, results were 
compared only for Hydranautics SWC4 and DowFilmtec SW30HR membranes with no 
pretreatment. Normalized specific flux for the two membranes is shown in Figure 3.27. No 
significant difference in the normalized specific flux was observed for the two membranes. 
But the normalized specific flux decreased with time for both membranes.            
 
After the initial run with H. pygmaea cells, the feed water was prefiltered through an MF 
membrane. A comparison of normalized specific flux for the Hydranautics SWC4 and 
DowFilmtec SW30HR membranes is shown in Figure 3.28. No significant difference in the 
normalized specific flux was observed for the two membranes. Hence, prefiltration with an 
MF membrane removed a large fraction of the AOM and led to minimal decline in specific 
flux.               
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microfiltered AOM runs. This shows that flux in bench-scale RO tests is not easily 
diminished by organic material deposited on the membrane. The spectra were similar in 
different locations on the membrane surface. The magnitude of the spectra was different at 
various locations because of more foulant accumulation near the feed spacers. Because of 
stagnation zones present near the feed spacers, more foulant deposition occurred and hence 
magnitudes of spectra obtained in the region near the feed spacers were high.  

 
Figure 3.36. Infrared absorbance spectra in the region of 3700 to 2600 cm-1 for Hydranautics 
SWC4 (solid line) and DowFilmtec SW30HR (dashed line) after experiments with H. pygmaea 
water with/without prefiltration. 
 

3.6   COMPARISON OF BENCH-SCALE AND PILOT-SCALE FOULING 
In order to compare bench-scale experimental results with pilot plant results, a lead element 
from the Carlsbad pilot plant was removed and an autopsy conducted. The pilot plant at 
Carlsbad was operated using a Hydranautics SWC4+ membrane for a period of about 2 
weeks at ~8 gfd of flux. The pilot plant operated for only a short period because of significant 
metallic fouling that occurred within 2 weeks of operation.  The SEM results obtained from 
the pilot scale membrane operated on Carlsbad seawater are shown in Figure 3.37. The 
images show a film on the membrane with the membrane visible through holes in this film 
(as seen in the 10,000× image) and in uncovered areas (3,000× image). EDS results are 
shown in Figure 3.38. The EDS spectrum of this fouling layer is very similar to those 
obtained with the same water and a similar membrane from bench-scale tests at UIUC 
(Figure 3.20), indicating that the fouling conditions and early-stage film formation were 
captured in the bench-scale tests. As expected, the film in the short-term bench-scale tests (24 
h) seems thinner than the film on membranes used in the longer pilot studies (2 weeks)  
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Figure 3.39. ATR-FTIR spectra from the autopsy of a Hydranautics SWC4+ membrane module 
used in the Carlsbad seawater desalination pilot facility. 

3.7    APPLICABILITY OF ANALYTICAL METHODS FOR SWRO  
PROCESSES  
A summary of all the techniques used to characterize the seawater, membrane, and foulant is 
given in Table 3.5. Certain methods, such as absorbance, TOC, and HPSEC measurements, 
are for characterizing the seawater, and methods such as streaming potential, AFM, contact 
angles, ATR-FTIR spectroscopy, SEM, and EDS are for characterizing clean and fouled 
membrane surfaces. The applicability of each analytical method is described in the following:  
 

Absorbance measurements:  Carbohydrate and polysaccharide content in the seawater can 
cause fouling of the SWRO membrane, leading to a decline in the membrane performance. 
Absorbance measurements at 595 nm can be utilized to determine the carbohydrate and 
polysaccharide content present in a seawater source. It is difficult to correlate the 
concentration of organic matter with fouling potential on the SWRO membrane because 
various factors, such as pretreatment process, membrane type, RO system configuration, and 
hydrodynamics, affect the extent of fouling. Nevertheless, estimation of the concentration of 
carbohydrate and polysaccharide content in a seawater source will help in determining the 
nature of organic matter present.  
 
TOC:  Estimation of TOC content of a seawater source can be used to determine the extent 
of biological activity. Seawater with higher biological activity (during algal blooms) will 
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exhibit higher TOC concentrations. The fouling potential of a given source seawater changes 
over time and with various events occurring in the ocean (such as red tides, spring swells, 
rain events, etc.). Thus, continuous monitoring of water quality parameters such as TOC in 
addition to turbidity and chlorophyll content is necessary to establish biological activity in the 
seawater used for intake. A disadvantage with TOC measurements is the interference of the 
method with high chloride content present in seawater. Catalytic combustion and 
chemiluminescence detection methods have been developed specifically for seawater TOC 
analysis (Shimadzu Corporation, 2010). The new method utilizes a combustion tube that can 
be used three or four times before being exchanged. Catalyst can be regenerated externally 
and used for a longer period. Such methods can be utilized for accurate measurement of TOC 
in seawater.   
 
HPSEC: In addition to the determination of the concentration of organic matter using 
absorbance and TOC measurements, characterization of the organic matter based on size will 
help in choosing an efficient pretreatment process. HPSEC measurements can be utilized to 
characterize the size fraction of organic matter present in seawater. Based on the size range of 
organic matter, conventional and membrane pretreatment processes can be evaluated and 
optimized.             
 
Streaming potential:  Determination of the surface charge of the RO membrane can provide 
valuable insights on the influence of electrostatic interactions with respect to fouling. The 
typical method used to estimate the surface charge of membranes is the application of a 
streaming potential analyzer. Because the ionic strength of seawater is high, streaming 
potential measurements are not effective. In this study, although streaming potential 
measurements were different for the membranes under lower-ionic-strength conditions, at an 
ionic strength of more than 0.1 M, measurements were not different for the model 
membranes. Thus, other methods for determination of surface charge need to be evaluated to 
accurately estimate the surface charge of RO membranes under conditions relevant to 
seawater chemistry. Once the membranes are fouled, it is difficult to use techniques such as 
streaming potential measurements, as the foulant layer will not stay intact when suspended in 
the electrolyte used for the analysis.  
 
AFM:  In this study, determination of surface roughness using AFM was performed with the 
tapping mode. Membrane polymers swell because of hydration; hence, roughness 
measurements could be different under hydrated conditions. The AFM measurements can be 
useful in determining deposition of foulant material on the membrane surface. A change in 
the roughness of the membrane after fouling can be interpreted as deposition of foulant 
material. The use of AFM measurements to determine foulant deposition is limited. 
Measurements cannot be used to evaluate the nature of the foulant deposited; furthermore, the 
technique requires skilled labor, and interpretation of results requires sufficient expertise.            
 
Contact angles:  In this study, contact angle measurements were performed to determine the 
relative hydrophobicity and surface energy parameters of clean and fouled membrane 
surfaces. Surface energy parameters can be utilized to study the influence of RO membrane 
surface chemistry on fouling. The contact angle measurement technique can also be used to 
determine the relative hydrophobicity of foulant material.  
 
ATR-FTIR spectroscopy:  The organic functionality of the foulant layer can be analyzed 
using ATR-FTIR spectroscopy. ATR-FTIR spectroscopy is a microscopic measurement 
technique, and output signals depend on the extent of foulant surface coverage on the 
membrane. In ATR-FTIR measurements, wavelength from the membrane polymer and the 
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presence of liquid can interfere with the analysis, making it difficult to differentiate 
overlapping of IR absorbance for various functional groups. In this study, the technique was 
effective in determining the presence of protein-like and polysaccharide-like material 
deposited on the SWRO membrane.       
 
SEM and EDS:  SEM and EDS are techniques that are typically used in combination. 
Observation of membrane surface morphology and of the foulant layer using SEM is well-
developed and straightforward. When the foulant layer is biological in nature (such as 
biofilms), modifications in the technique need to be applied. One such variation is the use of 
an environmental SEM for characterizing the foulant layer without causing damage to it. EDS 
is used to determine the inorganic content of a foulant layer. Although precipitation of 
sparingly soluble salts is not expected in SWRO processes because of low feed water 
recovery rates, the EDS technique can be used to determine if iron oxide fouling has occurred 
on the SWRO membrane.    
 
Various steps involved in the comparison of organic fouling of different seawater sources are 
illustrated in Figure 3.40. Basic water quality analysis involving the measurement of pH, 
turbidity, and fluorescence would be the first step. Prefiltration of the raw seawater source 
with a 0.45-μm-pore-size filter will remove particulates from the source water and allow 
dissolved organics to pass through. The SDI values obtained will give an indication of the 
extent of particulates present in the seawater. Further analysis using image processing and 
ATR-FTIR techniques can be used to describe the nature of particulates present. After 
prefiltration, a detailed water quality analysis involving major ions, bacterial and algal count, 
TOC, and polysaccharides needs to be performed. Bench-scale experiments with a single 
membrane type and seawater source should be performed after the prefiltration step. Bench-
scale experiments would include equilibration involving compaction of the membrane, 
followed by the actual fouling run. After bench-scale experiments are complete, an autopsy of 
the membrane coupon needs to be performed to determine the nature of foulants deposited. 
Autopsy techniques specifically can be used to determine if the foulants are composed of 
humics, polysaccharides, proteins, or other organic constituents. Determination of a specific 
foulant’s nature can be used to choose an optimum pretreatment process and to optimize 
operating conditions for a pilot-scale facility, as well as to identify appropriate cleaning 
chemicals for removal of deposited foulants. 
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Figure 3.40. Steps to analyze organic fouling potential of different seawater sources. 
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Table 3.5. Summary of Analytical Methods Used for Characterization of 
Seawater, Membrane, and Foulant 

Technique Purpose Application Advantages Disadvantages Results from This 
Study  

Absorbance 
@ 595 nm 

Measurement of 
carbohydrate 
content  

Seawater 
characterization 

Comparing 
fouling 
potential of 
various 
seawater 
sources based 
on 
polysaccharide 
content. 

None. 

Carbohydrate and 
polysaccharide 
content detected in 
all seawater 
sources. 
Concentration and 
membrane fouling 
potential could not 
be correlated.  

HPSEC 
Measurement of 
organic size 
fraction 

Seawater 
characterization 

Determining 
organic size 
fraction 
responsible for 
fouling.  

 Sensitivity 
based on 
detection 
method used 
(UV/DOC).  

Peaks were found 
below the lowest 
detection limit of 
1.8 kDa. Organic 
size fraction and 
membrane fouling 
potential could not 
be correlated.  

TOC Measurement of 
organic content 

Seawater 
characterization 

Comparing 
fouling 
potential of 
various 
seawater 
sources based 
on organic 
concentration. 

 Sensitivity 
issues due to 
necessary 
dilution. 

Except for Tampa 
Bay seawater, 
TOCs for all other 
seawater sources 
were below 
detection limit of 
0.5 mg/L.  

Streaming 
Potential 

Determination 
of zeta potential 

Clean/fouled 
membrane 
characterization 

Determining the 
influence of 
electrostatic 
interactions on 
fouling.  

Not efficient for 
solution ionic 
strength of >0.1 
M. Difficult to 
measure charge 
of foulant 
deposited on 
membrane (due 
to foulant 
desorption). 

Zeta potential 
increased with 
ionic strength for 
all the model 
membranes tested. 
Zeta potential not 
representative of 
membrane surface 
charge beyond an 
ionic strength of 
0.1 M. Not useful 
in seawater 
applications 

AFM 
Measurement of 
surface 
roughness 

Clean/fouled 
membrane 
characterization 

Determining the 
influence of 
membrane 
surface 
roughness on 
fouling. Can 
also be used to 
determine 
foulant 
deposition. 

Difficult to 
measure 
roughness of 
fouled 
membrane (due 
to interference 
between foulant 
and AFM tip). 

Surface roughness 
of Hydranautics 
membrane higher 
than that of 
DowFilmtec and 
Saehan membranes. 

Contact 
Angles 

Determination 
of surface 

Clean/fouled 
membrane 

Determining the 
influence of 

Macroscopic 
surface 

Contact angle of 
DowFilmtec 
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Technique Purpose Application Advantages Disadvantages Results from This 
Study  

energy 
parameters 

characterization membrane 
surface 
chemistry on 
fouling. Can 
also be used for 
determining 
hydrophobicity/
hydrophilicity 
of foulants. 

characterization 
technique. Not 
sensitive to 
heterogeneity 
on membrane 
surface.  

membrane lower 
than those of 
Saehan and 
Hydranautics 
membranes.  

ATR-FTIR 
Determination 
of organic 
functionality 

Clean/fouled 
membrane 
characterization 

Determining 
surface 
functionality of 
foulant.  

Difficult to 
differentiate 
overlapping of 
absorbance for 
various 
functional 
groups.  

Fouling due to 
polysaccharide-like 
and protein-like 
material was found 
on fouled 
membrane when 
AOM was added to 
the seawater 
source. 

SEM 
Determination 
of surface 
morphology 

Clean/fouled 
membrane 
characterization 

Determining 
surface 
morphology of 
foulant layer 
and presence of 
biofilm. 

Modification 
necessary for 
biological 
samples.  

Surface 
morphology of 
clean and fouled 
membranes 
revealed foulant 
structure on 
membrane. Higher 
deposition was 
found when no 
pretreatment was 
used with AOM 
added to seawater 
source.  

EDS 
Determination 
of inorganic 
functionality 

Clean/fouled 
membrane 
characterization 

Determining 
surface 
functionality of 
foulant.  

None. 

Presence of iron 
determined on 
membrane surface. 
Presence of iron 
was due to 
corrosion of feed 
water pump used.  
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Chapter 4 

Conclusions and Recommendations 

4.1   CONCLUSIONS 
In this study, characterization of various seawaters was performed and bench-scale testing 
done to determine the nature of organic foulants restricting the performance of SWRO 
membranes. A correlation between seawater characteristics and fouling behavior was not 
evident from this study as the rate of flux decline was marginal and not significantly different 
for the various seawater sources tested. However, fouled membrane autopsy results revealed 
the presence of polysaccharide-like material deposition on the membranes for all the seawater 
sources tested in this study. The techniques and methods used in this study can be used prior 
to the operation of a pilot-scale process in order to access the nature of foulant material that 
would preferentially deposit on the membrane surface.          
 

Characterization of seawater 
Three seawater sources from California (Carlsbad, West Basin, and South Bay) and one from 
Florida (Tampa Bay) were characterized and used in bench-scale experiments to identify key 
foulants deposited on the membrane surface during SWRO processes. Total dissolved solid 
concentrations were similar for all the source seawater and were in the range of 31,000–
33,600 mg/L, and pH was between 7.8 and 8.0. Particulate concentration based on (SDI)15 
was higher (~6.3) for Tampa Bay seawater than for the other sources. The concentration of 
major ions in all the seawater sources was similar. Chloride and sodium were the major ions 
present in all sources. Among the divalent ions, magnesium concentration was significantly 
higher than calcium’s. The concentration of major metals (iron, aluminum, nickel, and 
copper) was below detection limits in all the raw seawater sources. Boron concentrations 
varied between 2.4 and 4.7 mg/L for seawater in California. The boron concentration of 
Tampa Bay seawater was 3.8 mg/L.    
 
Carbohydrate concentration of Tampa Bay seawater was higher than for seawater from 
Carlsbad, West Basin, and South Bay. Total carbohydrate (monomeric and polymeric) 
concentration for Tampa Bay seawater was ~ 8.5 mg/L as glucose. Also, TOC concentration 
was highest for Tampa Bay (~2.5 mg/L). TOC concentrations for all the other sources were 
below the lowest detection limit.  To determine algal concentration in the source seawater, 
chlorophyll a was measured. Chlorophyll a concentrations were below detection limits  
(< 2 μg/L) for all the source waters.  
 

Influence of membrane type and seawater source on organic fouling behavior  
Membranes used for this study included DowFilmtec SW30HR, Hydranautics SWC4, and 
Saehan SR. DowFilmtec SW30HR and Saehan SR membranes were relatively smooth (RMS 
roughness ~ 78 nm) when compared to Hydranautics SWC4 (RMS roughness ~ 150 nm). 
DowFilmtec SW30HR was relatively hydrophilic (ΔGCO > 0) when compared to Saehan SR 
and Hydranautics SWC4 membranes  (ΔGCO < 0). Streaming potential measurements were 
not significantly different at high ionic strengths (> 100 mM) for all three model membranes. 
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When different seawater sources were used, no significant difference in normalized specific 
flux was observed for Carlsbad, West Basin, and Tampa Bay seawaters during bench-scale 
RO experiments conducted with a Hydranautics SWC4 membrane. Although a significant 
decrease in specific flux was not observed during the bench-scale study, an autopsy of 
membrane coupons using ATR-FTIR, EDS, and imaging techniques revealed the presence of 
a foulant layer on the membrane surface. From SEM images, it was evident that the 
deposition of foulant was nonuniform on the membrane surface, which justifies the minimal 
decline in specific flux.    
 
When different membrane types were compared for fouling propensity, relatively hydrophilic 
and smoother membranes (DowFilmtec SW30HR) exhibited slightly lower fouling potential 
than hydrophobic and rough membranes (Hydranautics SWC4). To study the influence of 
algal blooms, H. pygmaea cells were cultured and used in RO bench-scale experiments. 
During this study, no substantial difference in fouling behavior was observed when H. 
pygmaea algal spikes were used for studying influence of membrane properties on fouling. 
Because of the multilayer deposition and high concentration of AOM released from algal cell 
shearing, the effect of membrane properties on fouling characteristics was masked.  
 
When AOM was used without any pretreatment of feed water, a gel layer was formed on the 
membrane surface. But with pre-MF, nonuniform deposition occurred on the membrane 
surface. Hence, pre-MF reduced the AOM content. Although a minimal decline in specific 
flux of the SWRO membrane was noticed with pre-MF, deposition of foulant was evident 
from autopsy techniques.  

Identification of major organic foulants in seawater  
Bench-scale RO experiments with various seawater sources and an autopsy performed on the 
fouled membrane coupon revealed the presence of polysaccharide-like material deposition on 
the membranes for all the seawater sources tested in this study. For all the seawater sources 
tested, absorbance spectra at 890 to 1050, 1620 to 1680, and 3000 to 3600 cm-1 were 
dominant. Pilot plant SWRO membrane leaf operated on Carlsbad seawater also revealed the 
presence of polysaccharide-like material, similar to bench-scale results. A thick slimy layer 
was visible on the pilot-scale membrane. In addition to the presence of polysaccharide-like 
material found on the pilot-scale membrane, additionally peaks at 1540 and 1640 cm-1 were 
noticed. The peaks were representative of amide-I and amide-II stretching prevalent in 
proteins. Iron was also identified on membrane coupons from both bench- and pilot-scale 
studies. Presence of iron revealed corrosion occurring both in the bench- and pilot-scale 
equipment. 

Limitations of bench-scale experiments and characterization techniques 
The bench-scale testing protocol must be combined with the various analytical, 
characterizations, and autopsy techniques to obtain meaningful results on organic fouling 
behavior in SWRO processes. The methods described in this study can be used as an early 
warning sign for determining only organic fouling of SWRO membranes. Other types of 
fouling such as biological fouling cannot be detected by the methods and procedures 
developed in this study. The bench-scale experiments and autopsy techniques as described in 
this study can be used to determine the nature of organic foulant occurring during normal 
operational periods as well as during algal blooms. However, seawater sampling during the 
various events needs to be undertaken and bench-scale experiments performed to compare 
results. Performing bench-scale experiments with seawater also can lead to problems due to 
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deposition of corrosion products on the membranes. It is essential that high-quality stainless 
steel equipment and parts are used while performing SWRO coupon tests. Proper protocol (as 
described in Appendix A) needs to be followed to obtain unbiased results.            

4.2   RECOMMENDED FUTURE WORK  
Because the bench-scale RO experiments were performed in this study for only 24 h, biofilm 
formation on the membrane surface was not noticed. In order to determine the biofouling 
potential of a particular seawater source, bench-scale experiments need to be modified 
accounting for time span of biofouling, microorganism type and metabolism, nutrient 
loading, etc. Organic deposition leads to the formation of conditioning films on the 
membrane surface and can influence subsequent biofilm formation. Hence, further studies are 
necessary to determine the influence of organic fouling on microbial adhesion in seawater 
systems. Future studies could also focus on understanding the structure of foulant layers 
formed. Because polysaccharides are predominantly deposited on the membrane surface, 
formation of a gel layer could be occurring because of preferential interaction between 
divalent cations and negatively charged functional groups on the polysaccharide molecule. 
The strength of adhesion between the polysaccharide-like material and the membrane surface 
also is not known. Depending on the type of membrane material used, the efficacy of 
cleaning the membrane and removing the foulant layer needs to be determined.  

4.3   PRACTICAL ASPECTS OF THE STUDY 
The techniques and methods used in this study can be used prior to the operation of a pilot-
scale process in order to access the nature of foulant material that would preferentially 
deposit on the membrane surface. Because of the brevity of operation of bench-scale studies, 
they cannot be used as a substitute for pilot testing. The determination of the nature of the 
foulant being deposited on the membrane can be used to optimize the operating conditions 
during pilot-scale testing. For example, when a substantial amount of organic matter deposits 
during bench-scale coupon tests, causing a substantial decrease in the specific flux, a lower 
operating flux can be recommended for pilot-scale operations. Also, based on the nature of 
foulant material detected from the bench-scale testing, efficient cleaning chemicals specific to 
the foulant can be recommended for pilot-scale tests. It is important to combine the bench 
scale with the various analytical, characterization, and autopsy techniques to obtain 
meaningful results on organic fouling behavior in SWRO processes. The methods described 
in this study can be used as an early indication for determining only organic fouling of 
SWRO membranes. Other types of fouling such as biological fouling cannot be detected by 
the methods and procedures developed in this study. An understanding of the nature of 
foulant will facilitate cost-effective and optimal design/operation of pretreatment and the 
overall SWRO process.  
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Appendix A 

Procedure for Bench Scale RO Membrane Test 
 
Membrane coupon preparation 

• Cut coupons from flat sheets or spiral-wound modules. 
• Store coupons in DI water at 4 °C, replacing water regularly to minimize bacterial or 

fungal growth. 
 

RO unit cleaning 
• With the membrane cell removed from the system, run a 7% phosphoric acid solution 

through the system in recycle mode for 10 min. 
• Rinse thoroughly with DI water. 
• Test the conductivity of water in the system to ensure that acid has been thoroughly 

rinsed away. 
 

Bench-scale RO unit setup 
• Follow diagram in Figure 2.4 RO setup. 
• Calibrate conductivity meters. Use a 50-mS/cm standard for measuring feed 

conductivity and 0.447 mS/cm for permeate conductivity. 
• Before placing membrane in the system, run at 1000 psi to ensure that pump pulsation 

does not occur. 
 

Compaction run 
• Replace DI water in the system with a sodium chloride solution at 32 g/L (0.55 M; 

conductivity near 50 mS/cm). A volume of at least 8 L is recommended, depending on 
the tubing and tanks used. 

• Place membrane coupon in test cell and pressurize to 1200 psi. 
• Start flow through the system and begin computerized collection of pressure, flux, 

temperature, and conductivity data. 
• With the system running at a set pump speed, tighten the concentrate valve to increase 

pressure. Increase the pressure slowly (for 1 or 2 min) until it reaches 1000 psi. The 
crossflow rate in the system is typically about 800 mL/min, giving a nominal 
crossflow velocity of about 50 cm/s. At 1000 psi, the flux for a 32-g/L NaCl solution 
is usually about 30 lmh. 

• Monitor the system for at least 30 min and ensure that proper rejection (typically at 
least 98%, often higher than 99%) is being achieved. Also ensure that temperature is 
kept constant (20 °C is typical). 

• Run at constant 1000-psi pressure in recycle mode (permeate returned to feed tank) 
for 24 h and observe flux decline due to compaction. 

• Monitor the feed-tank conductivity over time, ensuring that it remains constant. 
 

Fouling test 
• Shut down the system from the compaction run. Note that the membrane will begin to 

relax as soon as the pressure is turned off, so it is important to make the switch from 
compaction solution to seawater solution as quickly as possible. 

• Remove most of the water in the system down to the pump level, but do not run air 
through the pump. 

• Sample the seawater to be tested and store it for later water quality analyses. 
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• For seawater testing it is advisable to use as much volume as possible. Twenty liters is 
typically used in our lab. 

• Waste at least 1 L of seawater through the system to flush out the NaCl solution. 
• Restart the system at the same flow rate used for the compaction run.  
• Start computer datum collection and bring pressure up steadily for 1 or 2 min until it 

reaches 1000 psi. 
• Record the permeate conductivity regularly, but especially toward the beginning. 

Ensure that proper rejection (at least 98%) is being achieved.  
• Run at constant 1000-psi pressure in recycle mode for 24 h. 
• Monitor the feed-tank conductivity over time, ensuring that it remains constant. 
• Sample the feed tank at the end of the run for water quality analyses.  
• Sample the permeate if permeate quality parameters are to be measured. 

 
Shutdown 

• After the 24-h fouling run, turn off the system. 
• Remove the membrane from the testing cell, being careful not to disturb the foulant 

layer. 
• Store the membrane at 4 °C and allow it to dry overnight. 
• After the overnight drying, take a picture of the membrane (a desktop scanner is 

typically used); then place it in a desiccator for long-term storage and future analyses. 
• Flush DI water through the RO unit to remove salts.  
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